
6.891 Machine learning and neural networks

Problem set 1

Deadline: September 21, in class

Note: You will need to use MATLAB in this problem set. Information about Matlab can
be found on the course web site1. Data files for the problems will be made available via
the course Athena locker: /mit/6.891.

Reading: Lecture notes 1-3; DHS Chapters 1, 2.1–2.6, 5.1–5.8

Problem 1: regression

Here you’ll be using a regression method to predict housing prices in suburbs of Boston.
The x values or input vectors are 12 dimensional with the following interpretation

1. CRIM per capita crime rate by town

2. ZN proportion of residential land zoned for lots over

25,000 sq.ft.

3. INDUS proportion of non-retail business acres per town

4. CHAS Charles River dummy variable (= 1 if tract bounds

river; 0 otherwise)

5. NOX nitric oxides concentration (parts per 10 million)

6. RM average number of rooms per dwelling

7. AGE proportion of owner-occupied units built prior to 1940

8. DIS weighted distances to five Boston employment centres

9. RAD index of accessibility to radial highways

10. TAX full-value property-tax rate per $10,000

11. PTRATIO pupil-teacher ratio by town

12. LSTAT % lower status of the population

The y values or output scalars are the median value (in $1000’s) of owner-occupied homes
in that area. Your goal is to build a model that can accurately predict y given an x. You will
find the data in four files, “hw1/boston x.dat,” “hw1/boston y.dat”, “hw1/boston x test.dat”
and “hw1/boston y test.dat”.

1http://www.ai.mit.edu/courses/6.891
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a) Model the “boston x.dat” and “boston y.dat” data via linear regression using squared-
error as the criterion to minimize. In other words y = f(x; ŵ) = ŵ0 +

∑12
i=1 ŵixi,

where ŵ = arg minw
∑n
t=1(yt−f(xt; w))2; here n is the number of training examples.

(note: MATLAB wants all vector indexes to be greater or equal to one; w(0) won’t
work).

After having created your linear regression model, use it to compute the mean squared
error on the training instances and, separately, on the test instances that you can find
in “boston x test.dat” and “boston y test.dat”.

Turn in the mean squared errors and your Matlab code.

b) Now that you’ve warmed up your Matlab skills, it’s time to see if you can handle
something a bit more complicated. For this part, do the same as in part a), but with
an additive model using quadratic basis functions. In other words,

f(x; ŵ) = ŵ0 +
12∑
i=1

ŵixi +
∑
i≤j

ŵijxixj (1)

Hint: simply treat this as a linear regression problem after numerically expanding
the data matrices into larger feature matrices.

c) Compare the results from a) and b). Which regression model would you use? (max
2 sentences).

d) Examine the linear coefficient you get in part b). Roughly, how many relevant basis
functions do you think there are? Do you think that a linear regression model that
would use only these “relevant” basis functions would achieve a lower mean squared
error on the training/test set? (max 2 sentences).

Problem 2: classification

Here you’ll solve and analyze a classification problem involving binary hand-written dig-
its similar to the ones you have already seen in lectures. The digits are provided to
you in four data files: “hw1/digit x.dat”, “hw1/digit y.dat”, “hw1/digit x test.dat”, and
“hw1/digit y test.dat”. You can view the digits in MATLAB, e.g., as follows

>> cd /mit/6.891/hw1

>> load digit_x.dat;

>> prettydigit(digit_x(1,:))

The digits that you see in the training and test sets are “3”s and “5”s. We have assigned
y = 1 for all “3”s and y = 0 for all “5”s.
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a) Estimate two multivariate Gaussian probability distributions, P (x|µ1,Σ) and P (x|µ0,Σ),
for the two types of digits based on their respective training examples in “hw1/digit x.dat”.
NOTE THAT THE COVARIANCES ARE FORCED TO BE EQUAL IN THE TWO
DISTRIBUTIONS. Turn in just your MATLAB code, not the resulting means and
the covariance matrix.

b) Show that when the covariance matrices are indeed equal, the posterior class proba-
bility P (y|x, µ1, µ0,Σ) computed from such a Gaussian mixture model, i.e.,

P (y = 1|x, µ1, µ0,Σ) =
P (x|µ1,Σ)P (y = 1)

P (x|µ1,Σ)P (y = 1) + P (x|µ0,Σ)P (y = 0)
(2)

conforms to a logistic regression model:

P (y = 1|x,w) = g(w0 +
d∑
i=1

wixi ) (3)

Turn in a closed form expression for the linear coefficients w.

From now on, we will assume that the prior frequencies are equal: P (y = 1) = P (y =
0). This is indeed true in the training set “hw1/digit x.dat”.

c) We would like you to use a gradient ascent method to estimate the parameters of the
logistic regression model. To this end, compute

∂

∂wi
logP (y|x,w) (4)

and turn in your brief derivation.

d) Perform on the order of 100 iterations of the gradient ascent update rule

wi ← wi + ε
n∑
t=1

∂

∂wi
logP (yt|xt,w), i = 0, . . . , 64 (5)

Set the learning rate to ε = 1/
√
n d, where n is the number of training examples, and

set all the weights wi initially to zero.

Turn in your MATLAB code (not the resulting weights w).

e) Compute the number of classification errors on the test set (“hw1/digit x test.dat”,
“hw1/digit y test.dat”) BOTH for the logistic regression model from part d) and for
the Gaussian mixture (assuming equal prior frequencies) from part a). Briefly explain
any differences. (max 2 sentences)

Hint: use the result of part b) to deal with the Gaussian mixture.
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