
6.891 Machine learning and neural networks

Problem set 3

Deadline: November 2, in class

Note: You will need to use MATLAB in this problem set. Information about Matlab can
be found on the course web site1. Data files for the problems will be made available via
the course Athena locker: /mit/6.891.

Reading: Lecture notes 1-11, Chapters 3.8, 5.1-5.5, 5.11, 9.5 and C. Burges’ tutorial (pages
1-8).

Some of the problems have been marked as optional. This means that we want you to
submit solutions to only one of the optional problems. We encourage everyone to at least
read through all the questions, however. You are expected to understand the solutions to
all these problems even if you might not have the background to solve them on your own
at this point.

Please try not to exceed 2-3 sentences for any explanations.

Problem 1: choose I or II

This question is about AdaBoost, the simple boosting algorithm presented in the lectures.
We assume that there exists a method that can produce a weak learner or a component
hypothesis h(x) that does a bit better than random guess on any weighted training set
D = {x1, . . . ,xn}. We denote the weights on the examples at the kth boosting iteration as
pk(1), . . . , pk(n),

∑n
i=1 pk(i) = 1. All the hypotheses h(x) produce binary ±1 outputs.

Starting with equal weights p1(i) = 1/n, AdaBoost generates a sequence of hypotheses
h1(x), . . . , hm(x) which are trained using different example weights. After having generated
a hypothesis hk(x) at the kth iteration, the weights pk(i) are updated as follows

pk+1(i) = c · pk(i) exp(−αkyihk(xi)), i = 1, . . . , n (1)

where c is the normalization constant ensuring that
∑n
i=1 pk+1(i) = 1 and αk = 1/2 · log[(1−

εk)/εk] (note 1/2 in front of the log; there was a mistake in the lecture slides). εk here is

1http://www.ai.mit.edu/courses/6.891

1

the weighted training error that hk(x) achieves:

εk =
n∑
i=1

pk(i) [[hk(xi) 6= yi]] (2)

where we define [[·]] to be one if the logical argument is true and zero otherwise.

Problem 1, option I (more theoretical)

a) Show that the choice of αk above quarantees that the hypothesis hk(x) just generated
has a weighted error 0.5 relative to the updated weights pk+1(i). Equivalently, you can
show that this choice of αk ensures that the (weighted) labels become decorrelated
with the outputs:

n∑
i=1

pk+1(i) yi hk(xi) = 0 (3)

b) What relevance if any does this have for the quality of the hypothesis generated?

c) Relative entropy or Kullback-Leibler divergence is a measure of distance between two
distributions. So, for example, we can evaluate the distance between the different
example weightings pk+1(i) and pk(i) as

D(pk+1‖pk) =
n∑
i=1

pk+1(i) log
pk+1(i)

pk(i)
(4)

(this is not symmetric so it’s not a distance in a strict sense but satisfies many of the
properties for distances)

Now, suppose we want to find the weights pk+1(i) such that they are closest to pk(i)
in the above relative entropy sense but still satisfy the decorralation condition

n∑
i=1

pk+1(i)yihk(xi) = 0 (5)

Solve: minD(pk+1‖pk) with respect to the positive weights pk+1(i) summing to one
subject to the above decorrelation contraint. Use Lagrange multipliers to get the
solution.

d) How does αk defined above relate to the Lagrange multiplier from part c)?

2

Problem 1, option II (more practical)

We have provided you with MATLAB code that finds and evaluates decision stumps. These
are the hypothesis that the boosting algorithm assumes we can generate. We ask you to use
this code to generate a short matlab script that “boosts” these decision stumps. We have
provided you with skeletons “boost digit.m”, “boost.m”, “eval boost.m”, “find stump.m”,
“eval stump.m”.

a) Run the boosting algorithm on the digits example (see “boost digit.m”). Try running
it 1, 5, 10, and 20 iterations. Plot the training and test errors corresponding to each
case. Also identify the pixels that the decision stumps are concentrating on. Do you
expect that such “features” your boosting algorithm finds here are similar to those
that the simple filtering method discussed in the previous problem set would find?

b) Are the resulting training and test errors what you would expect them to be? Why
or why not?

c) Now limit the coefficients αk to be in the interval [0, 1]. In other words, set αk =
min(1, log[(1−εk)/εk)]. Redo the experiment in part a) and again plot the test errors.

d) Discuss briefly why the additional constraint on αk might help or hurt the test per-
formance.

Problem 2

a) Show that the leave-one-out cross-validation estimate of the generalization error of
a learning method is unbiased in the sense that taking the expected value of this
estimate with respect to the probability of selecting the training set yields the true
expected error.

b) Show that the leave-one-out cross-validation estimate for a suppoer vector machine
is upper bounded by the number of support vectors.

c) Combine a) and b) to a result that says that the expected error of a support vector
machine is upper bounded by the expected number of support vectors.

d) Part c) should give you some (but not strong) reason to think that the number of
support vectors is an indication of the generalization error. Here we ask you to test
whether this is at all true in practice. We have provided you with simple matlab code
for SVMs (“train svm.m” and “eval svm.m”). “polykernel.m” and “gausskernel.m”
permit you to use different types of kernels, including

K(xi,xj) = (xTi xj)
p, p = 1, 2, . . . (6)

3

as well as

K(xi,xj) = exp
(
− 1

2σ2
‖xi − xj‖2

)
(7)

where σ2 is a positive kernel width parameter.

For polynomial kernels of degree p ∈ {1, 2, 4, 8} and radial basis (Gaussian) kernels
with width parameter σ2 ∈ {1/2, 1/4, 1/9, 1/16}, evaluate the test error as a function
of the resulting numbers of support vectors.

To ensure that the digits are normalized to one (with both positive and negative com-
ponents) and that the labels are ±1, please use the initialization script “preproc.m”
(see below). Both “polykernel.m” and “gausskernel.m” assume that the digits have
been normalized in this way.

% preproc.m

load digit_x.dat;

load digit_y.dat;

[n,m] = size(digit_x);

digit_y = 2*digit_y-1;

digit_x = (2*digit_x-1)/sqrt(m);

load digit_x_test.dat;

load digit_y_test.dat;

digit_y_test = 2*digit_y_test-1;

digit_x_test = (2*digit_x_test-1)/sqrt(m);

Note that you cannot simply evaluate the number of support vectors by finding
the number of non-zero coefficients αi. This is because the quadratic programming
package finds the solution upto some specified accuracy. Count instead the number
of αi’s that are larger than say 0.001/max(α1, . . . , αn).

e) Another indicator of generalization is the margin by which we can separate the train-
ing examples. Here we ask you to check how well the size of the margin correlates
with the test performance.

Note first that K(x,x) = 1 for all (normalized digits) x for all the kernels discussed
above. This means that the feature vectors are also normalized to one. So the size of
the margin that we attain in the feature space is a fair indicator of separation. We
have to have the feature vectors normalized since scaling clearly affects how widely
they are spaced.

4

Now, to evaluate the margin, recall that SVM finds w in the feature space such that

yi(w
Txi + w0)− 1 ≥ 0. (8)

and for all support vectors i ∈ SV (assuming that the examples are separable)

yi(w
Txi + w0)− 1 = 0 (9)

So, the examples seem to be separated from the boundary by 1. But this is scaled by
‖w‖. The margin or the orthogonal distance from the boundary is therefore

Margin =
1

‖w‖
(10)

Using the form of the SVM solution for w, express the margin in terms of the kernel
function, {αi}, and {yi}.

f) Evaluate the test errors as a function of the margin attained for the training examples.
Provide a brief explanation for the results.

Problem 3: choose option I or II

Problem 3, option I (more theoretical)

Here you are to show that the EM-algorithm increases the likelihood of the training exam-
ples monotonically after each iteration.

Let y and j index mixture components and i the training examples. In this notation, for
example, the log-likelihood of the observed data is given by

J(θ) =
n∑
i=1

logP (xi|θ) =
n∑
i=1

log

 m∑
j=1

P (xi, yi = j|θ)

 (11)

=
n∑
i=1

log

 m∑
j=1

P (yi = j|θ)P (xi|yi = j, θ)

 (12)

=
n∑
i=1

log

 m∑
j=1

pj P (xi|µj,Σj)

 (13)

where θ = {p1, . . . , pm, µ1, . . . , µm,Σ1, . . . ,Σm} and pj is the prior probability of selecting
component j.

a) Let θ = θ0 be the current setting of the parameters in our mixture model. Show that
performing the M-step of the EM-algorithm corresponds to maximizing

J(θ|θ0) =
n∑
i=1

Eθ0 { logP (xi, yi|θ) } (14)

5

with respect to θ. Here the expectation is taken with respect to P (yi|xi, θ0) where the
component indicator yi is the random variable. It suffices to derive a single parameter
update from J(θ|θ0) (e.g., for p1) and show that it is indeed identical to the update
in the M-step prsented in the lectures.

b) Before we move on we need an intermediate result. Show that for any distribution
qj, j = 1, . . . ,m,

∑
j qj = 1 and positive coefficients cj

m∑
j=1

qj log
cj
qj
≤ log

m∑
j=1

cj (15)

c) Use a) and b) to show that

J(θ)− J(θ0) ≥ J(θ|θ0)− J(θ0|θ0) (16)

d) Provide the summary argument for why part c) shows that EM increases the log-
likelihood of the training examples monotonically.

Problem 3, option II (more practical)

Naive Bayes model is a very simple probability model that makes the tell-tale independence
asumption about the components of the vector x given the mixture component. In other
words,

P (x, y) = P (y)P (x|y) =∗ P (y)

 d∏
j=1

P (xj|y)

 (17)

where y = 1, . . . ,m indexes the mixture components and d is the dimensionality of x. We
assume for simplicity that each component of the input vector, xj, takes values in a discrete
set {0, ..., r} where from now on r = 1 (xj are all binary variables).

a) We have given you a mixture of Gaussians code. Modify this code for the naive Bayes
mixture model. The relevant files are

“inimix.m” initializes the mixture of Gaussians model.

“runmix.m”, the overall script that initializes the mixture model and runs the
em iterations.

“em.m” performs one EM-iteration, returning the new parameters.

“evalgauss.m” evaluates the log-likelihood that a single Gaussian assigns to an
observation vector

“evalmix.m” computes the log-likelihood of the data for a mixture of Gaussians
distribution

6

“softmax.m” computes the softmax distribution of the input.

Return the MATLAB code.

b) Suggest an appropriate initialization for these mixture models.

c) Apply your code to the digit recognition problem using 1 or 2 components for each
digit. Check that the log-likelihood of the training examples increases monotonically
after each iteration. Return the corresponding plots.

d) Evaluate the number of misclassified digits for the two mixture models and briefly
discuss the results.

7

