6 INTRODUCTION
DAACS is a system for software debugging (Burnell & Horvitz 1995).

Information processing

VISTA is a system used by NASA when launching space shuttles. Its purpose is to
filter and display information on the propulsion system (Horvitz & Barry 1995).

Bruza & van der Gaag (1993) developed a language for constructing Bayesian
networks for information retrieval, and Fung & Favero (1995) describe another
system for information retrieval.

Medicine

Child helps in diagnosing congenital heart diseases (Franklin et al. 1989, Lauritzen
et al. 1994). The system is described in Section 3.5.

MUNIN is a system for obtaining a preliminary diagnosis of neuromuscular dis-
eases on the basis of electromyografic findings (Andreassen et al. 1989).

Painulim diagnoses neuromuscular diseases (Xiang et al. 1993).

Pathfinder is of assistance to community pathologists with the diagnosis of lymph-
node pathology (Heckerman et al. 1992, Heckerman & Nathwani 1992a,b). The
system is described in Section 5.6. Pathfinder has been integrated with videodiscs
to the commercial system Intellipath (Nathwani et al. 1990).

SWAN is a system for insulin dose adjustment of diabetes patients (Andreassen et
al. 1991, Hejlesen et al. 1993).

Miscellaneous

Hailfinder was developed for forecasting severe weather in the plane of northeastern
Colorado (Abramson et al. 1996).

FRAIL is an automatic Bayesian network construction system (Goldman & Char-
niak 1993). It has been developed for building Bayesian networks for interpretation
of written prose (Charniak & Goldman 1991).

Chapter 2

Causal and Bayesian networks

This chapter introduces causal networks as graphical representations of causal rela-
tions in a domain. Through several examples, basic rules for chained reasoning about
certainty are introduced. These rules are formalized in the concept of d-separation.

In Section 2.3 we present the probability calculus used in this book, and we define
the concept of a Bayesian network. In Section 2.4 the introductory examples are
modelled as Bayesian networks and the reasoning is performed through probability
calculations.

Finally we describe the BOBLO system.

2.1 Examples

In this section we give three examples. They illustrate crucial points to consider
when reasoning about certainty has to be formalized.

2.1.1 Icy roads

Police Inspector Smith is impatiently awaiting the arrival of Mr Holmes and Dr
Watson; they are late and Inspector Smith has another important appointment (lunch).
Looking out of the window he wonders whether the roads are icy. Both are notori-
ocm_.w bad drivers, so if the roads are icy they may crash.

His secretary enters and tells him that Dr Watson has had a car accident. “Watson?
@W. It could be worse ... icy roads! Then Holmes has most probably crashed too.
I'll go for lunch now.”
m:.Hnw roads?”, the secretary replies, “It is far from being that cold, and furthermore

Il the roads are salted.” Inspector Smith is relieved. “Bad luck for Watson. Let us
give Holmes ten minutes more.”

To formalize the story, let the events be represented by variables with two states,
WMM_ and no. Suppose also that to each event is associated a certainty, which is a
and wm::coh So, we have the three variables: icy roads (I), Holmes crashes (H)

atson crashes (W). I has the effect of increasing the certainty of both H and
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W. We may think of the impact as an increasing function from the certainty of the

cause to the certainty of the effect. The situation is illustrated in Figure 2.1.

Figure 2.1 A network model of icy roads. The arrows on the
links model the causal impact, and the small arrows attached to
the links indicate the direction of the impact on the certainty.

When Inspector Smith is told that Watson has had a car accident, he is doing a
easoning in the opposite direction to the causal arrows. Since the impact function
ointing at W is increasing, the inverse function is also increasing. Hence, he gets
n increased certainty of I. The increased certainty of I in turn creates a new
xpectation, namely an increased certainty of H.

Next, when his secretary tells him that the roads cannot possibly be icy, the fact

at Watson has crashed cannot change his expectation concerning road conditions
nd, consequently, Watson’s crash has no influence on H.

This is an example of how dependence/independence changes with the informa-
ion at hand. When nothing is known about the condition of the roads, then H
nd W are dependent: information on either event affects the certainty of the other.
owever, when the condition of the roads is known for certain, then they are inde-
endent: information on W has no effect on the certainty of H and vice versa. This
henomenon is called conditional independence.

.1.2  Wet grass

r Holmes now lives in Los Angeles. One morning when Holmes leaves his house,
e realizes that his grass is wet. Is it due to rain (R), or has he forgotten to turn off
he sprinkler ($)? His belief in both events increases.

Next he notices that the grass of his neighbour, Dr Watson, is also wet. Elemen-

: Holmes is almost certain that it has been raining.

A formalization of the situation is shown in Figure 2.2.

When Holmes notices his own wet grass, he is doing a reasoning in the oppo-
ite direction to the causal arrows. Since both impact functions pointing at H are
ncreasing, his certainty of both R and S increases. The increased certainty of R in
urn creates an increased certainty of W.

Therefore Holmes checks Watson’s grass, and when he discovers that it is also

et, he immediately increases the certainty of R drastically.

The next step in the reasoning is hard for machines, but natural for human beings,

amely explaining away: Holmes’ wet grass has been explained and thus there i8 4
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Figure 2.2 A network model for the wet grass example. Rain
and sprinkler are causes of Holmes’ grass being wet. Only rain
can cause Watson’s grass to be wet.

no longer any reason to believe that the sprinkler has been on. Hence, the certainty
of S is reduced to its initial size.

Explaining away is another example of dependence changing with the information
available. In the initial state, when nothing is known, R and S are independent.
However, when we have information on Holmes’ grass, then R and S become
dependent.

2.1.3 Causation and reasoning

A possible source of confusion should be sorted out at this point. The graphs in
Figures 2.1 and 2.2 were presented as models for impacts between events, but the
reasoning based on the graphs is concerned with how our certainty of the various
events is affected by new certainty of other events.

Actually, the models are guidelines for ways of reasoning about unknown events.
When reasoning in the direction of the links, the statement in the model is:

The event A causes with certainty x the event B.

From this we reason:
If we know that A has taken place, then B has taken place with certainty x.

Reasoning in the opposite direction to the links is more delicate. So far we have
only said that the certainty of the cause A increases when the consequence B has
taken place. If you want to get a quantitative statement, your certainty calculus
Must have a way of inverting the causal statements. In Section 2.4 we show that
for probability calculus, Bayes’ rule is used for the inversion.

Some scientists take the point of view that the networks are not causal models,
_ME B&m_m for .:oi information may propagate between events. This is, from a
o:.:amcosm_ point of view, perfectly valid as long as you do not model interfering
actions in your network. We shall expand on this in Chapter 6.

214 Earthquake or burglary

Mr Holmes s working at his office when he receives a telephone call from Watson,

e xi-,.o tells him that Holmes’ burglar alarm (A) has gone off. Convinced that a burglar
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(B) has broken into his house, Holmes rushes to his car and heads for home,
his way he listens to the radio (R), and in the news it is reported that there has k
a small earthquake (E) in the area. Knowing that earthquakes have a tendency 4§
turn the burglar alarm on, he returns to his work leaving his neighbours the pleasy
of the noise. Figure 2.3 gives a model for the reasoning.

®) ®

Figure 2.3 A model for the earthquake example. Notice that
the structure is similar to Figure 2.2.

2.1.5 Prior certainties

It has been typical of the reasoning in the examples of this section that if some;
event is known, then the certainty of other events must be changed. If, in a certainty:
calculus, the actual certainty of a specific event has to be calculated, then knowledgg
of certainties prior to any information is also needed. In particular, prior certainties.
are required for the events which are not effects of causes in the network.

Take for instance the wet grass example. Given that Holmes’ grass is wet, the
certainty of R is still dependent on whether rain at night is a rare event (as in Los
Angeles) or very common (as in London).

The same goes for the earthquake in Section 2.1.4. Though E may have a stronger
effect on A than B has, and therefore information on A will increase the certainty of “ “
earthquake more than on burglary, the resulting certainty on E should still be lower

Ewsﬁmoonmmsﬂwosw.Hovomc_oﬂoaoﬁam ammoism.vaoﬂonnmmznomo:hw:n,
B are required. ,

2.2 Causal networks and d-separation

The models in Section 2.1 are examples of causal networks. A causal network
consists of a set of variables and a set of directed links between variables. Mathe-
matically the structure is called a directed graph. When talking about the relations
in a directed graph we use the wording of family relations: if there is a link from
A to B we say that B is a child of A, and A is a parent of B.

The variables represent events (propositions). In Section 2.1, each variable had
the states yes and no reflecting whether a certain event had taken place or not. In
general, a variable can have any number of states. A variable may, for example,
be the colour of a car (states blue, green, red, brown), the number of children in
a family (states 0, 1,2,3,4,5, 6, > 6), or a disease (states bronchitis, tuberculosis,
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ancer). Variables may have a countable or a continuous state-set, but in this
Lurg ¢ solely consider variables with a finite number of states. .
book ** sal network a variable represents a set of possible states of affairs. A
" m_ QMM in exactly one of its states; which one may be unknown to us. .
e about uncertainty also has a quantitative part, namely om_mc_»co: and
wom.mo:._:m f certainty numbers. The considerations in this section are independent
nmﬂw SMMMMM_E uncertainty calculus. Whatever calculus is used, it must obey the
o) €

ules illustrated in Section 2.1 that we formalize in this section.
n

Serial connections

he situation in Figure 2.4. A has an influence on B i_.._mor in EBr_.SM
- fuence on C. Obviously, evidence on A will influence the oo&:ﬂ& Mm Bw “Mo
n . , imi i ill influence

i i larly, evidence on C wi

nfluences the certainty of C. Simi . .
SM,E_:Q on A through B. On the other hand, if the state of B is known, M_om.. M“M
Mmmsso_ is blocked, and A and C become independent. .<<n say that A 2“: C are
d-separated given B, and when the state of a variable is known we say tha
instantiated. . .
! We conclude that evidence may be transmitted through a serial connection unless
the state of the variable in the connection is known.

O®—®—0O

Figure 2.4 Serial connection. When B is instantiated it blocks
communication between A and C.

Consider t

Diverging connections

The situation in Figure 2.5 is a generalization of the icy 3&% nxmav_w,\ Fncom_m
can pass between all the children of A unless the state of A is known. We say

B,C,..., E are d-separated given A. . o -
So, evidence may be transmitted through a diverging connection unless it is instan

tiated.

Figure 2.5 Diverging connection. If A is instantiated, it blocks
communication between its children.
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Converging connections

A description of the situation in Figure 2.6 requires a little more care. If nothing
known about A except what may be inferred from knowledge of its parents B, ... A

then the parents are independent: evidence on one of them has no influence on i

certainty of the others.

Figure 2.6 Converging connection. If A changes certainty, it
opens communication between its parents.

Now, if any other kind of evidence influences the certainty of A, then the parents!
become dependent due to the principle of explaining away. The evidence may be
direct evidence on A, or it may be evidence from a child. This phenomenon ig
called conditional dependence. In Figure 2.7 some illustrating examples are listed,

The conclusion is that evidence may only be transmitted through a 8::3%..:@

connection if either the variable in the connection or one of its descendants has
received evidence.

Remark. Evidence on a variable is a statement of the certainties of its states. If the
statement gives the exact state of the variable we call it hard evidence, otherwise
it is called soft. Hard evidence is also called instantiation. Blocking in the case of
serial and diverging connections requires hard evidence, while opening in the case
of converging connections holds for all kinds of evidence.

© :

Figure 2.7 Examples where the parents of A are dependent.
The dotted lines indicate insertion of evidence.

2.2.1 d-separation

The three cases given above cover all the ways in which evidence may be transmitted
through a variable, and following the rules it is possible to decide for any pair of

variables in a causal network whether they are dependent given the evidence entered
into the network. The rules are formulated in the following.

Definition (d-separation). Two variables A and B in a causal network are d-separated
if for all paths between A and B there is an intermediate variable V such that either

13
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Figure 2.8 A causal network with B and M instantiated. A is
d-separated from G only.

_ the connection is serial or diverging and the state of V is known

or . "
_ the connection is converging and neither V nor any of Vs descendants ha

received evidence.

hem d-connected.
If A and B are not d-separated we call t .

Figure 2.8 gives an example of a larger network. The oSao:coo mannnmzww wokua

nts i iati i is entered at A it may be transmi .

M represents instantiation. If evidence is en
%:Mo%&mwc_o B is blocked, so the evidence cannot pass aMoMmr B 8. moa M«MMMMMM,
i i hild M of as receiv \
it may be passed to H and K. Since the ¢
nSamwoo @MB H may pass to I and further to E,C, F L. and L. So, the path
A-D—H-K—1I—-E—C—F—J—Lis ad-connecting path.

Figure 2.9 gives two illustrating examples.

() )

Figure 2.9 Causal networks with hard mia.oaoa entered (the
variables are instantiated). (a) Although all :n_mrg_:w of E are
instantiated it is d-connected to F, B and A. (b) F is d-separated
from the remaining un-instantiated variables.
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Note that although A and B are d-connected, changes in the belief in A need nok;
change the belief in B.

You may wonder why we have introduced d-separation as a definition rather
as a theorem. A theorem should be as follows.

Claim. If A and B are d-separated, then changes in the certainty of A have
impact on the certainty on B.

However, the claim cannot be established as a theorem without a more precisé;
description of the concept of “certainty”. You can take d-separation as a property]

of human reasoning and require that any certainty calculus must comply with the :
claim.

2.3 Bayesian networks

So far nothing has been said about the quantitative part of certainty assessment,

Various certainty calculi exist, but in this book we only treat the so called Bayesian
calculus, which is classical probability calculus.

2.3.1 Basic axioms

The probability P(A) of an event A is a number in the unit interval [0, 1]. Proba-
bilities obey the following basic axioms.

(i) P(A) =1 if and only if A is certain.

(ii) If A and B are mutually exclusive, then
P(AV B) = P(A) + P(B).

2.3.2 Conditional probabilities

The basic concept in the Bayesian treatment of certainties in causal networks is
conditional probability. Whenever a statement of the probability, P(A), of an event
A is given, then it is given conditioned by other known factors. A statement like
“The probability of the die turning up 6 is 5 usually has the unsaid prerequisite that
it is a fair die — or rather, as long as I know nothing of it, I assume it to be a fair die.
This means that the statement should be “Given that it is a fair die, the probability
...”. In this way, any statement on probabilities is a statement conditioned on what
else is known.

A conditional probability statement is of the following kind:

Given the event B, the probability of the event A is x.

The notation for the statement above is P(A|B)=x.

It should be stressed that P(A | B) = x does not mean that whenever B is true

then the probability for A is x. It means that if B is true, and everything else known
is irrelevant for A, then P(A) = x.
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The fundamental rule for probability calculus is the following:
P(A| B)P(B) = P(A, B), 2.1)

i ili joi A A B. Remembering that
P(A, B) is the probability of the joint event
X ::mnm should always be conditioned by a context C, the formula should read

P(A|B,C)P(B|C)=P(A,B|C). 2.2)

From 2.1 it follows that P(A | B)P(B) = P(B | A)P(A) and this yields the well
known Bayes’ rule:

wher
Eoc»c

P(A | B)P(B)
P@ 4= T2 @3
Bayes’ rule conditioned on C reads
P(A|B,C)P(B|C)
P(B|A,CO)= @l )P( . 24)

P(A|C)

Formula (2.2) should be considered an axiom for probability om_om::m mm»%ﬂ:%“
a theorem. A justification for the formula can be found cw.ooci_:m B_MM , wnm
suppose we have m cats (C) of which n are _x.oi: (B), and i of the 32\” e
Abyssinians (A). Then the frequency of As given B among the Mwﬁ. f m» N mm».iw.“
is i, the frequency of Bs, f(B | C), is &, and the frequency of brown Aby

n’

cats, f(A, B|C) is <. Hence,
f(A|B,CO)f(B|C)= f(A,B|C).

Likelihood
Sometimes P(A | B) is called the likelihood of B given A, and it is Qo_-o.:& L(B | >vm
The reason for this is the following. Assume By, ..., B, are possible scenario

wilth an effect on the event A, and we know A. Hr.n: P(A | B;) is a measure .Om
how likely it is that B; is the cause. In particular, if all B;s have the same prior
probability, Bayes’ rule yields

P(A | B)P(B)

P(A)

P(B; | A) =
where k is independent of i.

233 Subjective probabilities

The justification in the previous section for the fundamental .i_.n was based ?o:
frequencies. This does not mean that we only consider Eoc.wc:_:om based on fre-
quencies. Probabilities may also be completely subjective estimates of the certainty
of an event.

A subjective probability may, for example, be my mnaosw_ assessment of the
chances of selling more than 2,000 copies of this book in 1997. ) he choice
A way to assess this probability could be the following. I am given the cho

between two gambles:
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(1) if more than 2,000 copies are sold in 1997 I will receive $100;

(2) I will by the end of 1997 be allowed to draw a ball from an urn with »
balls and 100 — n white balls. If my ball is red I will get $100.

Now, if all balls in the urn are red I will prefer (2), and if all balls are white I
prefer (1). There is a number n for which the two gambles are equally attracti
and for this n, 155 is my estimate of the probability of selling more than 2,000 cop
of this book in 1997 (I shall not disclose the n to the reader). ,

For subjective probabilities defined through such ball drawing gambles the
mental rule can also be proved.

2.3.4 Probability calculus for variables

As stated in Section 2.2, the nodes in a causal network are variables with a fin
number of mutually exclusive states.

If A is a variable with states ay, ..., a,, then P(A) is a probability &mﬁgnr
over these states:

n
P(A)=(x1,...., %)  x20 dox=1,
i=1

where x; is the probability of A being in state q;.

chnw-.. The probability of A being in state a; is denoted P(A = a;) and denoted
P(a;) if the variable is obvious from the context.

If the variable B has states by, . . ., by, then P(A | B) is an n x m table containing
numbers P(a; | b;) (see Table 2.1).

P(A, B), the joint probability for the variables A and B, is also an n x m table.

It consists of a probability for each configuration (a;, b i) (see Table 2.2).

When the fundamental rule (2.1) is used on variables A and B, then the procedure

is to apply the rule to the n-m configurations (a;, b;):
P(a; | bj)P(bj) = P(a;, b;).

This means that in the table P(A | B), for each j the column for b; is multiplied
by P(b;) to obtain the table P(A, B). If P(B) = (0.4,0.4,0.2) then Table 2.2 is
the result of using the fundamental rule on Table 2.1. When applied to variables,
we use the same notation for the fundamental rule:

P(A| B)P(B) = P(A, B).

From a table P(A, B) the probability distribution P(A) can be calculated. Let a; be
a state of A. There are exactly m different events for which A is in state a;, namely
the mutually exclusive events (ai, by), ..., (ai, by). Therefore, by axiom (ii)

P(@)=)_ P(a,b)).
j=1
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Table 2.1 An example of P(A | B).
Note that the columns sum to one.

by vn vu
a) 04 03 0.6
@ 0.6 0.7 0.4

Table 2.2 An example of P(A, B).
Note that the sum of all entries is one.

W— vn Wu
a 0.16 0.12 012
a; 0.24 0.28 0.08

This calculation is called marginalization and we say that the variable B is marginal-
ized out of P(A, B) (resulting in P(A)). The notation is

P(A) = M P(A, B). 2.5)
B

By marginalizing B out of Table 2.2 we get P(4) = (0.4, 0.6).
The division in Bayes’ rule (2.3) is treated in the same way as the multiplication
in the fundamental rule (see Table 2.3).

2.3.5 Conditional independence

The blocking of transmission of evidence as described in Section 2.2.1 is, in the
Bayesian calculus, reflected in the concept of conditional independence.The variables
A and C are independent given the variable B if

P(A|B)=P(A|B,C). (2.6)
This means that if the state of B is known then no knowledge of C will alter the

probability of A.

Table 2.3 P(B | A) as a result of
applying Bayes’ rule to Table 2.1
and P(B) = (0.4,0.4,0.2).

a a
b, 04 0.4
b, 0.3 047
bs 0.3 0.13
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Remark. If condition B is empty, we simply say that A and C are independent.

1.

Conditional independence appears in the cases of serial and diverging connections

(see Figure 2.10).

(B)
® ©

Figure 2.10 Examples where A and C are conditionally inde-
pendent given B.

O—E—O©

Definition (2.6) may look asymmetric; however, if (2.6) holds, then — by the
conditioned Bayes’ rule (2.4) — we get
P(A|C,B)P(C|B) PA|BP(C]|B)
P(C|B,A)= = = P(C | B).
(o ) PGB PALB) (C|B)
The proof requires that P(A | B) > 0. That is, for states a, b with P(A =a |
B = b) = 0 the calculation is not valid. However, for our considerations it does not
matter; if B is in state b then the evidence A = a is impossible and will not appear.
So, why bother with the transmission of it?

2.3.6 Definition of Bayesian networks

Causal relations also have a quantitative side, namely their strength. This is ex-
pressed by attaching numbers to the links.

Let A be a parent of B. Using probability calculus it would be natural to let
P(B | A) be the strength of the link. However, if C is also a parent of B, then the
two conditional probabilities P(B | A) and P(B | C) alone do not give any clue
on how the impacts from A and B interact. They may co-operate or counteract in
various ways. So, we need a specification of P(B | A, C).

It may happen that the domain to be modelled contains feed-back cycles (see
Fig. 2.11).

Feed-back cycles are difficult to model quantitatively (this is, for example, what
differential equations are all about); for causal networks no calculus has been
developed that can cope with feed-back cycles Therefore we require that the network
does not contain cycles.

A Bayesian network consists of the following.

A set of variables and a set of directed edges between variables.
Each variable has a finite set of mutually exclusive states.

The variables together with the directed edges form a directed acyclic
graph (DAG). (A directed graph is acyclic if there is no directed path
A = ---—> A, such that A; = A,.)

To each variable A with parents By, ..., B, there is attached a condi-
tional probability table P(A | By, ..., By).
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Figure 2.11 A directed graph with a feed-back cycle. This is
not allowed in Bayesian networks.

Note that if A has no parents then the table reduces to unconditional probabilities
P(A). For the DAG in Figure 2.12 the prior probabilitiess P(A) and P(B) must be
specified. It has been claimed that prior probabilities are an unwanted introduction
of bias to the model, and calculi have been invented in order to avoid it. However, as
discussed in Section 2.1.5, prior probabilities are necessary — not for mathematical
reasons — but because prior certainty assessments are an integral part of human

reasoning about certainty.

Figure 2.12 A directed acyclic graph (DAG). The probabilities
to specify are P(A), P(B), P(C | A, B), P(E | O), P(D | C),
P(F|E)and P(G|D,E,F).

One of the advantages of Bayesian networks is that they admit d-separation:
if A and B are d-separated in a Bayesian network with evidence e entered, then
P(A | B,e) = P(A | ). This means that you can use d-separation to read-off
conditional independencies. We will use this fact without proof.

2.3.7 The chain rule

Let U = (A;,...,A,) be a universe of variables. If we have access to the joint
probability table P(U) = P(Ay, ..., A,), then we can also calculate P(A;) as well
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as P(A; | e), where e is evidence (see Section 4.2). However, P(U) Srows expos
nentially with the number of variables, and U need not be very large before the tablg
becomes intractably large. Therefore, we look for a more compact representation o,
P(U): a way of storing information from which P(U) can be calculated if needed

A Bayesian network over U is such a representation. If the conditional indepen-
dencies in the Bayesian network hold for U, then P(U) can be calculated from th
conditional probabilities specified in the network.

Theorem 2.1 (The chain rule.) Let BN be a Bayesian network over
U={A),...,An).

Then the joint probability distribution P(U) is the product of all conditional proba-
bilities specified in BN:

P(U) = : P(A; | pa(A))

where pa(A;) is the parent set of A;.

Proof. (Induction in the number of variables in the universe U.)

If U consists of one variable then the theorem is trivial.

Assume the chain rule to be true for all networks consisting of n — 1 variables, and
let U be the universe for a DAG with n variables. Since the network is acyclic there
is at least one variable A without children. Consider the DAG with A removed.

Figure 2.13 A DAG with n variables. If the variable A is
removed, the induction hypothesis can be applied.

m%B the induction hypothesis we have that P(U \ {A}) is the product of all
pecified probabilities — except P(A | pa(A)).
By the fundamental rule we have

P(U) = PA|U\{ADP(U \ {4)).
ince A is independent of U \ ({A} U pa(A)) given pa(A) (see Fig. 2.13), we get
P(U) = P(A| U\ {ADPU \{A)) = P(A | pa(A))P(U \ {A)).
The righthand side above is the product of all specified probabilities.
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Table 2.4 Conditional probabilities for H and W.

I=y I=n I=y I=n
H=y 08 0.1 W=y 08 0.1
H=n 02 0.9 W=n 02 0.9
PH|D P(W|I)
Table 2.5  Joint probability
table for P(W, I) and P(H, I).
I=y I =n )
y 0.56 0py OF
n 0.14 0.27

2.4 The examples revisited

In this section we apply the rules of probability calculus on the introductory examples.
This is done to illustrate that probability calculus can be used to perform the reason-
ing in the examples — in particular explaining away. In Chapter 4 we give a general
algorithm for probability updating in Bayesian networks. This algorithm makes the
calculations considerably easier than those in this section.

24.1 Icy roads

(See Fig. 2.1.) For the quantitative modelling we need three probability assessments:
P(H | I), P(W | I) and P(I). The model in Figure 2.1 reflects that only knowledge
of icy roads is relevant for H and W. We should then attach a certainty to I based
on whatever knowledge may be available. In this case the police inspector has been
looking out of the window and wondering whether the roads were icy. We let the
probability for icy roads be 0.7.

Since both Holmes and Watson are bad drivers, we put the probability of a crash
in the case of icy roads to 0.8, and the probability of a crash if the roads are not icy
we put to 0.1 (they are bad drivers). An overview of the conditional probabilities
is given in Table 2.4.

To calculate the initial probabilities for H and W we first use the fundamental
rule (2.1) to calculate P(W, I) and P(H, I):

PW=yI=y)y=PW=y|I=y)P(I=y)=08-0.7=0.56.

Table 2.5 gives all four probabilities.

In order to get the probabilities for W and H we marginalize I out of Table 2.5
and get

P(W) = P(H) = (0.59,0.41).

The information that Watson has crashed is now used to update the probability of
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I. For this, Bayes’ rule is used:

PW=y|DPI)

PU|W=y) FW =)

1
= §525(08-07,0.1-03)

= (0.95,0.05).

To update the probability of H, first we use the fundamental rule (2.1) to calcy
P(H, I) as shown in Table 2.6.

Table 2.6 Tables showing the calculation of P(H, I.

I=y I'=n I=y
H=y 08-0.95 0.1.0.05 H=y 0.76
H=n 0.2-0.95 0.9-0.05 = H= 0.19

Finally, calculate P(H) by marginalizing I out of P(H, I). The result is
P(H) = (0.765, 0.235).

This is the quantitative effect of the information that Watson has crashed.
At last, when Inspector Smith is convinced that the roads are not icy, then P(H
I =n) = (0.1,09).
The calculation can be considered in a different way. First we calculate P(H, I

and P(W, I) (Table 2.5), and we have two Jjoint probability tables with the variabl
I in common. ,

If evidence on W now arrives in the form of P*(W) = (0, 1), then

PW, 1)
PW)

This means that the joint probability table for W and I is updated by multiplyi M
by the new distribution and dividing by the old one. The multiplication consists of}
annihilating all entries with W = n. The division by P(W) only has an effect oft’
entries with W = y, so therefore the division is by P(W = y). ;

Next, calculate P*(I) from P*(W, I) by marginalization, and use P*(I) to updat
P(H, 1)

P(H, I
PYH.T) = IIMUS ) Py

and finally P*(H) is calculated by marginalizing P*(H, I).

P*(W,I)= P(I1| W)P*(W) = P*(W).

24.2 Wet grass

(See Fig. 2.2.) Let the prior probabilities for R and S be P(R) = (0.2,0.8) and
P(S) = (0.1,0.9). The remaining probabilities are listed in Table 2.7. First, calcu- !
late the prior probabilities for W and H by formulae (2.1) and (2.5). That is, first
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jculate P(W, R) and then marginalize R out. The result is P(W) = (0.36, 0.64).
calcu ’

Table 2.7 The probabilities for the wet grass example. The
vectors (a, B) in the righthand table represent (H=y,H=n).

R=y R=n R=y R=n
W=y i 0.2 S=y (1,00 (09,01
W=n 0 0.8 S=n (1,0 O
PWI|R) P(H|R,S)

The calculation of P(H, R, S) follows the same scheme, only the product is
P(H,R,S)=P(H |R,S)P(R,S).
Since R and S are independent (see Fig. 2.2) we have (see Exercise 2.9)
P(H,R,S)= P(H| R, S)P(R)P(S).

The result is given in Table 2.8. Marginalizing R and § 9.: of w:N. zL %vowum\%w
P(H) = (0.272,0.728). We shall use the wmmnomnr outlined at t M MH nd of Seo
tion 2.4.1. We have established joint Eovmc__:w tables for two o ,
(W, R) and (H, R, S), with the variable R in common.

Table 2.8 The prior probability table for
P(H, R, S). The vectors (a, B) in the table
represent (H =y, H = n).

R=y R=n
S=y (0.02, 0) (0.072, 0.008)
S=n (0.18, 0) 0, 0.72)
GO (s
Figure 2.14 The clusters for the wet grass example. They

communicate through the variable R.

The evidence H = y is used to update P(H, R, S) by annihilating all n:.n__w_nm M_ﬂﬁ
H = n and dividing by P(H = y). Since the result shall be a probabi _.Q "
with all entries summing to one we need not calculate WQ&. ). After all n:n,_mm.%_
H = n have been annihilated (Table 2.9), we simply normalize the table by dividing

by the sum of the remaining entries (see Table 2.10). o
The distributions P*(R) and P*(S) are calculated through marginalization of

P*(H, R, S).
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Table 2.9 P(H,R,S) with all entries
with H = n annihilated.

R=y R=n
S=y (0.02, 0) (0.072, 0)
S=n (0.18, 0) 0, 0)

Table 2.10 The calculation of P*(H,R,S)= P(H,R,S | H = y).

R=y R=n R=y R=n
S=y §75002,00 5-(0.072,0) S=y (0.074,0) (0.264,0)
S=n §557(0.18,0) 59750, 0) T S=n (0662,0) (0,0) :

We get P*(R = y) =0.736 and P*(S = y) = 0.339.
Use P*(R) to update P(W, R) (see Table 2.11):

P*(W,R) = P(W | R)P*(R) = P(W, R) W*%Mv.

Table 2.11 Calculation of P*(W, R) = P(W, R)Z R

P(R) "
R=y R=n R=y R=n
W=y 02 28 0.16 - 22 W=y 0736 0.0528
W=n 0 064.92% T w_, g 02112

Now use W = y to update the distribution for (W, R) (see T: ,
! , able 2.12). We get
P*™(R =y) =0.93. v ’ 3
We m:=. :.m<o to calculate P**(S) = P(S| W =y, H = y). The result must reflect
the explaining away effect; since the wet grass is explained by rain, the probability 4
for § = y should decrease to its initial value. i

The calculation follows the same pattern. A message on P**(R) is sent from
(W, R) to (H, R, S) (see Fig. 2.14),

P**(H,R, S) = P*(H,R, 3%.

By marginalizing we get P**(S = y) = 0.161.

BOBLO 25

Table 2.12 P*(W,R) =
P(W,R|W=y, H=y).

R = y R=n
w 0.736 0.0528

=Yy 0.7888 0.7888
W=n 0 0

Table 213 P**(R,S) =
P(R,S|H=y,W=y).

R=y R=n
S=y 0.094 0.067
S=n 0.839 0

The reason why the probability for sprinkler does not drop to the prior probability
of 0.1 is that Dr Watson is a forgetful fellow who may have forgotten his sprinkler,
and an explanation may be that both sprinklers have been forgotten. This is reflected
in the probability P(W =y | R=n) =0.2.

25 BOBLO

BOBLO is a system which helps in the verification of parentage for Jersey cattle
through blood-type identification. The introduction of embryo transplantation tech-
nology and the increasing trade of semen and embryos have stressed the importance
of proper pedigree registration, and therefore there is a need for sophisticated meth-
ods for individual identification and parentage control of cattle.

Heredity is determined by genes which are placed in chromosomes (see Fig. 2.15).

Figure 2.15 A pair of chromosomes. The pearls in the strings
are loci.

Except for the sex chromosomes, chromosomes go in structurally identical pairs —
one chromosome inherited from each parent. A chromosome may be considered as a
String of genes. The places where the genes are positioned are called loci. Each gene
has a particular locus of position and genes which can be placed at a particular locus
are called allels. The pair of allels at a locus (one from each chromosome) is called
4 genotype, and the property determined by a genotype is called the phenotype.

For the blood group determination of cattle, ten different independent blood-group
Systems are used. These systems control 52 different blood-group factors which can
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be measured in a laboratory. In eight of these systems the blood-group dete;
nation is relatively simple (controlling from one to four blood-group factors onjg
However, the systems B- and C- are rather complicated, controlling respectively
and 10 of the above-mentioned 52 blood-group factors. ,

Heredity of blood type follows the normal genetic rules, however, the blood £ro
are attached to sets of loci rather than to single loci, and instead of allels the
phenogroup is used. So, for each blood group, a Bayesian network for inheritz
will be as in Figure 2.16.

Phenogroup 1 Phenogroup 2 Phenogroup 1 Phenogroup 2y
Dam Dam Sire Sire

Phenogroup 1

Phenogroup 2
Offspring

Offspring

Genotype
Offspring

Figure 2.16  Heredity of blood type. From each parent one
out of two phenotypes are chosen. This constitutes the genotype
of the offspring, and the genotype determines a set of factors
measurable in a laboratory (the phenotype).

If nothing is known of the phenogroups of the parents they are given a prior prob-
ability equal to the frequencies of the various phenogroups. Let us, for the example,
suppose that there are three phenogroups f;, f», f3 with frequencies (0.58, 0.1, 0.32)
(this is the situation for the so-called F-system).

When a calf is registered, the parents are stated and their phenogroups are already
registered. If the stated parents are the true parents we have no problems, but what %
if they are not so? Then we will say that the phenogroups of the true parents are
distributed as the prior probabilities, that is (0.58, 0.1, 0.32).

So, for modelling the part concerning possible parental errors, we can introduce
a node parental error with states both, sire, dam and no, and with prior probabil-
ities to be the frequency of parental errors. This leads to the Bayesian network in
Figure 2.17.

The network model in BOBLO also has a part that models the risks of mistakes
in the laboratory procedures (see Exercise 3.6). For now, assume that evidence on
factors are entered directly to the nodes Jactor. Tt is assumed that the stated parents
are so well known that their genotypes are known, and therefore the state of the
variables phenogroup stated d/s is known.

Note how the impact of evidence flows from the Jactor nodes to the node parental
error: it first flows to phenogroup true d/s (serial connections). Since evidence has
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Parental error

Dam correct

Phenogroup 2

Phenogroup 1
n : Stated sire

2
O D Stated sire

1
Phenogroup O,

Stated dam

Phenogroup 2

Phenogroup 1 C
True sire

Phenogroup 2 0
o True sire

roup 1
e True dam

True dam

Phenogroup 2
Offspring

Phenogroup 1
Offspring

Genotype
Offspring

Figure 2.17  The part of BOBLO modelling parental error.
Evidence is entered into the variables factor and phenogroup
stated d/s. Evidence from factor is transmitted to parental error
because phenogroup stated has received evidence.

been entered to phenogroup stated d/s ihe evidence is :.wnmaaoa further to dam
correct and sire correct (converging connections) to end in parental error.

BOBLO is an acronym for BOvine BLOod typing, and it has .cnn: in use at the
Danish Blood Type Laboratory improving the accuracy of detecting parental errors
(tests quantifying the improvement have not been finished).

2.6 Summary

d-separation in causal networks

Two variables A and B in a causal network are d-separated if for all paths between
A and B there is an intermediate variable V such that either

~ the connection is serial or diverging and the state of V is known or

— the connection is converging, and neither V nor any of Vs descendants have
received evidence.

The fundamental rule for probability calculus

P(A|B,C)P(B|C)=P(A,B|C)
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Bayes’ rule

P(A|B,C)P(B|C)

P(B|AC)= P40

Marginalization
P(A) = " P(A,b)=P(A,b)+---+ P(A, b,)

Conditional independence

A and C are independent given B if P(A | B) = P(A | B, O).

Definition of Bayesian networks

A Bayesian network consists of the following.

A set of variables and a set of directed edges between variables.

Each variable has a finite set of states.

The variables together with the directed edges form a directed acyclic

graph (DAG).

To each variable A with parents B, ..., B, there is attached a condi-

tional probability table P(A | By, ..., By).

Admittance of d-separation in Bayesian networks

If A and B are d-separated in a Bayesian network with evidence e

entered, then P(A | B,e) = P(A | ).

The chain rule

Let BN be a Bayesian network over U = {A1,..., Ap). Then the joint
probability distribution P(U) is the product of all conditional probabil-

ities specified in BN:

PU) = EE} | pa(A)),

where pa(A;) is the parent set of A;.
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Exercises

Exercise 2.1 Show that d-connectedness is symmetric (if A is d-connected to B,

then B is d-connected to A). . -
Give an example proving that d-connectedness is not transitive (A d-connected to

B and B d-connected to C, but A and C are not d-connected).

Exercise 2.2 In the graphs below determine which variables are d-connected to A.

O ® @ @® @
20834
ONEO

(@ (b)
Figure for Exercise 2.2

Exercise 2.3 Let A be a variable in a DAG. Assume that the mo=95=m. variables
are instantiated: the parents of A, the children of A, the spouses of A (variables that
share a child with A). . .

Show that A is d-separated from the remaining uninstantiated variables.

Exercise 2.4 Let D, and D, be DAGs over the same variables. D is an ~-m=~.§§m
of D, if all d-separation properties of D; also hold for Ds. If, also, D, is an
I-submap of D, they are sid to be I-equivalent.

Which of the four DAGs in the figure below are I-equivalent?
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Table 2.14 Table for Exercise 2.5.

b by b3
a 0.05 0.10 0.05
ay 0.15 0.00 0.25
as 0.10 0.20 0.10

(A A A @
® @60 0 O @

(a) (b) © (d)
Figure for Exercise 2.4.

Exercise 2.5 Calculate P(A), P(B), P(A | B), and P(B | A) from Table 2.14.

Table 2.15 P(A, B, C) for Exercise 2.6.

b b,
a (0.006, 0.054) (0.048, 0.432)
a (0.014, 0.126) (0.032, 0.288)

Table 2.16 Conditional probability tables for
Exercise 2.7.

aj as a a

by 02 03 ca 05 06

b, 08 07 c; 05 04
P(B | A) P(C | A)

Exercise 2.6 In Table 2.15, a joint probability table for the binary variables A, B,
and C is given. 3
(i) Calculate P(B, C) and P(B).
(ii) Are A and C independent given B?

Exercise 2.7 The DAG (a) in Exercise 2.4 has P(A) = (0.1, 0.9) and the conditional
probability given in Table 2.16.
Calculate P(A, B, C).

Exercise 2.8 Perform a Bayesian calculation of the reasoning in Section 2.1.4 (earth-
quake or burglary). Use the probabilities in Table 2.17 and P(B) = (0.01,0.99),
P(E) = (0.001, 0.999).
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Table 2.17 Tables for Exercise 2.8. Probabilities for radio
and alarm.

E=y E=n B=y B=n
R=y 095 0.01 E=y (098,0.02) (0.95,0.05)
R=n 005 0.99 E=n (095 005 (0.03,097)
P(R| E) P(A|B,E)

Exercise 2.9 Let P(c; | bj) # 0 for all i, j. Prove that A and C are independent
given B if and only if P(4, C|B)=P(A| B)P(C| B).



