
Discriminative Reranking for Natural Language Parsing

Michael Collins MCOLLINS@RESEARCH.ATT.COM

AT&T Labs–Research, Rm A-253, Shannon Laboratory, 180 Park Avenue, Florham Park, NJ 07932

Abstract
This paper considers approaches which rerank
the output of an existing probabilistic parser. The
base parser produces a set of candidate parses for
each input sentence, with associated probabilities
that define an initial ranking of these parses. A
second model then attempts to improve upon this
initial ranking, using additional features of the
tree as evidence. We describe and compare two
approaches to the problem: one based on Markov
Random Fields, the other based on boosting ap-
proaches to reranking problems. The methods
were applied to reranking output of the parser of
Collins (1999) on the Wall Street Journal corpus,
with a 13% relative decrease in error rate.

1. Introduction

Machine-learning approaches to natural language parsing
have recently shown some success in complex domains
such as newswire text. Many of these methods fall into the
general category of history-based models, where a parse tree
is represented as a derivation (sequence of decisions) and
the probability of the tree is then calculated as a product of
decision probabilities. While these approaches have many
advantages, it can be awkward to encode some constraints
within this framework. It is often easy to think of features
which might be useful in discriminating between candidate
trees for a sentence, but much more difficult to alter the
derivation to take these features into account.

This paper considers approaches which rerank the output of
an existing probabilistic parser. The base parser produces
a set of candidate parses for each input sentence, with as-
sociated probabilities that define an initial ranking of these
parses. A second model then attempts to improve upon
this initial ranking, using additional features of the tree as
evidence. The strength of our approach is that it allows a
tree to be represented as an arbitrary set of features, without
concerns about how these features interact or overlap, and
without the need to define a derivation which takes these
features into account.

The problems with history-based models, and the desire
to be able to specify features as arbitrary predicates of the
entire tree, have been noted before. In particular, previ-
ous work (Abney 1997; Della Pietra, Della Pietra & Laf-
ferty 1997; Johnson et al. 1999) has investigated the use
of Markov Random Fields (MRFs), or log-linear models,

as probabilistic models for parsing and other NLP tasks.
The first method we discuss is based on a feature selection
method within the MRF framework. The second approach
is based on the application of boosting models for ranking
problems (Freund et al. 1998). Previous work (Friedman,
Hastie & Tibshirani 1998) has drawn connections between
log-linear models and boosting for classification problems;
one contribution of this paper is to draw similar connec-
tions between the two approaches to ranking problems. Ef-
ficiency is an important issue in our problem – the training
data consists of around 1 million trees,1 and there are ap-
proximately 500,000 distinct features. We show that a naive
implementation of the boosting method is computationally
expensive, but that the sparse nature of the feature space
means that a much improved algorithm can be derived. The
MRF algorithm also benefits from the sparseness of the fea-
ture space, but for reasons we will discuss is still much less
efficient than the boosting approach.

We applied our method to parsing the Wall Street Journal
treebank (Marcus, Santorini & Marcinkiewicz 1993). The
baseline model, that of Collins (1999), achieved 88.1/88.3%
recall/precision on this task. The new model achieves
89.6/89.9% recall/precision, a 13% relative decrease in er-
ror. Although this paper concentrates on parsing, many
other problems in natural language processing or speech
recognition can also be framed as reranking problems, so
the results of this paper should be quite broadly applicable.

1.1 History-Based Models

Before discussing the reranking approaches, we will de-
scribe history-based models (Black et al. 1992). They are
important for a few reasons. First, at present the best per-
forming parsers on the WSJ treebank (Ratnaparkhi 1997;
Charniak 1997, 1999; Collins 1997, 1999) are all cases of
history-based models. Many systems applied to part-of-
speech tagging, speech recognition and other language or
speech tasks also fall into this class of model. Second, a
particular history-based model (that of Collins (1999)) will
be used as the initial model for our approach. Finally, it
is important to describe history-based models – and to un-
derstand their limitations – to motivate our departure from
them.

Parsing can be framed as a supervised learning task, to
induce a function

�
: ����� given training examples

1Training data includes 36,000 sentences, with an average of
over 27 trees per sentence.

���������	��

where

����
�
���	��
� . We define ��� ����� � to

be the set of candidates for a given input
�

. In the parsing
problem

�
is a sentence, and ��� ��� is a set of candidate

trees for that sentence. A particular characteristic of the
problem is the complexity of ��� ��� : ��� ��� can be very
large, and each member of ��� ��� has rich internal structure.
This contrasts with “typical” classification problems where
��� ��� is a fixed, small set, for example ��� 1

���
1 � in binary

classification problems.

In probabilistic approaches, a model is defined which
assigns a probability ��� ������� to each � ������� pair.
The most likely parse for each sentence

�
is then

arg max �!#"�$&%(')��� ������� . This leaves the question of how
to define ��� ���*��� . In history-based approaches, a one-to-
one mapping is defined between each pair � ���*��� and a
decision sequence

��+
1 ,-,-, +�./
 . The sequence

�0+
1 ,1,-, +�.2
 can

be thought of as the sequence of moves that build � ���*��� in
some canonical order. Given this mapping, the probability
of a tree can be written as

��� �������43 5�76
1 89898 . �;: + ��<Φ : + 1 ,-,-, + ��= 1 >?>

: + 1 ,-,-, +@��= 1 > is the history for the A ’th decision. Φ is a
function which groups histories into equivalence classes,
thereby making independence assumptions in the model.

Probabilistic Context-Free Grammars (PCFGs) are one ex-
ample of a history-based model. The decision sequence��+

1 ,-,-, +�./
 is defined as the sequence of rule expansions in
a top-down, left-most derivation of the tree. The history
is equivalent to a partially built tree, and Φ picks out the
left-most non-terminal in the fringe of this tree, making the
assumption that �B� + ��< + 1 ,C,?, + ��= 1

�
depends only on the non-

terminal being expanded. In the resulting model a tree with
rules

��D��
�FE ��
 is assigned a probability G .�H6 1 ���IE � < D��J� .

Our base model, that of Collins (1999), is also a history
based model. It can be considered to be a type of PCFG,
where the rules are lexicalized. An example rule would be:

VP(saw) -> VBD(saw) NP-C(her) NP(today)

Lexicalization leads to a very large number of rules; to
make the number of parameters manageable the generation
of the right hand side of a rule is broken down into a num-
ber of decisions. First the head non-terminal (VBD in the
above example) is chosen. Next, left and right subcatego-
rization frames are chosen (�@� and � NP-C �). Non-terminal
sequences to the left and right of the VBD are chosen (an
empty sequence to the left,

�
NP-C,NP

to the right). Fi-

nally, the lexical heads of the modifiers are chosen (her and
today). Each of these decisions has an associated probabil-
ity conditioned on the left hand side of the rule (VP(saw))
and other information in some cases.

History-based approaches lead to models where the log
probability of a parse-tree can be written as a linear sum
of parameters KML multiplied by features NOL . Each featureN)L#� ���*��� is the count of a different “event”, or fragment
within the tree. As an example, consider a PCFG with rules

��D L �PE L
 for 1 QSR�QST . If N L � ���*��� is the number of
times

�JD L �FE L
 is seen in the tree, and K L 3 log ���IE L < D L �
is the parameter associated with that rule, then

log ��� ���*���U3WVX
L 6 1

KYL�N)L#� �������
All models considered in this paper take this form, although
in the boostingmodels the score for a parse is not a log prob-
ability. The features N L define an T -dimensional vector of
counts which represent the tree. The parameters K L repre-
sent the influence of each feature on the score of a tree.

A drawback of history-based models is that the choice of
derivation has a profound influence on the parameters of the
model. (Similar observations have been made in the related
cases of belief networks (Pearl 1988), and language models
for speech recognition (Rosenfeld 1997).) When designing
a model, it is often easy to think of features which might
be useful in ranking trees in order of plausibility, but much
more difficult to modify the derivation so that these features
are included in the model. In an ideal situation we would
be able to encode arbitrary features N L , thereby keeping
track of counts of arbitrary fragments within parse trees,
without having to worry about formulating a derivation that
included these features.

To take a concrete example, consider part-of-speech tagging
using a Hidden Markov Model. We might have the intuition
that almost every sentence has at least one verb, and there-
fore that sequences including at least one verb should have
increased scores under the model. Encoding this constraint
in a compact way in an HMM takes some ingenuity.2 In
contrast, it wouldbe trivial to implement a feature NZL#� �������
which is 1 if

�
contains a verb, 0 otherwise.

2. Reranking Approaches

2.1 Problem Definition

We use the following notation in the rest of this paper:

[]\ ��^ _ is the ` ’th parse of the A ’th sentence. There area sentences, and a � parses for the A ’th sentence, i.e.,
1 QSAbQ a and 1 Qc`dQ a � . Each \ ��^ _ contains both
the tree and the underlying sentence (i.e. each \ ��^ _ is
a member of �fe � by the notation of section 1.1).[]gYhji#k#l � \ ��^ _@� is the “score” for parse \ ��^ _ , a measure of
the similarity of \ �J^ _ to the gold-standard parse.[Without loss of generality, we assume \ � 1 to be the
highest scoring parse for the A ’th sentence.3 More
precisely, for all A � 2 Qm`nQ a � , gUhoi#k#l � \ ��^ 1 �qpgYhji#k#l � \ ��^ _@� . (Note that \ �J^ 1 may not be identical to

2The obvious approach, to add to each state the information
about whether or not a verb has been generated in the history,
doubles the number of states (and parameters) in the model

3In the event that multiple parses get the same, highest score
the parse with the highest value of log-likelihood r under the
baseline model is taken as sut-v 1 .

the gold-standard parse — in some cases the parser
may fail to propose the correct parse anywhere in its
list of candidates.)[�� � \ ��^ _ � is the probability that the base parsing model
assigns to parse \ ��^ _ . �b� \ ��^ _#��3 log � � \ ��^ _C� is the log
probability.[There is a separate test set of parses, � ��^ _ , with similar
definitions of gUhoi#k#l , � and � .

The task is to learn a ranking function, ��� \ ��^ _#� . The base
ranking function, which we would like to improve upon, is�B� \ �J^ _ ��3 � � \ �J^ _ � . The performance of a given ranking
function will be evaluated on test data: if � � is the index of
the top-ranked parse under � on the A ’th test example� �Y3 arg max_?6

1 89898 .�� ����� ��^ _#�
then the “score” of � is 	 � gUhoi#k#l ��� ��^
 ���

and the maximum
possible score is 	 � gUhoi#k#l ��� ��^ 1 � .
We will consider a particular form for � in this paper. We
assume a vector of T � 1 parameters, K̄ 3 �#K 0 � K 1 ,?,?, K V � .The ranking function is defined as��� \ ��^ _/� K̄ ��3 K 0 �b� \ ��^ _#� � VX

L 6 1

K L N L � \ �J^ _?�
Each N)L is an indicator function, for example

N L � \ ��3�� 1 if \ contains the rule
� g ������ �

0 otherwise ,
The restriction to binary valued features is important for the
simplicity and efficiency of the algorithms.4

The learning task is to find parameter settings for K̄ which
lead to good scores on test data; the parameters will be set
using training data examples as evidence. We now discuss
how to set these parameters. First we discuss loss functions� i RCR�� K̄ � which can be used to drive the training process.
We then go on to describe optimization methods for the
different loss functions.

2.2 Loss Functions

The loss functions we consider are all related to the number
of ranking errors a function � makes on the training set.
The rankingerror rate is the number of times a lower scoring
parse is (incorrectly) ranked above the best parse:� k#k#i#k � K̄ �Y3 X �

. �X_C6
2 � � ��� \ ��^ 1 � K̄ ��� ��� \ �J^ _ � K̄ ��� �

3 X �
. �X _C6

2 � � ��� \ ��^ 1 � K̄ � ����� \ ��^ _/� K̄ ���
0
� �

� � \ � �
is 1 if \ is true, 0 otherwise. Throughout this paper we

will refer to the Margin on example \ ��^ _ as� �9_ � K̄ �Y3 ��� \ �J^ 1 � K̄ � ����� \ ��^ _@� K̄ �
4Note that features tracking the counts of different rules can

be simulated through several features which take value 1 if a rule
is seen � 1 time, � 2 times, � 3 times and so on.

The ranking error is 0 if all margins are positive. The loss
functions we discuss all turn out to be direct functions of
the margins on training examples.

2.2.1 LOG-LIKELIHOOD

The first loss function is that suggested by Markov Ran-
dom Fields, which have been applied to NLP problems by
Abney (1997), Della Pietra et al. (1997) and Johnson et
al. (1999). As suggested by Johnson et al. (1999), the
conditional probability of \ ��^ � being the correct parse for
the A ’th sentence is defined as

��� \ ��^ � ��3 l�� $ � � ! " '	 .#�_C6
1
l � $ � � ! $ '

The log-likelihood of the training data is thenX � log ��� \ ��^ 1 ��3 X � log
l�� $%� �%!

1 '	 . �_?6
1
l � $ � �%! $ '

Under maximum likelihood estimation, the parameters K̄
would be set to maximize the log-likelihood. Equivalently,
we will talk about minimizing the negative log-likelihood	 � � log ��� \ ��^ 1 � (this is for consistency between the log-
loss and boosting methods, which now both have an objec-
tive function that must be minimized). Some manipulation
shows that the negative log-loss is a function of the margins
on training data:

� i'& � i R?R@� K̄ � 3 X � � log
l�� $ � � !

1 '	 .#�_C6
1
l � $%� �%! $ '

3 X � � log
1	 . �_C6

1
l = (� $%� �%!

1 ' = � $ � � ! $ ')
3 X � log () 1

� . �X_C6
2

l = (� $ � � !
1 ' = � $ � � ! $ ') *+

3 X � log () 1
� .#�X_C6

2

l =-,.�%! $ $ /̄ ' *+ (1)

2.2.2 BOOSTING LOSS

The next loss function is based on the boosting method
described by Schapire and Singer (1998). It is a special
case of the general ranking methods described by Freund
et al. (1998), with the ranking “feedback” being a simple
binary distinctionbetween the highest scoring parse and the
other parses. Again, the loss function is a function of the
margins on training data:0 i#i R213� i R?R�� K̄ � 3 X �

. �X_C6
2

l = (� $ � �%!
1 ' = � $ � � ! $ ')

3 X �
. �X_C6

2

l =4,5� ! $ $ /̄ '
It can be shown that

0 i#i R213� i R?R�� K̄ �76 � k#k#i#k � K̄ � , so that
minimizing

0 i#i R813� i R?R@� K̄ � is closely related to minimizing

the number of ranking errors. This follows from the fact
that for any \ , l = � 6 � � \ �

0
� �
, and therefore that

X �
. �X_?6

2

l =4,5� ! $ $ /̄ ' 6 X �
. �X_C6

2 � � � �J^ _ �
0
� �

2.3 Optimization Methods

The simplest goal would be to find parameter settings K̄ �
which minimize a given loss function:

K̄ � 3 arg min/̄ � i R?R@� K̄ �
Unfortunately, this method is likely to lead to overtraining –
particularly in the domain we are considering, where there
are a very large number of features.

Instead, we will focus on feature-selection methods, where
the goal is to find a small subset of the features that con-
tribute most to reducing the loss function. The methods are
greedy, at each iteration picking the feature N L with additive
weight

�
which has the most impact on the loss function.

In general, a separate set of instances will be used in cross-
validation to choose the stopping point, i.e., to decide on
the number of features in the model.

At this point we introduce some notation concerning feature
selection methods. We define Upd � K̄ ��� � � � to be an updated
parameter vector, with the same parameter values as K̄ with
the exception of K�� , which is incremented by

�

Upd � K̄ ��� � � �Y3 � K 0 � K 1
� ,?,?, K�� � � ,?,C, � K V �

The loss for the updated model is � i RCR : Upd � K̄ ��� � � �> . As-
suming we greedily pick a single feature with some weight
to update the model, and given that the current parameter
settings are K̄ , the optimal feature/weight pair � � � � � � � is

� � � � � � ��3 arg min� ^ 	 � i R?R : Upd � K̄ ��� � � �>
The feature selection algorithms we consider take the fol-
lowing form (K̄�
 is the parameter vector at the 1 ’th iteration):

1 Initialize K̄ 0 to some value. (This will generally involve
values of zero for K 1 ,?,?, K V , and a non-zero value forK 0, for example K̄ 0 3 � 1 � 0 � 0 � ,?,o, � .)

2 for 1 = 1 to (The number of iterations will be chosen
by cross validation):

– Find � � � � � � �U3 arg min � ^ 	 � i R?R : Upd � K̄�
 = 1 ��� � � � >
– Set K̄�
 3 Upd � K̄
 = 1 ��� � � � � �
The main computation for both loss functions involves
search for the optimal feature/weight pair � � � � � � � . Both
approaches involve a first step where for each feature

�
the

optimal update is calculated. We define
0 l R21�� 1C� � � K̄ � as

this vector of updates:0 l R81�� 1C� �Z� K̄ ��3 arg min	 � i R?R : Upd � K̄ ��� � � �>
The next step is to calculate the � i R?R for each feature with
its optimal update, which we will call0 l R813� i R?R@� � � K̄ ��3 � i R?R : Upd � K̄ ���Z� 0 l R81�� 1C� � � K̄ �*�>

Having computed
0 l R21�� 1 and

0 l R213� i RCR for each feature,
the optimal feature/weight pair can be found:� � 3

arg min�
0 l R813� i R?R@� � � K̄ �o� � � 3 0 l R21�� 1C� � � � K̄ �

The next sections describe how
0 l R81�� 1 and

0 l R813� i RCR
can be computed for the two loss functions.

2.3.1 FEATURE SELECTION FOR
0 i#i R213� i RCR

At the first iteration, K 0 is set to optimize
0 i#i R813� i RCR 5 :

K 0
3

arg min/ X �
. �X_C6

2

l = (/ [� $ � �%!
1 ' = � $ � � ! $ '])

Feature selection then proceeds to search for values of the
remaining parameters, K 1 ,?,C, K V .6

The first thing to note in the case of
0 i#i R213� i R?R is that

the updated model involves a simple additive update to the
ranking function � :��� \ ��^ _@� Upd � K̄ ���Z� � ���Y3 ��� \ �J^ _/� K �	� � N � � \ �J^ _#�
It follows that the margin on example AH` also has a simple
update: � ��^ _ � Upd � K̄ ���Z� � ���3 ��� \ ��^ 1 � Upd � K̄ ��� � � �*� ����� \ �J^ _ � Upd � K̄ ��� � � �*�3 ��� \ ��^ 1 � K̄ � � �B� \ ��^ _/� K̄ � � ��� N � � \ �J^ 1 � � N � � \ ��^ _#���3 � ��^ _ � K̄ � � � � N�� � \ ��^ 1 � � N��)� \ ��^ _ � �
The updated

0 i#i R213� i R?R function can then be written as0 i#i R213� i RCR�� Upd � K̄ ��� � � �*�U3 X �
.��X_C6

2

l =4,5�%! $ $ Upd $ /̄ ^ � ^ 	 'I'
3 X �

.��X_C6
2

l =-, � ! $ $ /̄ ' =�	[��� $%� �%!
1 ' = ��� $ � � ! $ ']

Next, we note that
� N � � \ �J^ 1 � � N � � \ �J^ _#��� can take on three

values:
�

1, � 1, or 0. We split the training sample into
three sets depending on this value���� 3 �2��A � ` � :

� N � � \ ��^ 1 � � N � � \ ��^ _#���b3 1 �
� =� 3 �2��A � ` � :

� N�� � \ ��^ 1 � � N�� � \ ��^ _ � � 3 � 1 �
� 0� 3 �2��A � ` � :

� N � � \ ��^ 1 � � N � � \ ��^ _#���b3 0 �
We next define � �� , �

=
� and � 0� , which are central to the

calculation of
0 l R81�� 1 and

0 l R813� i RCR :
� ��

3 X
$ �J^ _ '�! �"!�

l =4,5�%! $ $ /̄ '
There are analogous definitions for �

=
� and � 0� .0 i#i R213� i R?R is now rewritten in terms of these quantities:0 i#i R213� i RCR�� Upd � K̄ ��� � � �*�U3X

$ ��^ _ '�! �"!�
l =-, � ! $ $ /̄ ' =#	 � X

$ ��^ _ '0!$�&%�
l =4, � ! $ $ /̄ ' � 	 � X

$ ��^ _ '�! � 0�
l =4, � ! $ $ /̄ '

3 l =#	 � ��
� l 	 � =

�
� � 0� (2)

5We use a simple linear search to find this value
6It might be preferable to also allow ' 0 to be adjusted as

features are added; we leave this to future work.

To find the value of
�

that minimizes this loss, we set the
differential of (2) w.r.t.

�
to 0, giving the followingsolution:0 l R21�� 1C� � � K̄ �U3 1

2
log

� ��
�
=
�

Plugging this value of
�

back into (2) gives the best loss:0 l R213� i RCR�� � � K̄ � 3
2� � �� �

=
�
� � 0�3

2 � � �� �
=
�
��� � � �� � �

=
�

3 � ��� � � �� � � �
=
��� 2

(3)

where
� 3 	 � 	 .#�_C6

2
l =4,5� ! $ $ /̄ ' is a constant which appears

in the
0 l R213� i RCR for all features, and therefore does not

affect their ranking.

As a final point, following Schapire and Singer (1998) we
introduce some smoothing to prevent parameter estimates
being undefined when either � �� or �

=
� is zero:0 l R81�� 1C� � � K̄ ��3 1

2
log

� ��
�����

�
=
�
�	���

The smoothing parameter
�

is chosen using cross-validation.

2.3.2 FEATURE SELECTION FOR � i'& � i R?R
At the first iteration, K 0 is set to 1. Feature selection then
searches for values of the remaining parameters, K 1 ,C,?, K V .
We now describe how to calculate the optimal update for a
feature

�
with the � i'& � i RCR loss function. First we recap the

definition of the probability of parse \ ��^ � given parameter
settings K̄ :

��� \ ��^ � � K̄ ��3 l'� $ � � ! " ^ /̄ '	 . �_C6
1
l � $ � � ! $ ^ /̄ '

Recall that the log-loss is 	 � � log ��� \ ��^ 1 � K̄ � .
Unfortunately, unlike the case of

0 i#i R813� i R?R , an analytic
solution to finding

0 l R81�� 1 does not exist. However, we
can define an iterative solution using techniques from iter-
ative scaling (Della Pietra et al. 1997). We first define ˜N�� ,
the number of times that feature

�
is seen in the best parse,

and ˜
 � � K̄ � , the expected number of times under the model
that feature

�
is seen:

˜N � 3 X � N � � \ ��^ 1 � ˜
 � � K̄ ��3 X �
.��X_C6

1

N � � \ ��^ _#� �B� \ �J^ _�� K̄ �
Iterative scaling then defines the following update ˜�

˜� 3 log
˜N �

˜
 � � K̄ �
While in general it is not true that ˜� 3 0 l R81�� 1C� � � K̄ � ,
it can be shown that this update leads to an improve-
ment in the � i'& � i RCR (i.e., that � i'& � i R?R@� Upd � K̄ ��� � ˜� ��� Q� i'& � i R?R@� K̄ �), with equality holding only when K � is
already at the optimal value, in other words when
arg min

	 � i'& � i RCR�� Upd � K̄ ��� � � ����3 0. This suggests the
following iterative method for finding

0 l R81�� 1C� � � K̄ � :

1 Initialization: set
� 3

0, K̄�� 3 K̄ , calculate ˜N �
2 Repeat until convergence of

�
:

– Calculate ˜
 � � K̄� �
–

��� � �
log

˜� �
˜� � $ /̄�� '

– K̄�� � Upd � K̄ ��� � � �
3 Return

0 l R21�� 1C� � � K̄ ��3 �

Once
0 l R21�� 1C� � � K̄ � has been computed,

0 l R213� i R?R�� � � K̄ �
can be calculated as � i R?R@� � � 0 l R81�� 1C� �Z� K̄ ��� .
2.4 Efficiency Issues

The efficiency of the different algorithms is important in
the parsing problem. The training data we eventually used
contained around 36,000 sentences, with an average of 27
parses per sentence, giving around 1,000,000 parse trees in
total. There were over 500,000 different features.

We first discuss efficiency issues for the boostingalgorithm.
We describe a “naive” algorithm, but show that a much
improved algorithm can be derived, which exploits the fact
that only a relatively small number of features are seen on
each example. We then discuss the log-likelihood models,
also giving an algorithm which exploits the sparseness of
the feature space.

Table 1 shows the “naive” boosting algorithm. The cal-
culation of � �� and �

=
� dominates this algorithm; these

calculations involve 	 V� 6 1

< � ��
< � < � =� < additions.

Table 2 shows an improved boosting algorithm. The key
observation is that when updating the model from K̄ to
Upd � K̄ ��� � � � � � the values � �� and �

=
� remain unchanged

for many features, and do not need to be recalculated. In
fact, only features which co-occur with

� �
on some example

must be updated. The algorithm relies on a second pair of
indices, for all A , 2 Q `�Q a � we define0 ���^ _ 3 � � :

� N � � \ ��^ 1 � � N � � \ ��^ _#���b3 1 �0 =��^ _ 3 � � :
� N�� � \ ��^ 1 � � N�� � \ ��^ _ � � 3 � 1 � (4)

So
0 ��J^ _

and
0 ���^ _

are indices from training examples to
features. With the algorithm in table 2, updating the values
of � �� and �

=
� for the features which co-occur with

� �
involves the following number of steps:X
$ �J^ _ '�! � !���

< 0 ���^ _ < � < 0 =��^ _ < � X
$ ��^ _ '�! � %���

< 0 ���^ _ < � < 0 =��^ _ <
We can now compare the expected complexity of these two
algorithms. Define

�
to be the average (over features

�
)

of
< � �� < � < � =� < , and

0
to be the average (over examplesA � `) of

< 0 ���^ _ < � < 0 =�J^ _ <
. The naive algorithm would run in� �JT � �

time (T is the number of features), the improved
algorithm runs in roughly

� � 0 � �
time. While in the worst

case T 3 0
, in practice the sparseness of the feature space

means that
0

is much smaller than
�

: in our experimentsT�� 500
�
000 and

0 � 250.

Table 1. A naive algorithm for the boosting loss function.

Input Examples \ ��^ _ with initial model scores �b� \ ��^ _#� , sets� �� ,
� =� for each feature N � ,

��3
1 ,C,?, T

Initialize K̄ 0 3 � K 0
�
0
�
0
� ,?,C, � , for all A , 2 Q ` Q a � set

margins
� ��^ _ 3 K 0

� �b� \ ��^ 1 � ���b� \ ��^ _#���
Repeat for 1 = 1 to [for

�
= 1 to T

– Set � ��
3 �

=
�
3

0

– for �JA � ` �� � �� , � ��
3 � ��

� l =-,.�%! $
– for �JA � ` �� � =� , �

=
�
3 �

=
�
� l =4,5�%! $

–
0 l R81�� 1C� �u��3 1

2 log � !�� %�
–

0 l R813� i R?R@� � �b3 2 � � �� �
=
� � � �� � �

=
�[Choose

� � 3
arg min � 0 l R213� i R?R�� � � ,� � 3 0 l R81�� 1C� � � �[for �JA � ` �� � �� � , � ��^ _ 3 � ��^ _b� � �

[for �JA � ` �� � =� � , � ��^ _ 3 � ��^ _ � � �
[K̄�
 3 Upd � K̄
 = 1 ��� � � � � �

Output Final parameter setting K̄ �
We next consider efficiency issues within the � i'& � i RCR al-
gorithm. A similar observation can be made, in that when
updating the model with a feature/weight pair � � � � � � � many
features will have their values for

0 l R81�� 1 and
0 l R213� i RCR

unchanged. Only those features which co-occur with
� �

on
some example will need to have their values of

0 l R21�� 1 and0 l R813� i R?R updated. Unfortunately updating these values is
much more expensive than in the

0 i#i R813� i R?R case. The it-
erative procedure described in section 2.3.2 must be applied
for each feature in turn, and each iterationwill involve recal-
culation of the distribution � ��� \ �J^ 1 �j� �B� \ �J^ 2 � ,C,?, ��� \ ��^ . �7� �
for each example A on which the feature occurs. This con-
trasts with the simple updates in the improved boosting
algorithm (� ��

3 � ��
�

∆ and �
=
�
3 �

=
�
�

∆). In prac-
tice we found that the boosting methods were vastly more
efficient than the � i'& � i R?R method.

2.5 Related Work

Abney (1997) describes the application of Markov Ran-
dom Fields to stochastic attribute-value grammars. Della
Pietra et al. (1997) describe feature selection methods for
MRFs, and Rosenfeld (1997) describes the application of
these methods to language modeling for speech recogni-
tion. These methods all emphasize the use of MRFs to
define a joint probability over the space of all parse trees:
the probability of a tree \ ��^ _ is

�B� \ �J^ _?��3 l'� $ � � ! $ '	 ��!�� l � $ �#' � 5 �
Here

�
is the (infinite) set of possible trees, and the denom-

Table 2. An improved algorithm for the boosting loss function.

Input Examples \ ��^ _ with initial model scores �b� \ ��^ _#� , sets� �� ,
� =� ,

0 ��J^ _
,

0 =��^ _
,

Initialize[K̄ 0 3 �#K 0
�
0
�
0
� ,?,o, �[Set

� ��^ _ 3 K 0
� �b� \ ��^ 1 � ���b� \ ��^ _#��� .[Calculate � �� , �

=
� ,

0 l R81�� 1C� �u� and
0 l R813� i RCR�� �u�

using the naive algorithm

Repeat for 1 = 1 to [Choose
� � 3

arg min � 0 l R213� i R?R�� � � ,� � 3 0 l R21�� 1C� � � �[for �JA � ` �� ���� �
– ∆

3 l =4, � ! $ =�	 � � l =4, � ! $
–

� ��^ _ 3 � ��^ _ � � �
– for

�B 0 ���^ _
, � ��

3 � ��
�

∆
– for

�B 0 =��^ _
, �

=
�
3 �

=
�
�

∆[for �JA � ` �� � =� �
– ∆

3 l =4,5� ! $ � 	 � � l =4,5� ! $
–

� ��^ _ 3 � ��^ _ � � �
– for

�B 0 ���^ _
, � ��

3 � ��
�

∆
– for

�B 0 =��^ _
, �

=
�
3 �

=
�
�

∆[For all features
�

whose values of � �� and/or �
=
� have

changed, recalculate
0 l R81�� 1C� � � and

0 l R813� i RCR�� �u�[K̄�
 3 Upd � K̄
 = 1 ��� � � � � �
Output Final parameter setting K̄ �
inator cannot be calculated explicitly. This is a problem for
parameter estimation, where an estimate of the denomina-
tor is required, and computationally expensive Monte-Carlo
methods are required to estimate this value. Notice that (5)
is not a direct function of the margins on training examples,
and its relation to the error rate is therefore not so clear as
in the discriminative approaches described in this paper.

Johnson et al. (1999) suggested training the conditional or
pseudo-likelihood of a MRF, the � i'& � i R?R function in (1).
They point out the computational advantages (faster param-
eter estimation) over MRFs which define joint probability
distributions. Johnson et al. (1999) do not use a feature se-
lection technique, instead using an objective function which
includes a gaussian prior on the parameter values, thereby
penalizing parameter values which become too large:

K̄ � 3 arg min/̄ � � i'& � i RCR�� K̄ � � X
L 6 0 89898 V

K 2V� 2V��
Closed-form updates under iterative scaling are not possible
with this objective function, instead gradient descent is used
to estimate parameter values.

While Della Pietra et al. (1997) focus on joint-probability
MRFs, the proofs and techniques they describe carry over
quite easily to the conditionalprobabilitycase. Importantly,
they describe feature selection techniques for MRFs. These
differ slightly from the methods in this paper, in that at
each iteration a new feature is greedily chosen, but then all
previously chosen features have their values updated to the
optimal values. This may be desirable, but we suspect it
is computationally expensive, much too expensive for the
size of problem we are considering.

Ratnaparkhi (1997) describes the use of maximum entropy
techniques applied to parsing. MRF techniques are used to
estimate the conditional probabilities �S: + ��<Φ : + 1 ,-,1, + ��= 1 >?>
in a history-based parser. Charniak (1999) also describes
a method for incorporating additional features in the parser
of Charniak (1997). The method gives an impressive im-
provement over the original model. Both approaches still
rely on decomposing a parse tree into a sequence of deci-
sions, and we would argue that the techniques described in
this paper, and the MRF models (Della Pietra et al. 1997;
Abney 1997; Johnson et al. 1999), have more flexibility in
terms of the features that can be included in the model.

The boosting method described in this paper is a special case
of the algorithms in Freund et al. (1998); this algorithm is
based on the boosting approach to classification in Schapire
and Singer (1998). Future work may investigate the use of
the more general results in that paper.

3. Experimental Evaluation

We used the Penn Wall Street Journal treebank (Marcus et
al. 1993) as training and test data. Sections 2-21 inclusive
(around 40,000 sentences) were used as training data, sec-
tion 23 was used as the final test set. Of the 40,000 training
sentences, the first 36,000 were used as training data. The
remaining 4,000 sentences were used as development data,
and to cross-validate the number of rounds (features) in the
model. Model 2 of Collins (1999) was used to parse both
the trainingand test data, producingmultiple hypotheses for
each sentence.7 In order to gain a representative set of train-
ing data, the 36,000 training sentences were parsed in con-
secutive 2,000 sentence chunks, each chunk being parsed
with a model trained on the remaining 34,000 sentences
(this prevented the initial model from being unrealistically
“good” on the training sentences). The 4,000 development
sentences were parsed with a model trained on the 36,000
training sentences. Section 23 was parsed with a model
trained on all 40,000 sentences.

The
0 i#i R813� i RCR method was run for 100,000 rounds on the

training data. Cross-validation found the optimal stopping
point was at 27,083 rounds, at which point 10,084 features
had non-zero values (note that the feature selection tech-
niques may result in a given feature being updated more

7A beam search was used to restrict the candidate trees to those
whose probability was at least one thousandth of the probability
of the highest probability parse.

than once). The computation took roughly 1-2 days on an
SGI IP25 194 MHZ machine.

The � i'& � i R?R method was too inefficient to run on the full
data set. Instead we made some tests on a smaller subset
of the data (5934 sentences, giving 200,000 parse trees and
52,294 features). The boosting method took 40 minutes for
10,000 rounds on this data set. The � i'& � i R?R method took
20 hours to complete 3500 rounds (a factor of about 85 times
slower). In initial experiments we found

0 i#i R813� i RCR to give
similar, perhaps slightly better, accuracy than � i'& � i R?R .
The following features were included in the model (we use
an example rule VP -> PP VBD NP NP SBAR with
head VBD for illustration):

Rules All context-free rules in the tree, for example VP ->
PP VBD NP NP SBAR.

Bigrams Pairs of non-terminals to the left and right of the
head of the rule. The example rule would contribute the
bigrams (Right,VP,NP,NP), (Right,VP,NP,SBAR)
and (Right,VP,SBAR,STOP) to the right of the head, and
(Left,VP,PP,STOP) to the left of the head.

Grandparent Rules Same as Rules, but also including the
non-terminal above the rule.

Grandparent Bigrams Same as Bigrams, but also includ-
ing the non-terminal above the bigrams.

Lexical Bigrams Same as Bigrams, but with the lexical
heads of the two non-terminals also included.

Two-level Rules Same as Rules, but also including the
entire rule above the rule.

Two-level Bigrams Same as Bigrams, but also including
the entire rule above the rule.

Trigrams All trigrams within the rule. The example rule
would contribute the trigrams (VP,STOP,PP,VBD!),
(VP,PP,VBD!,NP), (VP,VBD!,NP,NP),
(VP,NP,NP,SBAR) and (VP,NP,SBAR,STOP) (! is
used to mark the head of the rule).

Head-Modifiers All head-modifier pairs, with the
grandparent non-terminal also included. The ex-
ample rule would contribute (Left,VP,VBD,PP),
(Right,VP,VBD,NP), (Right,VP,VBD,NP), and
(Right,VP,VBD,SBAR).

PPs Lexical trigrams involving the heads of argu-
ments of prepositional phrases. For example in “(NP
(NP the president) (PP of (NP the U.S.)” the tri-
gram(NP,NP,PP,NP,president,of,U.S.)would
be generated, as well as the more general relation
(NP,NP,PP,NP,of,U.S.)

Distance Head-Modifiers Features involving the distance
between head words. For example, assume

+ A�R21 is the
number of words between the head words of the VBD and
SBAR in the (VP,VBD,SBAR) head-modifier relation in
the above rule. This relation would then generate features
(VP,VBD,SBAR,

+ AJR81), (VP,VBD,SBAR,
+ AJR81 Q \)

Table 3. Results on Section 23 of the WSJ Treebank. LR/LP =
labeled recall/precision. CBs is the average number of crossing
brackets per sentence. 0 CBs, 2 CBs are the percentage of sen-
tences with 0 or � 2 crossing brackets respectively. CH97 =
(Charniak 1997), RA97 = (Ratnaparkhi 1997), CH99 = (Charniak
1999), CO99 = (Collins 1999).

MODEL � 40 Words (2245 sentences)
LR LP CBs 0 CBs 2 CBs

CH97 87.5% 87.4% 1.00 62.1% 86.1%
CO99 88.5% 88.7% 0.92 66.7% 87.1%
CH99 90.1% 90.1% 0.74 70.1% 89.6%��������� r ����� 90.1% 90.4% 0.73 70.7% 89.6%

MODEL � 100 Words (2416 sentences)
LR LP CBs 0 CBs 2 CBs

CH97 86.7% 86.6% 1.20 59.5% 83.2%
RA97 86.3% 87.5% 1.21 60.2% —
CO99 88.1% 88.3% 1.06 64.0% 85.1%
CH99 89.6% 89.5% 0.88 67.6% 87.7%��������� r ����� 89.6% 89.9% 0.87 68.3% 87.7%

for all
+ AJR81 Q \ Q 9 and (VP,VBD,SBAR,

+ A�R21 6 \)
for all 1 Q \ Q + A�R21 .
Further Lexicalization In order to generate more features,
a second pass was made where all non-terminals were aug-
mented with their lexical heads when these headwords
were closed-class words. All features apart from Head-
Modifiers, PPs and Distance Head-Modifiers were then
generated with these augmented non-terminals.

All of these features were initially generated, but only fea-
tures seen on at least one parse for at least 5 different sen-
tences were included in the final model (this count cut-off
was implemented to keep the number of features down to
a tractable number). Table 3 shows results for the method.
Collins (1999) was the base model; the

0 i#i R213� i R?R model
gave a 1.5% absolute improvement over this method. The
method gives very similar accuracy to the model of Char-
niak (1999), which also uses a rich set of initial features in
addition to Charniak’s original model (Charniak 1997).

4. Conclusions

This paper has considered alternative methods for reranking
the output from an initial statistical parser, with a signifi-
cant improvement in error rate. We feel that we have barely
scratched the surface in terms of investigating features that
can be incorporated in the model, and look forward to uti-
lizing the flexibility of the approach in incorporating many
other types of features in the parsing problem. We also
intend to apply the methods to other tasks in NLP or speech
recognition.

Acknowledgements

This work has benefited greatly from discussions with
Yoram Singer. Thanks also to Steve Abney, Fernando
Pereira and the anonymous reviewers for many helpful com-
ments on earlier drafts of this paper.

References
Abney, S. (1997). Stochastic attribute-value grammars. Computa-

tional Linguistics, 23, 597-618.

Black, E., Jelinek, F., Lafferty, J., Magerman, D., Mercer, R.,
& Roukos, S. (1992). Towards history-based grammars: using
richer models for probabilistic parsing. In Proceedings of the
Fifth DARPA Speech and Natural Language Workshop (pp.
134–139). San Francisco: Morgan Kaufmann.

Charniak, E. (1997). Statistical parsing with a context-free gram-
mar and word statistics. Proceedingsof the Fourteenth National
Conference on Artificial Intelligence (pp. 598-603). Menlo
Park: AAAI Press/MIT Press.

Charniak, E. (1999). A maximum-entropy-inspired parser (Techni-
cal Report CS99-12). Department of Computer Science, Brown
University, Providence, RI.

Collins, M. (1997). Three generative, lexicalised models for statis-
tical parsing. In Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics and 8th Conference
of the European Chapter of the Association for Computational
Linguistics (pp. 16–23). San Francisco: Morgan Kaufmann.

Collins, M. (1999). Head-drivenstatistical models for natural lan-
guage parsing. Doctoral Dissertation, Dept. of Computer and
Information Science, University of Pennsylvania, Philadelphia.

Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Induc-
ing features of random fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19, 380–393.

Freund, Y., Iyer, R.,Schapire, R.E., & Singer, Y. (1998). An effi-
cient boosting algorithm for combining preferences. In Machine
Learning: Proceedings of the Fifteenth International Confer-
ence. San Francisco: Morgan Kaufmann.

Friedman, J. H., Hastie, T. and Tibshirani, R. (1998). Additive
logistic regression: a statistical view of boosting. Unpublished
manuscript, Dept. of Statistics, Stanford University, Stanford,
CA.

Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler, S. (1999).
Estimators for stochastic ‘unification-based”grammars. In Pro-
ceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (pp. 535–541). San Francisco: Mor-
gan Kaufmann.

Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Build-
ing a large annotated corpus of english: the penn treebank.
Computational Linguistics, 19, 313-330.

Pearl, J. (1988). Probabilistic reasoningin intelligent systems. San
Francisco: Morgan Kaufmann.

Ratnaparkhi, A. (1997). A linear observed time statistical parser
based on maximum entropy models. In Proceedings of the Sec-
ond Conference on Empirical Methods in Natural Language
Processing. San Francisco: Morgan Kaufmann.

Rosenfeld, R. (1997). A whole sentence maximum entropy lan-
guage model. In Proceedings of the 1997 IEEE Workshop on
Speech Recognition and Understanding. Santa Barbara, Cali-
fornia.

Schapire, R.E., & Singer, Y. (1998). Improved boosting algo-
rithms using confidence-rated predictions. In Proceedings of
the Eleventh Annual Conference on Computational Learning
Theory (pp. 80–91). San Francisco: Morgan Kaufmann.

