
Journal of Machine Learning Research 3 (2003) 1083-1106 Submitted 4/02; Published 2/03

Kernel Methods for Relation Extraction

Dmitry Zelenko DMITRY ZELENKO@SRA.COM

Chinatsu Aone CHINATSU AONE@SRA.COM

Anthony Richardella RICHARDE@EXPRESS.CITES.UIUC.EDU

SRA International
4300 Fair Lakes Ct.
Fairfax VA 22033 USA

Editors: Jaz Kandola, Thomas Hofmann, Tomaso Poggio and John Shawe-Taylor

Abstract
We present an application of kernel methods to extracting relations from unstructured natural

language sources. We introduce kernels defined over shallow parse representations of text, and
design efficient algorithms for computing the kernels. We use the devised kernels in conjunction
with Support Vector Machine and Voted Perceptron learning algorithms for the task of extract-
ing person-affiliation andorganization-location relations from text. We experimentally
evaluate the proposed methods and compare them with feature-based learning algorithms, with
promising results.

Keywords: Kernel Methods, Natural Language Processing, Information Extraction

1. Introduction

Information extraction is an important unsolved problem of natural language processing (NLP). It is
the problem of extracting entities and relations among them from text documents. Examples of enti-
ties arepeople , organizations , andlocations . Examples of relations areperson-affiliation
andorganization-location . Theperson-affiliation relation means that a particularperson
is affiliated with a certainorganization . For instance, the sentence “John Smith is the chief scien-
tist of the Hardcom Corporation” contains theperson-affiliation relation between theperson
“John Smith” and theorganization “Hardcom Corporation”. In this paper, we address the prob-
lem of extracting such relations from natural language text.

We propose a machine learning approach to relation extraction. The patterns for identifying
relations are learned from a set of already extracted relations rather than written manually. We also
present a novel methodology for adaptive information extraction based on kernel methods (Vapnik,
1998, Cristianini and Shawe-Taylor, 2000). Kernel methods have enjoyed successful applications
for other related problems such as text categorization (Joachims, 2002) and bioinformatics (Furey
et al., 2000). Recently, kernel methods exhibited excellent performance for natural language parsing
(Collins and Duffy, 2001).

We believe thatshallow parsing (Abney, 1990) is an important prerequisite for information
extraction. Shallow parsing provides a fairly robust mechanism for producing text representation
that can be effectively used for entity and relation extraction.

Indeed, the first step of our relation extraction approach is a powerful shallow parsing compo-
nent of a manually built information extraction system (Aone and Ramos-Santacruz, 2000). The

c©2003 Dmitry Zelenko, Chinatsu Aone and Anthony Richardella.

ZELENKO, AONE, AND RICHARDELLA

system comprises a sequence of cascading finite state machines that identify names, noun phrases,
and a restricted set of parts of speech in text. The system also classifies noun phrases and names
as to whether they refer topeople , organizations and locations , thereby producingentities.
Thus, the input to the relation extraction system is a shallow parse, with noun phrases and names
marked with relevant entity types.

We formalize a relation extraction problem as a shallow parse classification problem in Sec-
tion 4. A shallow parse is turned into an example whose label reflects whether a relation of interest
is expressed by the shallow parse. The learning system uses the labeled examples to output a model
that is applied to shallow parses to obtain labels, and thus extract relations.

We note that our learning methodology differs from the prevalent approach to information ex-
traction, viz., probabilistic modeling (Bikel et al., 1999, Miller et al., 1998). In contrast to prob-
abilistic modeling, our approach is inherentlydiscriminative. That is, we do not seek to explain
the underlying text probabilistically. Instead, we learn a model whose sole purpose is to separate
instances of a particular relation from non-instances thereof.

The approach is most similar to that of linear methods (Roth and Yih, 2001) that produce linear
models for extracting fields from seminar announcements. In contrast to (Roth and Yih, 2001),
whose models are feature-based, our models are expressed in terms of kernels. In Section 6, we
present an experimental comparison of feature-based and kernel-based learning methods for relation
extraction.

A unique property of the kernel methods is that we do not explicitly generate features. More
precisely, an example is no longer a feature vector as it is common in machine learning algorithms.
Instead, examples retain their original representations (of shallow parses) and are used within learn-
ing algorithms only via computing a similarity (or kernel) function between them. Such a use of
examples allows our learning system toimplicitly explore a much larger feature space than one
computationally feasible for processing with feature-based learning algorithms.

Application of kernel methods to NLP has been pioneered by Collins and Duffy (2001), who
defined kernels on parses and proposed to improve parsing via a re-ranking procedure. The re-
ranking procedure is based on the Voted Perceptron learning algorithm, which has been shown to
have a kernel formulation Freund and Schapire (1999). Collins (2002) extended the approach to
part of speech tagging and entity extraction problems. We conduct an experimental evaluation of
our approach in Section 6. We compare our approach with the feature-based linear methods (Roth,
1999), with promising results.

The rest of the paper is structured as follows. In Section 2, we survey the previous work on
relation extraction, with emphasis on learning-based methods. In Section 3, we introduce the kernel-
based machine learning algorithms and delineate a number of kernels relevant for natural language.
In Section 4, we formalize the relation extraction problem as a learning problem. In Section 5 we
design novel kernels defined in terms of shallow parses. In Section 6, we conduct a performance
evaluation of the proposed approach on a number of relation extraction tasks. Finally, Section 8
contains conclusions and comments on the future work.

2. Related Work on Relation Extraction

The problem of relation extraction is only starting to be addressed within the natural language
processing and machine learning communities. The problem was formulated as part of Message
Understanding Conferences (MUC) (Nat, 1998). While a number of manually engineered systems

1084

KERNEL METHODS FORRELATION EXTRACTION

were developed for identifying relations of interest (see Aone et al., 1998), only a single learning-
based approach (Miller et al., 1998) was proposed.

Miller et al. (1998) considered the problem of relation extraction in the context of natural lan-
guage parsing and augmented syntactic parses with semantic relation-specific attributes. At the
training stage, a lexicalized probabilistic context free grammar was estimated that incorporated the
semantic attributes. At the evaluation stage, the decoding process yielded a relation-specific inter-
pretation of text, in addition to a syntactic parse.

Our approach to relation extraction differs from that of Miller et al. (1998) in several important
aspects. First, we remove parsing as a necessary prerequisite for relation extraction, and replace it
with shallow parsing. Second, in contrast the generative approach which attempts to learn a single
global model of text, we seek to learn a set local relation-specific models in a discriminative fashion.
Third, we use kernel methods that allow us to eschew computational constraints in exploiting long-
range dependencies that are inherent to generative models.

We briefly survey a number of approaches currently used for such natural language tasks as part
of speech tagging and entity extraction. Hidden Markov Models (HMM) (Rabiner, 1990) have been
perhaps the most popular approach for adaptive information extraction. HMMs exhibited excellent
performance for name extraction (Bikel et al., 1999). Recently, HMM (with various extensions)
have been applied to extraction of slots (“speaker”, “time”, etc.) in seminar announcements (Freitag
and McCallum, 2000). HMMs are mostly appropriate for modelinglocal andflat problems. Rela-
tion extraction often involves modeling long range dependencies, for which HMM methodology is
not directly applicable.

Several probabilistic frameworks for modeling sequential data have recently been introduced to
alleviate for HMM restrictions. We note Maximum Entropy Markov Models (MEMM) (McCallum
et al., 2000) and Conditional Random Fields (CRF) (Lafferty et al., 2001). MEMMs are able to
model more complex transition and emission probability distributions and take into account various
text features. CRFs are an example of exponential models (Berger et al., 1996); as such, they enjoy a
number of attractive properties (e.g., global likelihood maximum) and are better suited for modeling
sequential data, as contrasted with other conditional models (Lafferty et al., 2001). They are yet to
be experimentally validated for information extraction problems.

Online learning algorithms for learning linear models (e.g., Perceptron, Winnow) are becoming
increasingly popular for NLP problems (Roth, 1999). The algorithms exhibit a number of attractive
features such as incremental learning and scalability to a very large number of examples. Their
recent applications to shallow parsing (Munoz et al., 1999) and information extraction (Roth and
Yih, 2001) exhibit state-of-the-art performance. The linear models are, however, feature-based
which imposes constraints on their exploiting long-range dependencies in text. In Section 6, we
compare the methods with our approach for the relation extraction problem.

We next introduce a class of kernel machine learning methods and apply them to relation ex-
traction.

3. Kernel-based Machine Learning

Most learning algorithms rely on feature-based representation of objects. That is, an object is trans-
formed into a collection featuresf1, . . . , fN, thereby producing aN-dimensional vector.

1085

ZELENKO, AONE, AND RICHARDELLA

In many cases, data cannot be easily expressed via features. For example, in most NLP prob-
lems, feature based representations produce inherently local representations of objects, for it is
computationally infeasible to generate features involving long-range dependencies.

Kernel methods (Vapnik, 1998, Cristianini and Shawe-Taylor, 2000) are an attractive alternative
to feature-based methods. Kernel methods retain the original representation of objects and use the
object in algorithms only via computing a kernel function between a pair of objects. A kernel
function is a similarity function satisfying certain properties. More precisely, a kernel function
K over the object spaceX is binary functionK : X×X → [0,∞] mapping a pair of objectsx,y ∈
X to their similarity scoreK(x,y). A kernel function is required to besymmetric1 and positive-
semidefinite.2

In can be shown that any kernel function implicitly calculates the dot-product of feature vectors
of objects in high-dimensional feature spaces. That is, there exist featuresf (·) = (f1(·), f2(·), . . .),
fi : X → R, so thatK(x,y) = 〈 f (x), f (y)〉.3

Conversely, given featuresf (·) = (f1(·), f2(·), . . .), a function defined as a dot product of the
corresponding feature vectors is necessarily a kernel function.4

In many cases, it may be possible to compute the dot product of certain features without enu-
merating all the features. An excellent example is that of subsequence kernels (Lodhi et al., 2002).
In this case, the objects are strings of characters, and the kernel function computes the number of
common subsequences of characters in two strings, where each subsequence match is additionally
decreased by the factor reflecting how spread out the matched subsequence in the original sequences
(Lodhi et al., 2002). Despite the exponential number of features (subsequences), it is possible to
compute the subsequence kernel in polytime. We therefore are able to take advantage of long-range
features in strings without enumerating the features explicitly. In Section 5.2, we will extend the
subsequence kernel to operate on shallow parses for relation extraction.

Another pertinent example is that of parse tree kernels(Collins and Duffy, 2001), where objects
represent trees and the kernel function computes the number of common subtrees in two trees. The
tree kernel used within the Voted Perceptron learning algorithm (Freund and Schapire, 1999) was
shown to deliver excellent performance in Penn Treebank parsing.

We also note that both subsequence and subtree kernels belong to a class of convolution kernels
(Haussler, 1999). Convolution kernels allow to compute the similarity between two objects based
on the similarities of objects’ parts. Although the kernels that we introduce are not convolution
kernelsper se, they are closely related thereto.

There are a number of learning algorithms that can operate only using the dot product of ex-
amples. The models produced by the learning algorithms are also expressed using only examples’
dot products. Substituting a particular kernel functions in place of the dot product defines a specific
instantiation of such learning algorithms. The algorithms that process examples only via computing
their dot products are sometimes calleddual learning algorithms.

The Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is a learning algorithm that
not only allows for a dual formulation, but also provides a rigorous rationale for resisting overfitting
(Vapnik, 1998). Indeed, for the kernel-based algorithms working in extremely rich (though implicit)

1. A binary functionK(·, ·) is symmetric (overX), if ∀x,y∈ X, K(x,y) = K(y,x).
2. A binary functionK(·, ·) is positive-semidefinite, if∀x1,x2, . . . ,xn ∈ X the n× n matrix (K(xi ,xj))i j is positive-

semidefinite.
3. 〈a,b〉 denotes the dot product of vectorsa andb.
4. This follows from the fact that a Gram matrix is positive-semidefinite (Horn and Johnson, 1985).

1086

KERNEL METHODS FORRELATION EXTRACTION

feature spaces, it is crucial to deal with the problem of overtraining. Both theoretical and experi-
mental results indicate that SVM is able generalize very well and avoid overfitting in high (and even
infinite) dimensional features spaces. In Section 6 we experimentally evaluate the Support Vector
Machine for relation extraction.

After discovery of the kernel methods, several existing learning algorithms were shown to have
dual analogues. For instance, the Perceptron learning algorithm (Rosenblatt, 1962) can be easily
represented in the dual form (Cristianini and Shawe-Taylor, 2000). A variance-reducing improve-
ment of Perceptron, Voted Perceptron (Freund and Schapire, 1999), is a robust and efficient learning
algorithm that is very easy to implement. It has been shown to exhibit performance comparable to
that of SVM. We employ the algorithm for relation extraction in Section 6.

We note that, from the learning system design perspective, the kernel methods shift the focus
from the problem of feature selection to the problem of kernel construction. Since kernel is the only
domain specific component of a kernel learning system, it is critical to design a kernel that ade-
quately encapsulates information necessary for prediction. On the other hand, we hypothesize that
use of long range dependencies in kernel computation will allow the algorithm implicitly explorer a
much larger space than that available to feature-based algorithms. We next show how to formalize
relation extraction as a learning problem.

4. Problem Formalization

Let us consider the sentence, “John Smith is the chief scientist of the Hardcom Corporation”. The
shallow parsing system produces the representation of the sentence shown in Figure 1. The sentence
is represented a shallow parse tree. In contrast to common parse trees, the type of a parent node
doesnot determine the structure of its children nodes. Instead of providing the full interpretation of
the sentence, shallow parsing only identifies its key elements. Therefore, shallow parsing is fairly
robust, and is able to generate structured representations even for ungrammatical sentences.

We next convert the shallow parse tree into examples for theperson-affiliation relation.
This type of relation holds between aperson and anorganization . There are three nodes in
the shallow parse tree in Figure 1 referring to people, namely, the “John Smith” node with the
type “Person”, and the “PNP” nodes.5 There is one “Organization” node in the tree that refers to an
organization. We create an example for theperson-affiliation relation by taking aperson node
and anorganization node in the shallow parse tree and assigning attributes to the nodes specifying
the role that a node plays in theperson-affiliation relation. The person and organization under
consideration will receive thememberandaffiliation roles, respectively. The rest of the nodes will
receivenoneroles reflecting that they do not participate in the relation. We then attach a label to
the example by asking the question whether the node with the role ofmemberand the node with
the role ofaffiliation are indeed (semantically) affiliated, according to the sentence. For the above
sentence, we will then generate three positive examples, shown in Figure 2.

Note that in generating the examples between the “PNP” and the “Organization” we eliminated
the nodes that did not belong to the least common subtree of “Organization” and “PNP”, thereby
removing irrelevant subtrees. To summarize, a relation example is shallow parse, in which nodes are
augmented with the role attribute, and each node of the shallow parse belongs to the least common
subtree comprising the relation entities under consideration. We now formalize the notion of relation
example. We first define the notion of the example node.

5. Note that after the tree is produced, we do not know if the “Person” and the “PNP” nodes refer to the same person.

1087

ZELENKO, AONE, AND RICHARDELLA

Figure 1: The shallow parse representation of the the sentence “John Smith is the chief scientist of
the Hardcom Corporation”.The types “PNP”, “Det”, “Adj”, and “Prep” denote “Personal
Noun Phrase”, “Determiner”, “Adjective”, and “Preposition”, respectively.

Figure 2: The twoperson-affiliation examples generated from the shallow parse in Figure 1.
The “Label=+1” means that the examples do express the relation.

Definition 1 A node p is a set of attributes{a1,a2, . . .}. Each node may have a different number of
attributes. The attributes are named, and each node necessarily has attributes with names “Type”
and “Role”.

We usep.a to denote the value of attribute with the namea in the nodep, e.g.,p.Type= Person
andp.Role= member.

Definition 2 An (unlabeled) relation example is defined inductively as follows:

1088

KERNEL METHODS FORRELATION EXTRACTION

• Let p be a node, then the pair P= (p, []) is a relation example, where by[] we denote an
empty sequence.

• Let p be a node, and[P1,P2, . . . ,Pl] be a sequence of relation examples. Then, the pair P=
(p, [P1,P2, . . . ,Pl]) is a relation example.

We say thatp is the parent ofP1,P2, . . . ,Pl , andPi ’s are the children ofp. We denote byP.p
the first element of the example pair, byP.c the second element of the example pair, and use the
shorthandP.a to refer toP.p.a, andP[i] to denotePi. If unambiguous, we also useP.ai to denote
the childPi of P such thatPi.Type= ai . A labeled relation example is unlabeled relation example
augmented with a labell ∈ {−1,+1}. An example is positive, ifl = +1, and negative, otherwise.
We now define kernels on relation examples that represent similarity of two shallow parse trees.

5. Kernels for Relation Extraction

Kernels on parse trees were previously defined by Collins and Duffy (2001). The kernels enumer-
ated (implicitly) all subtrees of two parse trees, and used the number of common subtrees, weighted
appropriately, as the measure of similarity between two parse trees. Since we are operating with
shallow parse trees, and the focus of our problem is relation extraction rather than parsing, we use a
different definition of kernels.

The nodes of the shallow parse trees have attributes, and we need to use the attributes in the
kernel definition. We define a primitive kernel function on the nodes in terms of nodes’ attributes,
and then extend it on relation examples.

We first define a matching functiont(·, ·) ∈ {0,1} and a similarity functionk(·, ·) on nodes. The
matching function defined on nodes determines whether the nodes are matchable or not. In the case
of relation extraction, the nodes are matchable only if their types and roles match. Thus, if two
nodes have different roles, and non-compatible types,6 then their node matching function is equal to
zero; otherwise, it is equal to 1. The similarity function on nodes is computed in terms of the nodes’
attributes.

For example,

t(P1.p,P2.p) =
{

1, if P1.Type= P2.TypeandP1.Role= P2.Role
0, otherwise

and

k(P1.p,P2.p) =
{

1, if P1.text= P2.Text
0, otherwise

Then, for two relation examplesP1,P2, we define the similarity functionK(P1,P2) in terms of
similarity function of the parent nodes and the similarity functionKc of the children. Formally,

K(P1,P2) =
{

0, if t(P1.p,P2, p) = 0
k(P1.p,P2.p)+Kc(P1.c,P2.c), otherwise

(1)

Different definitions of the similarity functionKc on children give rise to differentK’s. We now
give a general definition ofKc in terms of similarities of children subsequences. We first introduce
some helpful notation (similar to Lodhi et al. (2002)).

6. Some distinct types are compatible, for example, “PNP” is compatible with “Person”.

1089

ZELENKO, AONE, AND RICHARDELLA

We denote byi a sequencei1 ≤ i2 ≤ . . . ≤ in of indices, and we say thati ∈ i, if i is one of the
sequence indices. We also used(i) for in− i1+1, andl(i) for length of the sequencei. For a relation
exampleP, we denote byP[i] the sequence of children[P[i1], . . . ,P[in]].

For a similarity functionK, we useK(P1[i],P2[j]) to denote∑s=1,...,l(i) K(P1[is],P2[js]). Then,
we define the similarity functionKc as follows

Kc(P1.c,P2.c) = ∑
i,j ,l(i)=l(j)

λd(i)λd(j)K(P1[i],P2[j]) ∏
s=1,...,l(i)

t(P1[is].p,P2[js].p) (2)

The formula (2) enumerates all subsequences of relation example children with matching par-
ents, accumulates the similarity for each subsequence by adding the corresponding child examples’
similarities, and decreases the similarity by the factor ofλd(i)λd(i), 0< λ < 1, reflecting how spread
out the subsequences within children sequences. Finally, the similarity of two children sequences is
the sum all matching subsequences similarities.

The following theorem states that the formulas (1) and (2) define a kernel, under mild assump-
tions.

Theorem 3 Let k(·, ·) and t(·, ·) be kernels over nodes. Then, K as defined by (1) and (2) is a kernel
over relation examples.

The proof of Theorem 3 is in Appendix A.
We first consider a special case ofKc, where the subsequencesi and j are assumed to becon-

tiguousand give a very efficient algorithm for computingKc. In Section 5.2, we address a more
general case, when the subsequences are allowed to be sparse (non-contiguous).

5.1 Contiguous Subtree Kernels

For contiguous subtree kernels, the similarity functionKc enumerates only children contiguous
subsequences, that is, for a subsequencei in (2), is+1 = is+1 andd(i) = l(i). Since thend(i) = d(j)
as well, we slightly abuse notation in this section by makingλ stand forλ2 in formula (2). Hence,
(2) becomes

Kc(P1.c,P2.c) = ∑
i,j ,l(i)=l(j)

λl(i)K(P1[i],P2[j]) ∏
s=1,...,l(i)

t(P1[is].p,P2[js].p) (3)

Let us consider a relation example corresponding to the sentence “James Brown was a scientist
at the University of Illinois”. The example is shown in Figure 3. We compare the example with the
relation example #1 in Figure 2.

According to the definitions (1) and (3), for the examplesP1 (relation example #1) andP2 (rela-
tion example #4), the kernel function is computed as follows (Assume that for all matching nodes,
the similarity is 1 if their text(head) attributes match and 0, otherwise. Also assume thatλ = 0.5).

K(P1,P2) = k(P1.Sentence.p,P2.Sentence.p)

+Kc([P1.Person,P1.Verb,P1.PNP],[P2.Person,P2.Verb,P2.PNP])

= 0.5(k(P1.Person,P2.Person)+k(P1.Verb,P2.Verb)+K(P1.PNP,P2.PNP))

+0.52(k(P1.Person,P2.Person)+2k(P1.Verb,P2.Verb)+K(P1.PNP,P2.PNP))

+0.53(k(P1.Person,P2.Person)+k(P1.Verb,P2.Verb)+K(P1.PNP,P2.PNP))

1090

KERNEL METHODS FORRELATION EXTRACTION

Figure 3: A relation example for the sentence “James Brown was a scientist at the University of
Illinois”. The type “ONP” denotes “ Organization Noun Phrase”.

= 1.125+0.875K(P1.PNP,P2.PNP)

= 1.125+0.875(k(P1.PNP.p,P2.PNP.p)+0.5(k(P1.PNP.PNP,P2.PNP.PNP)

+k(P1.PNP.Prep,P2.PNP.Prep)+k(P1.PNP.Organization,P2.PNP.ONP))

0.52(k(P1.PNP.PNP,P2.PNP.PNP)+2k(P1.PNP.Prep,P2.PNP.Prep)

+k(P1.PNP.Organization,P2.PNP.ONP))

+0.53(k(P1.PNP.PNP,P2.PNP.PNP)+k(P1.PNP.Prep,P2.PNP.Prep)

+k(P1.PNP.Organization,P2.PNP.ONP))

= 1.125+0.875(1+0.5+0.25+0.125)

= 1.125+0.875·1.875

= 2.765625

The core of the kernel computation resides in the formula (3). The formula enumerates all
contiguous subsequences of two children sequences. We now give a fast algorithm for computing
Kc betweenP1 andP2, which, given kernel values for children, runs in timeO(mn), wherem andn
is the number of children ofP1 andP2, respectively.

Let C(i, j) be theKc computed for suffixes of children sequences ofP1 and P2, where every
subsequence starts with indicesi and j, respectively. That is,

C(i, j) = ∑
i,j ,i1=i, j1= j,l(i)=l(j)

λl(i)K(P1[i],P2[j]) ∏
s=1,...,l(i)

t(P1[is].p,P2[js].p)

Let L(i, j) be the length of the longest sequence matching states in the children ofP1 andP2 starting
with indicesi and j, respectively. Formally,

L(i, j) = max{l : ∏
s=0,...,l

t(P1[i +s].p,P2[j +s].p) = 1}

Then, the following recurrences hold:

L(i, j) =
{

0, if t(P1[i].p,P2[j], p) = 0
L(i +1, j +1)+1, otherwise

(4)

1091

ZELENKO, AONE, AND RICHARDELLA

C(i, j) =

{
0, if t(P1[i].p,P2[j], p) = 0
λ(1−λL(i, j))

1−λ K(P1[i],P2[j])+ λC(i +1, j +1), otherwise
(5)

The boundary conditions are:

L(m+1,n+1) = 0

C(m+1,n+1) = 0

The recurrence (5) follows from the observation that, ifP1[i] andP2[j] match, then every match-
ing pair(c1,c2) of sequences that participated in computation ofC(i +1, j +1) will be extended to
the matching pair([P1[i],c1], [P2[j],c2]), and

C(i, j) = λK(P1[i],P2[j])+ ∑
(c1,c2)

λl(c1)+1(K(P1[i],P2[j])+K(c1,c2))

= ∑
s=1,...,L(i, j)

λsK(P1[i],P2[j])+ λ ∑
(c1,c2)

λl(c1)K(c1,c2))

=
λ(1−λL(i, j))

1−λ
K(P1[i],P2[j])+ λC(i +1, j +1)

Now we can easily computeKc(P1.c,P2.c) from C(i, j).

Kc(P1.c,P2.c) = ∑
i, j

C(i, j) (6)

The time and space complexity ofKc computation isO(mn), given kernel values for children.
Hence, for two relation examples the complexity of computingK(P1,P2) is the sum of computing
Kc for the matching internal nodes (assuming that complexity oft(·, ·) andk(·, ·) is constant).

5.2 Sparse Subtree Kernels

For sparse subtree kernels, we use the general definition of similarity between children sequences
as expressed by (2).

Let us consider a example corresponding to the sentence “John White, a well-known scientist at
the University of Illinois, led the discussion.” The example is shown in Figure 4. We compare the
example with the relation example #1 in Figure 2.

According to the definitions (1) and (3), for the examplesP1 (relation example #1) andP2 (rela-
tion example #5), the kernel function is computed as follows (Assume that for all matching nodes,
the similarity is 1 if their text(head) attributes match and 0, otherwise. Also assume thatλ = 0.5).

K(P1,P2) = k(P1.Sentence.p,P2.Sentence.p)+

+Kc([P1.Person,P1.Verb,P1.PNP],[P2.Person,P2.Punc,P2.PNP,P2.Verb,P2.BNP])

= 0.52(k(P1.Person,P2.Person)+k(P1.Verb,P2.Verb)+K(P1.PNP,P2.PNP))

+0.520.54k([P1.Person,P1.Verb],[P2.Person,P2.Verb])+

+0.530.53([P1.Person,P1.PNP],[P2.Person,P2.PNP])+

+(0.52+0.56)K(P1.PNP,P2.PNP)

1092

KERNEL METHODS FORRELATION EXTRACTION

Figure 4: A relation example for the sentence “James Brown, a well-known scientist at the Univer-
sity of Illinois, led the discussion.” The types “Punc” and “BNP” denote “Punctuation”
and “Base Noun Phrase”, respectively.

= 0.265625(k(P1.PNP.p,P2.PNP.p)+0.52(k(P1.PNP.PNP,P2.PNP.PNP)

+k(P1.PNP.Prep,P2.PNP.Prep)+k(P1.PNP.ONP,P2.PNP.ONP))

0.54(k(P1.PNP.PNP,P2.PNP.PNP)+2k(P1.PNP.Prep,P2.PNP.Prep)

+k(P1.PNP.ONP,P2.PNP.ONP))+0.56(k(P1.PNP.PNP,P2.PNP.PNP)+

+k(P1.PNP.ONP,P2.PNP.ONP))+

+0.56(k(P1.PNP.PNP,P2.PNP.PNP)+k(P1.PNP.Prep,P2.PNP.Prep)

+k(P1.PNP.ONP,P2.PNP.ONP))

= 0.265625(1+0.52·3+0.54·4+0.56·(2+3))

= 0.265625·2.078125

= 0.552

As in the previous section, we give an efficient algorithm for computingKc betweenP1 andP2.
The algorithm runs in timeO(mn3), given kernel values for children, wherem andn (m≥ n) is the
number of children ofP1 andP2, respectively. We will use a construction of Lodhi et al. (2002) in
the algorithm design.

Derivation of an efficient programming algorithm for sparse subtree computation is somewhat
involved and presented in Appendix B. Below we list the recurrences for computingKc.

Kc = ∑
q=1,...,min(m,n)

Kc,q(m,n)

Kc,q(i, j) = λKc,q(i, j−1)+ ∑
s=1,...,i

t(P1[s].p,P2[j].p)λ2Cq−1(s−1, j−1,K(P1[s],P2[j]))

Cq(i, j,a) = aCq(i, j)+ ∑
r=1,...,q

Cq,r(i, j)

Cq(i, j) = λCq(i, j−1)+C′
q(i, j)

C′
q(i, j) = t(P1[i],P2[j])λ2Cq−1(i−1, j−1)+ λC′

q(i, j−1)

1093

ZELENKO, AONE, AND RICHARDELLA

Cq,r(i, j) = λCq,r(i, j−1)+C′
q,r(i, j)

C′
q,r(i, j) =

{
t(P1[i],P2[j])λ2Cq−1,r(i−1, j−1)+ λC′

q,r(i, j−1), if q 6= r
t(P1[i],P2[j])λ2K(P1[i],P2[j])Cq−1(i−1, j−1)+ λC′

q,r(i, j−1), if q = r

The boundary conditions are

Kc,q(i, j) = 0, if q > min(i, j)
Cq(i, j) = 0, if q > min(i, j)
C0(i, j) = 1,

C′
q(i, j) = 0, if q > min(i, j)

Cq,r(i, j) = 0, if q > min(i, j) or q < r

C′
q,r(i, j) = 0, if q > min(i, j) or q < r

As can be seen from the recurrences, the time complexity of the algorithm isO(mn3) (assuming
m≥ n). The space complexity isO(mn2).

6. Experiments

In this section, we apply kernel methods to extracting two types of relations from text:
person-affiliation andorganization-location .

A person and anorganization are part of theperson-affiliation relation, if theperson is
a member of or employed byorganization . A company founder, for example, is defined not to be
affiliated with the company (unless, it is stated that (s)he also happens to be a company employee).

A organization and alocation are components of theorganization-location relation, if
theorganization ’s headquarters is at thelocation . Hence, if a single division of a company is
located in a particular city, the company is not necessarily located in the city.

The nuances in the above relation definitions make the extraction problem more difficult, but
they also allow to make fine-grained distinctions between relationships that connect entities in text.

6.1 Experimental Methodology

The (text) corpus for our experiments comprises 200 news articles from different news agencies and
publications (Associated Press, Wall Street Journal, Washington Post, Los Angeles Times, Philadel-
phia Inquirer).

We used the existing shallow parsing system to generate the shallow parses for the news articles.
We generated relation examples from the shallow parses for both relations, as described in Section 4.
We retained only the examples, for which the shallow parsing system did not make major mistakes
(90% of the generated examples). We then labeled the retained examples whether they expressed
the relation of interest. The resulting examples’ statistics are shown in Table 6.1.

For each relation, we randomly split the set of examples into a training set (60% of the ex-
amples) and a testing set (40% of the examples). We obtained the models by running learning
algorithms (with kernels, where appropriate) on the training set, testing the models on the test set,
and computing performance measures. In order to get stable performance estimates, we averaged
performance results over 10 random train/test splits. For each of the algorithms, we also computed

1094

KERNEL METHODS FORRELATION EXTRACTION

person-affiliation org-location
#positive 1262 506
#negative 2262 1409
#total 3524 1915

Table 1: Number of examples for relations.

the learning curves by gradually increasing the number of examples in the training set and observ-
ing performance change on the test set. The learning curves were also averaged over 10 random
train/test splits.

For extraction problems, the system performance is usually reflected using the performance
measures of information retrieval: precision, recall, and F-measure (van Rijsbergen, 1979). Pre-
cision is the ratio of the number of correctly predicted positive examples to the number predicted
positive examples. Recall is the ratio of the number of correctly predicted positive examples to the
number of true positive examples. F-measure (Fm) combines precision and recall as follows:

Fm=
2∗ precision∗ recall
(precision+ recall)

We report precision, recall, and F-measure for each experiment. We also present F-measure learning
curves for each learning curve experiment.

In the experiments below, we present the performance of kernel-based algorithms for relation
extraction in conjunction with that of feature-based algorithms. Note that the set of features used by
the feature-based learning algorithms (presented in Appendix C) is not the same as the set of implicit
features employed by kernel-based learning algorithms. The features used correspond to small
subtrees of the shallow parse representations of relation examples, while the kernel formulation can
take advantage of subtrees of any size. Therefore, in comparing the performance of kernel-based
and feature-based methods, we seek to evaluate how much advantage a kernel formulation can give
us with respect to a comparable yet less expressive feature formulation.

We now describe the experimental setup of the algorithms used in evaluation.

6.2 Kernel Methods Configuration

We evaluated two kernel learning algorithms: Support Vector Machine (SVM) (Cortes and Vap-
nik, 1995) and Voted Perceptron (Freund and Schapire, 1999). For SVM, we used theSVMLight

(Joachims, 1998) implementation of the algorithm, with custom kernels incorporated therein. We
implemented the Voted Perceptron algorithm as described in (Freund and Schapire, 1999).

We implemented both contiguous and sparse subtree kernels and incorporated them in the kernel
learning algorithms. For both kernels,λ was set to 0.5. The only domain specific information in the
two kernels was encapsulated by the matchingt(·, ·) and similarityk(·, ·) functions on nodes. Both
functions are extremely simple, their definitions are shown below.

t(P1.p,P2.p) =
{

1, if Class(P1.Type) = Class(P2.Type) andP1.Role= P2.Role
0, otherwise

1095

ZELENKO, AONE, AND RICHARDELLA

where the functionClasscombines some types into a single equivalence class: Class(PNP)=Person,
Class(ONP)=Organization, Class(LNP)=Location, and Class(Type)=Type for other types.

k(P1.p,P2.p) =
{

1, if P1.text= P2.Text
0, otherwise

We should emphasize that the above definitions oft andk are theonly domain-specific information
that the kernel methods use. Certainly, the kernel design is somewhat influenced by the problem of
relation extraction, but the kernels can be used for other (not necessarily text-related) problems as
well, if the functionst andk are defined differently.

We also normalized the computed kernels before their use within the algorithms. The nor-
malization corresponds to the standard unit norm normalization of examples in the feature space
corresponding to the kernel space (Cristianini and Shawe-Taylor, 2000):

K(P1,P2) =
K(P1,P2)√

K(P1,P1)K(P2,P2)

For bothSVMLight and Voted Perceptron, we used their standard configurations (e.g., we did
not optimize the value ofC that interpolates the training error and regularization cost for SVM, via
cross-validation). For Voted Perceptron, we performed two passes over the training set.

6.3 Linear Methods Configuration

We evaluated three feature-based algorithms for learning linear discriminant functions: Naive-Bayes
(Duda and Hart, 1973), Winnow (Littlestone, 1987), and SVM. We designed features for the rela-
tion extraction problem. The features are conjunctions of conditions defined over relation example
nodes. The features are listed in appendix C. Again, we use the standard configuration for both al-
gorithms: for Naive Bayes we employed add-one smoothing (Jelinek, 1997); for Winnow, learning
rate (promotion parameter) was set to 1.1 and the number of training set passes to 2. For SVM, we
used the linear kernel and set the regularization parameter (C) to 1.

6.4 Experimental Results

The performance results forperson-affiliation and organization-location are shown in
Table 2 and Table 3, respectively. The results indicate that kernel methods do exhibit good per-
formance and, in most cases, fare better than feature-based algorithms in relation extraction. The
results also highlights importance of kernels: algorithms with the sparse subtree kernels are always
significantly better than their contiguous counterparts. The SVM results also pinpoint that kernels
and not regularization are crucial for performance improvement.

6.4.1 FEATURE-BASED VS. KERNEL-BASED: LEARNING CURVES

The Figure 5 depicts F-measure learning curves for for feature-based and kernel-based algorithms
with the sparse subtree kernel.

For theperson-affiliation relation, kernel-based algorithms clearly outperform feature-
based algorithms starting just from just a hundred examples. The kernel-based algorithms converge
faster, and they are more stable, if trained on few examples. For theorganization-location
relation, the trend is less clear for the Voted Perceptron, whose performance, with the sparse subtree

1096

KERNEL METHODS FORRELATION EXTRACTION

Recall Precision F-measure
Naive Bayes 75.59 91.88 82.93
Winnow 80.87 88.42 84.46
SVM (feature-based) 76.21 91.67 83.22
Voted Perceptron (contiguous)79.58 89.74 84.34
SVM (contiguous) 79.78 89.9 84.52
Voted Perceptron (sparse) 81.62 90.05 85.61
SVM (sparse) 82.73 91.32 86.8

Table 2:Person-affiliation performance (in percentage points)

Recall Precision F-measure
Naive Bayes 71.94 90.40 80.04
Winnow 75.14 85.02 79.71
SVM (feature-based) 70.32 88.18 78.17
Voted Perceptron (contiguous) 64.43 92.85 76.02
SVM (contiguous) 71.43 92.03 80.39
Voted Perceptron (sparse) 71 91.9 80.05
SVM (sparse) 76.33 91.78 83.3

Table 3:Organization-location performance (in percentage points)

kernel, is just comparable to that of feature-based algorithms. SVM, with the sparse subtree kernel,
performs far better than any of the competitors for theorganization-location relation.

6.4.2 SPARSE VS. CONTIGUOUS: LEARNING CURVES

The Figure 6 depicts F-measure learning curves for for kernel-based algorithms algorithms with
different kernels.

The learning curves indicate that the sparse subtree kernel is far superior to the contiguous sub-
tree kernel. From the enumeration standpoint, the subtree kernels implicitly enumerate theexpo-
nentialnumber of children subsequences of a given parent, while the contiguous kernels essentially
operate withn-grams, whose number is just quadratic in a children sequence length. This exponen-
tial gap between the sparse and contiguous kernels leads to a significant performance improvement.
The result is extremely promising, for it showcases that it is possible to (implicitly) consider an
exponential number of features while paying just a low polynomial price, with a significant perfor-
mance boost.

7. Discussion

Kernel-based methods are an elegant approach for learning in rich structural domains. Our results
show that, for relation extraction, the methods perform very well, while allowing for minimal inges-
tion of problem knowledge and avoidance of extensive feature engineering and selection process.

1097

ZELENKO, AONE, AND RICHARDELLA

0.65

0.7

0.75

0.8

0.85

0.9

0 500 1000 1500 2000

Naive Bayes
Winnow

Voted Perceptron (sparse)
SVM (sparse)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 200 400 600 800 1000 1200

Naive Bayes
Winnow

Voted Perceptron (sparse)
SVM (sparse)

Figure 5: Learning curves (of F-measure) for theperson-affiliation relation (on the left) and
org-location relation (on the right), comparing feature-based learning algorithms with
kernel-based learning algorithms.

0.65

0.7

0.75

0.8

0.85

0.9

0 500 1000 1500 2000

Voted Perceptron (contiguous)
SVM (contiguous)

Voted Perceptron (sparse)
SVM (sparse)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 200 400 600 800 1000 1200

Voted Perceptron (contiguous)
SVM (contiguous)

Voted Perceptron (sparse)
SVM (sparse)

Figure 6: Learning curve (of F-measure) for theperson-affiliation relation (on the left) and
org-location relation (on the right), comparing kernel-based learning algorithms with
different kernels.

Our work follows recent applications of kernel methods to natural language parsing (Collins
and Duffy, 2001) and text categorization (Lodhi et al., 2002). The common theme in all the papers
is that objects’ structure need not be sacrificed for simpler explicit feature-based representation.
Indeed, the structure can be leveraged in a computationally efficient and statistically sound way.

The NLP domain is precisely the domain where the structural descriptions of objects (words,
phrases, sentences) can be exploited. While the prevalentn-grams approach to language modeling
imposes statistical and computational constraints, kernel-based language modeling may help eschew
the constraints. We have shown that, for relation extraction, the kernel algorithms exhibit faster

1098

KERNEL METHODS FORRELATION EXTRACTION

convergence than such attribute-efficient7 algorithms as Winnow. We hypothesize that the methods
will require much fewer examples in achieving the state of the art performance for a range of NLP
problems than approaches based on probabilistic modeling.

One practical problem in applying kernel methods to NLP is their speed. Kernel classifiers are
relatively slow compared to feature classifiers. Indeed, an application of a kernel classifier requires
evaluation of numerous kernels whose computational complexity may be too high for practical
purposes. Many low level problems in natural language processing involve very large corpora with
tens and hundreds of thousands of examples. Even if kernel classifiers only depend on a small
subset of the examples (for instance, support vectors of SVM), the need to evaluate thousands
of complex kernels during the classifier application may render kernel methods inappropriate for
various practical settings. Therefore, there is a pressing need to develop algorithms that combine
the advantages of kernel methods with practical constraints that require efficient application of the
classifiers learned.

Design of kernels for structural domains is a very rich research area. An interesting direction
to pursue would be to use extensive work ondistancesdefined on structural objects (Sankoff and
Kruskal, 1999) in kernel design. The distance-based methods have already found widespread ap-
plication in bioinformatics (Durbin et al., 1998), and can be fruitfully extended to work in the NLP
domain as well. Watkins (1999) presents sufficient conditions for a Pair Hidden Markov Model
(which is a probabilistic version of edit distance) to constitute a kernel. More generally, the work of
Goldfarb (1985) makes it possible to use any distance measure to embed objects (and define a dot
product) in a pseudo-euclidean space. Incidentally, SVM can be adapted for the pseudo-euclidean
representations (Graepel et al., 1999, Pekalska et al., 2001), hence, lending the power of regulariza-
tion to learning in structural domains, where natural distance functions exist.

8. Conclusions and Further Work

We presented an approach for using kernel-based machine learning methods for extracting relations
from natural language sources. We defined kernels over shallow parse representations of text and
designed efficient dynamic programming algorithms for computing the kernels. We applied SVM
and Voted Perceptron learning algorithms with the kernels incorporated therein to the tasks of rela-
tion extraction. We also compared performance of the kernel-based methods with that of the feature
methods, and concluded that kernels lead to superior performance.

Aside from a number of interesting research directions mentioned in Section 7, we intend to
apply the kernel methodology to other sub-problems of information extraction. For example, the
shallow parsing and entity extraction mechanism may also be learned, and, perhaps, combined in
a seamless fashion with the relation extraction formalism presented herein. Furthermore, the real-
world use of extraction results requires discourse resolution that collapses entities, noun phrases,
and pronouns into a set of equivalence classes. We plan to apply kernel methods for discourse
processing as well.

7. A learning algorithm is attribute-efficient, if its learning rate depends on the number of relevant features, rather than
on the total number of features.

1099

ZELENKO, AONE, AND RICHARDELLA

9. Acknowledgments

This work was supported through the DARPA Evidence Extraction and Link Discovery program
under the contract 2001-H697000-000.

Appendix A. Proof of Theorem 3

To prove the theorem, we need the following lemmas.

Lemma 4 (Haussler (1999))Let K be a kernel on a set U×U and for all finite non-empty A,B⊆
U defineK̄(A,B) = ∑x∈A,y∈B K(x,y). ThenK̄ is the kernel on the product of the set of all finite,
nonempty subsets of U with itself.

Lemma 5 (Cristianini and Shawe-Taylor (2000)) If K1 is a kernel over a set X, and K2 is a kernel
over a set Y , then K1

⊕
K2((x,x′),(y,y′)) = K(x,x′)+K(y,y′) is a kernel over a set X×Y. The kernel

K1
⊕

K2 is called thedirect sumof kernels K1 and K2.

Corollary 6 If K1, . . . ,Kn are kernels over the corresponding sets X1, . . . ,Xn, and then the direct
sum K1

⊕ · · ·⊕Kn((x1,x′1), . . . ,(xn,x′n)) = ∑i=1,...,nK(xi ,x′i) is a kernel over the set Xi ×·· ·×Xn.

Lemma 7 (Cristianini and Shawe-Taylor (2000)) If K1 is a kernel over a set X, and K2 is a kernel
over a set Y , then K1

⊗
K2((x,x′),(y,y′)) = K(x,x′)K(y,y′) is a kernel over a set X×Y. The kernel

K1
⊗

K2 is called thetensor productof kernels K1 and K2.

Corollary 8 If K1, . . . ,Kn are kernels over the corresponding sets X1, . . . ,Xn, and then the tensor
product K1

⊗ · · ·⊗Kn((x1,x′1), . . . ,(xn,x′n)) = ∏i=1,...,n K(xi ,x′i) is a kernel over the set Xi×·· ·×Xn.

Proof [Proof of Theorem 3] For two relation examplesP1 and P2, of which at least one has no
children,K(P1,P2) = k(P1.p,P2.p)t(P1.p,P2.p). Therefore,K is a kernel as a product of two ker-
nels(Cristianini and Shawe-Taylor, 2000).

For two relation examplesP1 andP2 with non-empty children lists, we first extend each children
subsequence to be of lengthM = max(l(P1.c), l(P2.c)) by appending to it a sequence of “empty”
children, thereby embedding the space of all subsequences in the space of subsequences of length
M. We also extend thet(·, ·) andk(·, ·) to empty nodes by making empty nodes match only with
empty nodes, and puttingk(x,y) = 0, if x or y is empty. We also letd(i) denotein− i1 +1, wherein
is the last “non-empty” index of the sequencei.

We then observe thatKc(P1.c,P2.c) can be written as

Kc(P1.c,P2.c) = ∑
i,j

λd(i)λd(j)K(P1[i],P2[j]) ∏
s=1,...,M

t(P1[is].p,P2[js].p)

K(P1[i],P2[j]) is a direct sum of kernels defined over individual children, hence, it is a kernel over
subsequences children by Corollary 6. Similarly,∏s=1,...,l(i) t(P1[is].p,P2[js].p) is a tensor product
of kernels, hence, it is a kernel over subsequences of children by Corollary 8. Since the set of ker-
nels is closed with respect to product and scalar multiplication,
λd(i)λd(j)K(P1[i],P2[j])∏s=1,...,M t(P1[is].p,P2[js].p) is a kernel over subsequences of children. Ap-
plication of Lemma 4 to this kernel, whereU is the set of subsequences of children entails thatKc

is a kernel over two children sequences represented as sets of their subsequences.

1100

KERNEL METHODS FORRELATION EXTRACTION

Finally, since a sum and a product of kernels is also a kernel,

K(P1,P2) = t(P1.p,P2.p)k(P1.p,P2.p)+ t(P1.p,P2.p)Kc(P1.c,P2.c)

is a kernel over relation examples.

Appendix B. Sparse Subtree Kernel Computation

Let Kc,q(i, j) beKc computed using subsequences of lengthq in prefixes of children sequences of
P1 andP2 ending with indicesi and j.

Kc,q(i, j) = ∑
i⊆{1,...,i}

∑
j⊆{1,..., j}
l (i)=l (j)=q

λd(i)λd(j)K(P1[i],P2[j])T(i, j)

where
T(i, j) = ∏

s=1,...,l(i)
t(P1[is].p,P2[js].p)

Let Cq(i, j,a) be theKc computed using subsequences of lengthq in prefixes of children se-
quences ofP1 and P2 ending with indicesi and j, respectively, with a numbera ∈ R added to
each result of kernel children computation, and setting a damping factor for a sequencei(j) to be
λi−i1+1(λi−i1+1). Formally,

Cq(i, j,a) = ∑
i⊆{1,...,i}

∑
j⊆{1,..., j}
l (i)=l (j)=q

[λi−i1+ j− j1+2(K(P1[i],P2[j])+a)T(i, j)]

Then the following recurrences hold:

C0(i, j,a) = a

Cq(i, j,a) = λCq(i, j−1,a)+

∑
s=1,...,i

[t(P1[s].p,P2[j].p)λi−s+2 ·Cq−1(s−1, j−1,a+K(P1[s],P2[j]))]

Kc,q(i, j) = λKc,q(i, j−1)+

∑
s=1,...,i

[t(P1[s].p,P2[j].p)λ2 ·Cq−1(s−1, j−1,K(P1[s],P2[j]))]

Kc = ∑
q=1,...,min(m,n)

Kc,q(m,n)

The above recurrences do not allow, however, for an efficient algorithm in computingKc due to
presence ofreal-valuedparametera.

In order to obtain an efficient dynamic programming algorithm, we rewriteCq(i, j,a) as follows:

Cq(i, j,a) = aCq(i, j)+ ∑
r=1,...,q

Cq,r(i, j)

where
Cq(i, j) = ∑

i⊆{1,...,i}
∑

j⊆{1,..., j}
l (i)=l (j)=q

λd(i)λd(j)T(i, j)

1101

ZELENKO, AONE, AND RICHARDELLA

and

Cq,r(i, j) =

∑
i1=1,...,i
j1=1,..., j

[t(P1[i1].p,P2[j1].p)λi−i1+ j− j1+2Cq−1,r (i1−1, j1−1)], if q 6= r

∑
i1=1,...,i
j1=1,..., j

[t(P1[i1].p,P2[j1].p)λi−i1+ j− j1+2K(P1[i1],P2[j1])Cq−1(i1−1, j1−1)], if q = r

Observe thatCq(i, j) computes the subsequence kernel of Lodhi et al. (2002) (with matching
nodes) for prefixes ofP1 andP2. Hence, we can use the result of Lodhi et al. (2002) to giveO(qi j)
for Cq(i, j) computation. Denote

C′
q(i, j) = ∑

s=1,...,i

t(P1[s].p,P2[j].p)λi−s+2Cq−1(s−1, j−1)

Then
Cq(i, j) = λCq(i, j−1)+C′

q(i, j)

and
C′

q(i, j) = t(P1[i],P2[j])λ2Cq−1(i−1, j−1)+ λC′
q(i, j−1)

Using the same trick forCq,r(i, j), we get

Cq,r(i, j) = λCq,r(i, j−1)+C′
q,r(i, j)

where

C′
q,r(i, j) =

{
λC′

q,r(i, j−1)+ t(P1[i],P2[j])λ2Cq−1,r(i−1, j−1), if q 6= r

λC′
q,r(i, j−1)+ t(P1[i],P2[j])λ2K(P1[i],P2[j])Cq−1(i−1, j−1), o.w.

That completes our list of recurrences of computingKq(i, j,a). The boundary conditions are

Kc,q(i, j) = 0, if q > min(i, j)
Cq(i, j) = 0, if q > min(i, j)
C0(i, j) = 1,

C′
q(i, j) = 0, if q > min(i, j)

Cq,r(i, j) = 0, if q > min(i, j) or q < r

C′
q,r(i, j) = 0, if q > min(i, j) or q < r

Appendix C. Features for Relation Extraction

In the process of feature engineering, we found the concept of node depth (in a relation example)
to be very useful. The depth of a nodeP1.p (denoteddepth(P1.p)) within a relation exampleP is
the depth ofP1 in the tree ofP. The features are itemized below (the lowercase variablestext, type,
role, anddepthare instantiated with specific values for the corresponding attributes).

• For every nodeP1.p in a relation example, add the following features:

– depth(P1.p) = depth∧Class(P1.Type) = type∧P1.Role= role

– depth(P1.p) = depth∧P1.Text= text∧P1.Role= role

1102

KERNEL METHODS FORRELATION EXTRACTION

• For every pair of nodesP1.p, P2.p in a relation example, such thatP1 is the parent ofP2, add
the following features:

– depth(P1.p)= depth∧Class(P1.Type)= type∧P1.Role= role∧depth(P2.p)= depth∧
Class(P2.Type) = type∧P2.Role= role∧ parent

– depth(P1.p)= depth∧Class(P1.Type)= type∧P1.Role= role∧depth(P2.p)= depth∧
P2.Text= text∧P2.Role= role∧ parent

– depth(P1.p)= depth∧P1.Text= text∧P1.Role= role∧depth(P2.p)= depth∧Class(P2.Type)=
type∧P2.Role= role∧ parent

– depth(P1.p) = depth∧Class(P1.Type) = text∧P1.Role= role∧depth(P2.p) = depth∧
P2.Text= text∧P2.Role= role∧ parent

• For every pair of nodesP1.p, P2.p in a relation example, with the same parentP, such thatP2

follows P1 in theP’s children list, add the following features:

– depth(P1.p)= depth∧Class(P1.Type)= type∧P1.Role= role∧depth(P2.p)= depth∧
Class(P2.Type) = type∧P2.Role= role∧sibling

– depth(P1.p)= depth∧Class(P1.Type)= type∧P1.Role= role∧depth(P2.p)= depth∧
P2.Text= text∧P2.Role= role∧sibling

– depth(P1.p)= depth∧P1.Text= text∧P1.Role= role∧depth(P2.p)= depth∧Class(P2.Type)=
type∧P2.Role= role∧sibling

– depth(P1.p) = depth∧Class(P1.Type) = text∧P1.Role= role∧depth(P2.p) = depth∧
P2.Text= text∧P2.Role= role∧sibling

• For every triple of nodesP1.p, P2.p, P3.p in a relation example, with the same parentP, such
thatP2 follows P1, andP3 follows P2 in theP’s children list, add the following features:

– depth(P1.p)= depth∧Class(P1.Type)= type∧P1.Role= role∧depth(P2.p)= depth∧
Class(P2.Type)= type∧P2.Role= role∧depth(P3.p)= depth∧P3.Text= text∧P3.Role=
role∧siblings

– depth(P1.p)= depth∧Class(P1.Type)= type∧P1.Role= role∧depth(P2.p)= depth∧
P2.Text= text∧P2.Role= role∧depth(P3.p)= depth∧Class(P3.Type)= Type∧P3.Role=
role∧siblings

– depth(P1.p)= depth∧P1.Text= text∧P1.Role= role∧depth(P2.p)= depth∧Class(P2.Type)=
type∧P2.Role= role∧depth(P3.p)= depth∧Class(P3.Type)= type∧P3.Role= role∧
siblings

References

S. Abney. Parsing by chunks. In Robert Berwick, Steven Abney, and Carol Tenny, editors,Principle-
based parsing. Kluwer Academic Publishers, 1990.

C. Aone, L. Halverson, T. Hampton, and M. Ramos-Santacruz. SRA: Description of the IE2 system
used for MUC-7. InProceedings of MUC-7, 1998.

1103

ZELENKO, AONE, AND RICHARDELLA

C. Aone and M. Ramos-Santacruz. REES: A large-scale relation and event extraction system. In
Proceedings of the 6th Applied Natural Language Processing Conference, 2000.

A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. A maximum entropy approach to natural
language processing.Computational Linguistics, 22(1):39–71, 1996.

D. M. Bikel, R. Schwartz, and R. M. Weischedel. An algorithm that learns what’s in a name.
Machine Learning, 34(1-3):211–231, 1999.

M. Collins. New ranking algorithms for parsing and tagging: Kernels over discrete structures, and
the voted perceptron. InProceedings of 40th Conference of the Association for Computational
Linguistics, 2002.

M. Collins and N. Duffy. Convolution kernels for natural language. InProceedings of NIPS-2001,
2001.

C. Cortes and V. Vapnik. Support-vector networks.Machine Learning, 20(3):273–297, 1995.

N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines (and Other Kernel-
Based Learning Methods).Cambridge University Press, 2000.

R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. John Wiley, New York, 1973.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.Biological Seqience Analysis. Cambridge Univer-
sity Press, 1998.

D. Freitag and A. McCallum. Information extraction with HMM structures learned by stochastic
optimization. InProceedings of the 7th Conference on Artificial Intelligence (AAAI-00) and of the
12th Conference on Innovative Applications of Artificial Intelligence (IAAI-00), pages 584–589,
Menlo Park, CA, July 30– 3 2000. AAAI Press.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.Machine
Learning, 37(3):277–296, 1999.

T. Furey, N. Cristianini, N. Duffy, D. Bednarski, M. Schummer, and D. Haussler. Support vec-
tor machine classification and validation of cancer tissue samples using microarray expression.
Bioinformatics, 16, 2000.

L. Goldfarb. A new approach to pattern recognition. InProgress in pattern recognition 2. North-
Holland, 1985.

T. Graepel, R. Herbrich, and K. Obermayer. Classification on pairwise proximity data. InAdvances
in Neural Information Processing Systems 11, 1999.

D. Haussler. Convolution kernels on discrete structures, 1999. Technical Report UCS-CRL-99-10,
1999.

R. A. Horn and C. A. Johnson.Matrix Analysis. Cambridge University press, Cambridge, 1985.

F. Jelinek.Statistical Methods for Speech Recognition. The MIT Press, Cambridge, Massachusetts,
1997.

1104

KERNEL METHODS FORRELATION EXTRACTION

T. Joachims. Text categorization with support vector machines: learning with many relevant fea-
tures.European Conf. Mach. Learning, ECML98, April 1998.

T. Joachims.Learning Text Classifiers with Support Vector Machines. Kluwer Academic Publishers,
Dordrecht, NL, 2002.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. InProc. 18th International Conf. on Machine Learning,
pages 282–289. Morgan Kaufmann, San Francisco, CA, 2001.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285, 1987.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and Chris Watkins. Text classification using
string kernels.Journal of Machine Learning Research, 2002.

A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extrac-
tion and segmentation. InProc. 17th International Conf. on Machine Learning, pages 591–598.
Morgan Kaufmann, San Francisco, CA, 2000.

S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, and R. Weischedel. Algorithms
that learn to extract information - BBN: Description of the SIFT system as used for MUC-7. In
Proceedings of MUC-7, 1998.

M. Munoz, V. Punyakanok, D. Roth, and D. Zimak. A learning approach to shallow parsing. Tech-
nical Report 2087, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1999.

National Institute of Standars and Technology.Proceedings of the 6th Message Undertanding Con-
ference (MUC-7), 1998.

E. Pekalska, P. Paclik, and R. Duin. A generalized kernel approach to dissimilarity-based classifi-
cation. Journal of Machine Learning Research, 2, 2001.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 1990.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the theory of brain mechanisms.
Spartan Books, Washington D.C., 1962.

D. Roth. Learning in natural language. In Dean Thomas, editor,Proceedings of the 16th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-99-Vol2), pages 898–904, S.F., July
31–August 6 1999. Morgan Kaufmann Publishers.

D. Roth and W. Yih. Relational learning via propositional algorithms: An information extraction
case study. In Bernhard Nebel, editor,Proceedings of the seventeenth International Conference
on Artificial Intelligence (IJCAI-01), pages 1257–1263, San Francisco, CA, August 4–10 2001.
Morgan Kaufmann Publishers, Inc.

D. Sankoff and J. Kruskal, editors.Time Warps, String Edits, and Macromolecules. CSLI Pulica-
tions, 1999.

1105

ZELENKO, AONE, AND RICHARDELLA

C. J. van Rijsbergen.Information Retrieval. Butterworths, 1979.

V. Vapnik. Statistical Learning Theory.John Wiley, 1998.

C. Watkins. Dynamic alignment kernels. Technical report, Department of Computer Science Royal
Holloway, University of London, 1999.

1106

