
Statistical Parsing with a Context-free Grammar and Word
Statistics �

Eugene Charniak
Department of Computer Science, Brown University

ec@cs.brown.edu

Abstract

We describe a parsing system based upon a language
model for English that is, in turn, based upon assign-
ing probabilities to possible parses for a sentence. This
model is used in a parsing system by �nding the parse
for the sentence with the highest probability. This sys-
tem outperforms previous schemes. As this is the third
in a series of parsers by di�erent authors that are simi-
lar enough to invite detailed comparisons but di�erent
enough to give rise to di�erent levels of performance,
we also report on some experiments designed to iden-
tify what aspects of these systems best explain their
relative performance.

Introduction

We present a statistical parser that induces its gram-
mar and probabilities from a hand-parsed corpus (a
tree-bank). Parsers induced from corpora are of inter-
est both as simply exercises in machine learning and
also because they are often the best parsers obtainable
by any method. That is, if one desires a parser that
produces trees in the tree-bank style and that assigns
some parse to all sentences thrown at it, then parsers
induced from tree-bank data are currently the best.
Naturally there are also drawbacks. Creating the

requisite training corpus, or tree-bank, is a Herculean
task, so there are not many to choose from. (In this
paper we use the Penn Wall Street Journal Treebank
[6].) Thus the variety of parse types generated by such
systems is limited.
At the same time, the dearth of training corpora

has at least one positive e�ect. Several systems now
exist to induce parsers from this data and it is pos-
sible to make detailed comparisons of these systems,
secure in the knowledge that all of them were designed
to start from the same data and accomplish the same
task. Thus an unusually large portion of this paper
is devoted to the comparison of our parser to previous

�This research was supported in part by NSF grant
IRI-9319516 and by ONR grant N0014-96-1{0549. Copy-
right c
1997, American Association for Arti�cial Intelli-
gence (www.aaai.org). All rights reserved.

Corporate pro�ts rose .

adj:corporate n:pro�ts v:rose

fpunc:.np:pro�ts vp:rose

s:rose

Figure 1: Parse of a simple sentence

work, in which we attempt to trace performance di�er-
ences to particular decisions made in the construction
of these parsing systems.

The Probabilistic Model

The system we present here is probabilistic in that it
returns the parse � of a sentence s that maximizes
p(� j s). More formally, we want our parser to return
P(s) where

P(s) = argmax
�

p(�; s)

p(s)
= argmax

�
p(�; s) (1)

Thus the parser operates by assigning probabilities
p(�; s) to the sentence s under all its possible parses
� (or at least all the parses it constructs) and then
choosing the parse for which p(�; s) is highest.
To illustrate how our model assigns a probability

to a sentence under a given parse, consider the sen-
tence \Corporate pro�ts rose." under the parse shown
in Figure 1. We can think of a parse as a bag of
context-free grammar rules specifying how each parse
constituent is expanded. Indeed, this is exactly how
our system considers it, since it uses a context-free
grammar and �nds a set of (we hope) high-probability
parses for the sentence. In what follows we pretend
that the probabilitymodel is applied separately to each
possible parse. In actuality this is too ine�cient; once
the set of parses has been found their probabilities are
determined in one bottom-up pass.
Returning to Figure 1, at each non-terminal node

we note the type of node (e.g., a noun-phrase, np) and



the head of the constituent (its most important lexi-
cal item). For example, the head of an np is the main
noun, the head of a vp is the main verb, and the head
of an s is the head of the sentence's vp. Formally,
the head is assigned by a deterministic function of the
grammar rule used to make up the constituent. Since
heads of constituents are often speci�ed as heads of
sub-constituents (e.g., the head of the s is the head of
the vp), heads are determined bottom up. Note that
if a constituent can be created using several di�erent
rules, it may have several heads | but only one for
any particular parse of the sentence. We are concerned
with the constituent heads because of the common lin-
guistic intuition that the forms of a constituent and
its subconstituents are determined more by the con-
stituent's head than any other of its lexical items.
Given the heads for each constituent, it is possible to

determine the probability of all parses of a sentence in
either a top-down or a bottom-up fashion. Bottom-up
is more e�cient and is used in the program. Top-down
is more intuitive, and we use that method here.
Suppose that we have worked our way top down and

are now about to determine the probability of a con-
stituent, say the np \Corporate pro�ts." This proceeds
by �rst determining the probability of its head, then
the probability of the form of the constituent given
the head, and �nally recursing to �nd the probabili-
ties of sub-constituents. Consider the �rst of these |
computing the probability of the head s given all the
information previously established about the sentence.
We assume that s is dependent only on its type t, the
type of the parent constituent l, and the head of the
parent constituent h. Thus we use p(s j h; t; l). For
the head \pro�ts" of the np \Corporate pro�ts" this
would be: p(pro�ts j rose; np; s). That is, we compute
the probability that a np is headed by \pro�ts" given
that it is a np and that the constituent above it is an
s headed by the lexical item \rose."
This is only an approximation of the true dependen-

cies, but it is also already so speci�c a probability that
we have no real chance of obtaining the data empiri-
cally. Thus we approximate p(s j h; t; l) as follows:

p(s j h; t; l) = �1(e)p̂(s j h; t; l) (2)

+�2(e)p̂(s j ch; t; l)

+�3(e)p̂(s j t; l) + �4(e)p̂(s j t)

Here and in what follows p̂ denotes a distribution ob-
tained empirically from the training data. Equation
2 can thus be characterized as a smoothing equation
employing (to a �rst approximation) the deleted in-
terpolation method for smoothing. Equation 2 di�ers
from standard deleted interpolation in how the inter-
polation parameters �i(e) are computed. The e here is
an estimate, given the amount of training data used, of
how often one would expect the particular concurrence
of events, e.g., given the amount of training data used,
how many times we should see \pro�ts" as the head
of an np under an s headed by \rose." Our method is

described in [2] and is not discussed further here.
The other aspect of Equation 2 that is not standard

deleted interpolation is the term p̂(s j ch; t; l). The idea
here is to cluster the heads h according to how they
behave in p̂(s j h; t; l) and then compute the probability
of s based not on the head of the parent, h, but on h's
cluster ch. We do not describe the clustering method
here except to note that it uses a scheme something
like that in [7].
To give some idea of how Equation 2 works in prac-

tice, we give here the values of the various empirical
distributions used therein when estimating the prob-
ability of \pro�ts" given \rose" p(prf j rose; np; s) and
of \corporate" given \pro�ts" p(crp j prf; adj; np).

p(prf j rose; np; s) p(crp j prf; adj; np)
p̂(s j h; t; l) 0 0.2449
p̂(s j ch; t; l) 0.00352223 0.0149821
p̂(s j t; l) 0.0006274 0.00533
p̂(s j t) 0.000556527 0.004179

For example, the probability of \pro�ts" given only
that it is the head of a np is .00056. If we add the con-
ditioning information that it is under an s node (which
almost always means the np is the subject of the sen-
tence), the probability is slightly higher. If we add the
fact that the main verb is \rose" the observed proba-
bility is zero, indicating that the training corpus did
not have a sentence with \pro�ts" as the subject of
\rose." On the other hand, if we consider the cluster
of verbs similar to \rose," \pro�ts" was a reasonably
common subject, with a relatively high probability of
.0035. The various probabilities for \corporate" are
even more orderly | as we add more conditioning in-
formation, the observed probability is always higher.
Now we turn to the second major probability in our

model, the probability of the form of the constituent
given its head, or more formally, the probability that
a constituent c is expanded using the grammar rule r
given that c is of type t, is headed by h, and has parent
of type l, p(r j h; t; l). We smooth this probability using
deleted interpolation with the formula

p(r j h; t; l) = �1(e)p̂(r j h; t; l) (3)

+�2(e)p̂(r j h; t) + �3(e)p̂(r j ch; t)

+�4(e)p̂(r j t; l) + �5(e)p̂(r j t)

As an example of how this works in practice, consider
the probability of the grammar rule np ! adj plural-n
(as used in the np \corporate pro�ts") and how it varies
depending on the conditioning events:

p̂(r j h; t; l) p̂(r j h; t) p̂(r j ch; t) p̂(r j t; l) p̂(r j t)
0.1707 0.1875 0.1192 0.0176 0.0255

Because this is a relatively common example, we see
that with two small exceptions the more precise the
conditioning events, the higher the probability.



The Algorithm

We now consider in more detail how the probability
model just described is turned into a parser.
Before parsing we train the parser using the pre-

parsed training corpus. First we read a context-free
grammar (a tree-bank grammar) o� the corpus, as de-
scribed in [3]. We then collect the statistics used to
compute the empirically observed probability distribu-
tions needed for Equations 2 and 3.
We parse a new (test) sentence s by �rst obtaining

a set of parses using relatively standard context-free
chart-parsing technology. No attempt is made to �nd
all possible parses for s. Rather, techniques described
in [1] are used to select constituents that promise to
contribute to the most probable parses, where parse
probability is measured according to the simple proba-
bilistic context-free grammar distribution p(r j t). Be-
cause this is not the o�cial distribution described by
Equations 2 and 3, we cannot just �nd the most proba-
ble parse according to this distribution, but the scheme
does allow us to ignore improbable parses. The result-
ing chart contains the constituents along with informa-
tion on how they combine to form parses.
We next compute for each constituent in the chart

the probability of the constituent given the full distri-
butions of Equations 2 and 3.1 The parser then pulls
out the Viterbi parse (the parse with the overall high-
est probability) according to the full distribution as its
choice for the parse of the sentence. In testing this is
compared to the tree-bank parse as described in the
next section.
In one set of tests we attempted to assess the util-

ity of unsupervised training so we used the parser just
outlined to parse about 30 million words of unparsed
Wall Street Journal text. We treated the Viterbi parses
returned by the parser as \correct" and collected sta-
tistical data from them. This data was combined with
that obtained from the original parsed training data to
create new versions of the empirical distributions used
in Equations 2 and 3. This version also used class in-
formation about the attachment points of pps. The
e�ect of this modi�cation is small (about .1% average
precision and recall) and discussion is omitted here.

Results

We trained our parser on sections 02-21 (about one mil-
lion words) of the Penn Wall Street Journal Treebank
and tested the parser on section 23 (50,000 words).
Preliminary testing was done on section 24, to avoid
repeated testing of section 23 with the risk of uncon-

1For e�ciency we �rst reduce the number of constituents
by computing p(c j s) and removing from consideration any
c for which this is less than .002. The equations for this
are reasonably standard. Again, this is according to the
distribution p(r j t). The ability to do this is the reason we
�rst compute a set of parses and only later apply the full
probability model to them.

sciously �tting the model to that test sample. This ar-
rangement was chosen because it is exactly what was
used in [4] and [5]. The next section compares our
results to theirs.

After training we parsed the testing corpus using
�ve versions of our system. In each case the program
pulled out the most probable parse according to the
probability model under consideration. The models
for which we tested the system are: PCFG (no statis-
tics other than the probabilities associated with each
probabilistic context-free rule p(r j t)),Minimal (adds
p̂(r j h; t; l) to the probability mix),No Classes (uses
all of the probabilities in Equations 2 and 3 except
p̂(r j ch; t; l) and p̂(s j ch; t; l)), Basic (uses Equations
2 and 3) and Full (the basic model plus statistics based
on unsupervised learning on about 30 million words of
Wall Street Journal text).
We give results according to seven �gures of merit:

LR (labeled recall | the number of correct non-
terminal labeled constituents divided by the number
of such constituents in the tree-bank version) LR2
(LR, but using the slightly idiosyncratic de�nition of
correctness used in [4]), LP (labeled precision | the
number of correct non-terminal labeled constituents di-
vided by the number of such constituents produced by
the parser), LP2 (LP, but using the de�nition of cor-
rectness from [4]), CB (the average number of cross-
brackets per sentence), 0CB (percentage of sentences
with zero cross-brackets), and 2CB (percentage of sen-
tences with � 2 cross-brackets).
A non-terminal labeled constituent produced by the

parser is considered correct if there exists a constituent
in the tree-bank version with (1) the same starting
point, (2) the same ending point, and (3) the same la-
bel (e.g., vp). To allow better comparison to previous
work, we also give results using the slightly di�erent
de�nition of correctness used by Collins and Magerman
(see LP2 and LR2). This di�ers from the standard def-
inition in that (a) the non-terminal labels advp and prt
are considered the same and (b) mistakes in position
that only put punctuation in the wrong constituent are
not considered mistakes. Since anything that is correct
according to the traditional measure is also correct ac-
cording to this less obvious one, we would expect the
LP2 and LR2 to be slightly higher than LP and LR. As
in previous work, we give our results for all sentences
of length � 40 and also those of length � 100.
The results are shown in Figure 2. In the next sec-

tion we compare these results to those achieved by pre-
vious systems. For now we simply note a few points.
First, most of this data is as one would have expected.
Restricting consideration to sentences of length � 40
improves performance, though since almost all the sen-
tences are in this length category, the di�erence is not
large. Second, as we give the system more information
its performance improves. Third, the di�erences be-
tween the two labeled constituent precision measures
(LP and LP2) and those for labeled constituent recall



LR LR2 LP LP2 CB 0CB 2CB
� 40 words (2245 sentences)

PCFG 71.2 71.7 75.3 75.8 2.03 39.5 68.1
Minimal 82.9 83.4 83.6 84.1 1.40 53.2 79.0
No Cls 86.2 86.8 85.8 86.4 1.14 59.9 83.4
Basic 86.3 86.8 86.6 87.1 1.09 60.7 84.0
Full 86.9 87.5 86.8 87.4 1.00 62.1 86.1

� 100 words (2416 sentences)
PCFG 70.1 70.6 74.3 74.8 2.37 37.2 64.5
Minimal 82.0 82.5 82.6 83.1 1.68 50.6 75.7
No Cls 85.4 86.0 84.9 85.5 1.37 57.2 80.6
Basic 85.5 86.0 85.6 86.2 1.32 57.8 81.1
Full 86.1 86.7 86.0 86.6 1.20 59.5 83.2

Figure 2: Results for several versions of the parsing
model

(LR and LR2) are small and almost unvarying, always
between .5 and .6%. Fourth, all of the performance
measures tell pretty much the same story. That is,
they all go up and down together and with only one or
two exceptions they go up by the same relative amount.
One aspect of this data might not have been antici-

pated. It is clear that adding a little bit of information
(the \minimal" system) improves performance quite a
bit over a pure PCFG, and that all additions over and
above are much less signi�cant. For example, consider
the sequence of values for (lp2 + lr2)/2:

PCFG Minimal No Classes Basic Full
73.75 83.75 86.6 86.95 87.45

We can see that grouping words into classes for pur-
poses of smoothing adds relatively little (.35%), as do
the more heroic methods such as unsupervised learning
on 30 million words of text (.5%). This seems to sug-
gest that if our goal is to get, say, 95% average labeled
precision and recall, further incremental improvements
on this basic scheme may not get us there.

Previous Work

While the quantity of work on English parsing is huge,
two prior pieces of work are su�ciently close to that
described here that it behooves us to concentrate on
that work at the expense of all the rest. In particu-
lar, we designed our experiments to conform exactly
to those performed on two previous statistical parsing
systems that also used the Penn Wall Street Journal
Treebank to train parsers, those of Magerman [5] and
Collins [4]. Thus our training and testing data are ex-
actly the same sets of sentences used in this previous
work, as are the testing measurements. In this section
we describe these earlier parsers, and then describe ex-
periments designed to shed light on the performance
di�erences among the three systems.
The three systems have much in common. In all

cases the program starts with relatively little knowl-
edge of English and gathers the statistics it needs from

the training corpus. In each case the system has a pre-
de�ned notion of the lexical head of a phrase and uses
this information in its statistics. Furthermore, all three
systems seem to restrict head information to two levels
| i.e., they have statistics that take into consideration
the head of a constituent and the head of its parent,
but not the head of the grandparent. Finally, all three
systems pick as the correct parse the parse with the
highest probability according to the smoothed proba-
bility distribution they de�ne.
Before discussing the di�erences among the three

systems, let us �rst note their performance:

LR2 LP2 CB 0 CB 2CB
� 40 words (2245 sentences)

Magerman 84.6 84.9 1.26 56.6 81.4
Collins 85.8 86.3 1.14 59.9 83.6
Charniak 87.5 87.4 1.0 62.1 86.1

� 100 words (2416 sentences)
Magerman 84.0 84.3 1.46 54.0 78.8
Collins 85.3 85.7 1.32 57.2 80.8
Charniak 86.7 86.6 1.20 59.5 83.2

It seems fair to say that no matter what measure one
considers, the three systems are at roughly the same
level of performance, though clearly later systems work
better than earlier ones and the 18% error reduction
of our system over Magerman's is not negligible.
We now consider the di�erences among the three sys-

tems, with particular emphasis on teasing out which
of them might be responsible for the di�erent levels of
performance. The most obvious di�erences are: (1)
What overall probability is calculated? (2) How is
part-of-speech tagging done? (3) To what degree does
the system use an explicit grammar? (4) What statis-
tics are gathered? (5) How are the statistics smoothed?
and (6) Was unsupervised training used? The results
in Figure 2 show that unsupervised training accounts
for about .4% of the the di�erence between the per-
formance of our system and the other two. However,
the results there clearly indicate that there must be
other di�erences as well, since even without unsuper-
vised training our system outperforms the earlier ones.
In the remainder of this section we look at the other

di�erences. We argue that of all of them, those that
have the most impact on performance are statistics and
smoothing, with statistics being the most important
and smoothing important only insofar as it a�ects the
statistics gathered.
As noted above, the system described here computes

p(s; �). Both Magerman and Collins, however, com-
pute p(� j s). The statistic we compute is, of course,
more general than that used by Magerman and Collins,
in that given p(s; �) one can easily compute p(� j s),
but not vice versa. The di�erence in statistic could be
important if one were going to attach these parsing sys-
tem to a speech- or character-recognition system and
use the parser as a language model. Our statistical cal-
culations could compute the overall probability of the
sentence, the statistic computed by a language model,



whereas the other two could not. On the other hand,
as long as the only intended use is parsing, this di�er-
ence should have no e�ect since in all cases one picks
as the best parse that with the highest probability for
the sentence.

If we turn to part-of-speech tagging, the di�erences
are perhaps more apparent than real. Our system has
no explicit tagging step. If a word could be more than
one part of speech, the system considers all of them
and the \correct" tag is simply the one that appears in
the \correct" parse. Magerman has an explicit tagging
step, but his system stores all possible taggings along
with their probabilities and considers all of them when
deciding on the best parse. Thus his system too de�nes
the correct tag as the one used in the correct parse.
Collins describes his system as having a distinct tag-
ging phase producing a single tag that is used during
the rest of the parse. This would be a real distinction.
However, the version of his system that worked best
(and produced the results reported above) gave up on
this and instead moved to a scheme more like Mager-
man's, with an explicit tagging phase, but one in which
all probabilities are kept and then integrated with all
the other probabilities a�ecting the overall probabil-
ity of the sentence. It is interesting to note that this
increased his system's average precision/recall by .6%,
suggesting that pretagging is a bad idea when deal-
ing with parsers performing at this level of accuracy.
At any rate, all three systems are e�ectively tagging
in pretty much the same way, and none of the perfor-
mance di�erences are likely to be the result of tagging.

The role of grammar is probably the most glaring
di�erence among the three schemes. In this regard our
system is the most traditional, in that it is the only
one of the three with an explicit grammar. Mager-
man's system has a subcomponent that for any pos-
sible constituent in a parse computes the probability
that this node (a) starts a new constituent, (b) ends
a constituent, (c) is in the middle of a constituent, or
(d) both starts and ends a (unary) constituent. This
scheme could be thought of as, in e�ect, making up
grammar rules on the 
y, but this is approximate at
best. Collins's scheme is even more radical. Included
in his probability mix is the probability that a phrase
headed by lexical item s with part of speech t is di-
rectly under a phrase headed by h with non-terminal
label n. To get an idea of how far this statistic is from
a grammar, observe that it contains nothing requir-
ing constituents even to be continuous; Collins instead
adds this requirement to the algorithm that searches
for the best parse.

We suspect that our decision to use a formal gram-
mar has both advantages and disadvantages, and that
the net result is a wash. The advantages stem from
the �ner level of control available using a grammar.
For example, Collins in discussing of future improve-
ments notes the problem of valency | how particular
words get used in particular syntactic constructions.

A canonical example is how \give" can take both a di-
rect and indirect object, as in \Sue gave the boy the
pizza." Other verbs, like \put", or \eat," cannot. As
best we can tell, neither Collins nor Magerman can
represent such facts. Our system can because it has
the two probabilities p̂(vp ! verb np np j give) = .25
and p̂(vp ! verb np np j put) = 0.

Balanced against this, however, is the comparative
lack of coverage of the tree-bank grammar we use.
The standard assumption about tree-bank grammars
is that they lack coverage because many uncommon
grammar rules are not encountered in the particular
corpus used to create the grammar. As noted in [3],
this problem is not as bad as people expect, and the
tests therein showed that lack of coverage was not a sig-
ni�cant problem. However, in [3] parsing is done using
only tag sequence information, which, as the PCFG re-
sults in Figure 2 show, is a poor system. We estimate
that lack of coverage due to the use of a tree-bank
grammar lowers performance somewhere between .5%
and 1% in both precision and recall. While this is not
much in a program with 74% precision and recall, it
looms much larger when the program's performance is
87.4% and only 1% better than its competitors. Since
the use of a tree-bank grammar has both bene�ts and
costs, we expect that overall it comes out neutral.

This leaves two important di�erences among the sys-
tems, the statistics used and smoothing. We combine
these two because Magerman's system uses a particular
kind of smoothing that has a signi�cant e�ect on the
statistics. Magerman's system does not use individual
statistics like those combined in our Equations 2 and 3,
but rather a decision-tree scheme for smoothing. For
example, suppose you want to label a particular non-
terminal node. Rather than directly computing the
probability of a particular label given the exact local
context, the data for which is inevitably quite sparse,
his system �nds which questions about the context give
the most information about the decision and then fash-
ions a decision tree around these questions. At the
leaf nodes of the tree one then �nds a probability dis-
tribution over the possible answers. In the case of a
decision tree for labeling non-terminals, the leaf nodes
would specify the probability of all possible labels given
the set of questions and answers that lead to that leaf
node. Note that each question in the decision tree is
binary, and thus questions about individual words are
recast as questions about classes of words. Naturally,
the decision tree stops long before the questions com-
pletely de�ne the context in order to get the required
smoothing. Given the number of possible words in each
context, it is plausible to assume that the decision-tree
questions hardly ever de�ne the words completely, but
rather depend on classes of words.

Collins's system uses raw word statistics and some-
thing quite similar to deleted interpolation, much like
our Equations 2 and 3. On the other hand, in direct op-
position to Magerman, he does not use classes of words.



Thus Collins uses nothing like the terms p̂(s j ch; t; l)
and p̂(r j ch; t; l) in our Equations 2 and 3 respectively.
Also, Collins never conditions an attachment decision
on a node above those being attached. Thus he has
nothing corresponding to the probability p̂(r j h; t; l),
where l is the the label of the node above that being
expanded by r.
We have gone into this level of detail about the

probabilities used by the three systems because we be-
lieve that these are the major source of the perfor-
mance di�erences observed. To test this conjecture we
performed an experiment to see how these di�erences
might a�ect �nal performance.
As indicated in Equations 2 and 3, probabilities of

rules and words are estimated by interpolating between
various submodels, some based upon classes, others
upon words. Given our belief that these probabili-
ties are the major di�erences, we hypothesize that one
could \simulate" the performance of the other two sys-
tems by modifying the equations in our system to bet-
ter re
ect the probabilitymix used in the other systems
and then see how it performs.
Thus we created two probability combinations

shown by listing the various empirical distributions
used in Equations 2 and 3 and indicating whether a
particular distribution is included or not in the Collins
model (indicated by a yes/no in the SimCollins col-
umn) and the Magerman model (SimMagerman):

SimCollins SimMagerman
p̂(s j h; t; l) Yes No
p̂(s j ch; t; l) No Yes
p̂(s j t; l) Yes No
p(s j t) Yes Yes
p̂(r j h; t; l) No No
p̂(r j h; t) Yes No
p̂(r j ch; t) No Yes
p̂(r j t; l) Yes Yes
p̂(r j t) Yes Yes

The basic idea is that we removed all statistics based
upon individual words in SimMagerman,while for Sim-
Collins we removed the statistics based upon word
classes, as well as p̂(r j h; t; l), which, as noted above,
does not correspond to anything that Collins collects.
So, for example, the table indicates that the Magerman
model does not include p̂(r j h; t), the probability of a
rule r given the speci�c head h and the non-terminal t
that is being expanded (since this is a statistic condi-
tioned upon a particular word).
The results of these experiments are:

LR2 LP2 CB 0CB 2CB
Magerman 84.6 84.9 1.26 56.6 81.4
SimMagerman 84.0 84.9 1.32 54.4 80.2
Collins 85.8 86.3 1.14 59.9 83.6
SimCollins 86.0 86.1 1.20 58.1 81.9

The rows show Magerman's results, the results of
our Magerman mix, Collins' results, and our Collins

mix. So SimMagerman has labeled precision/recall of
84.9/84.0, while the real system had 84.9/84.6.
The correspondences are not bad and support to

some degree our conjecture that the probability mix
is the major determinant of performance in the three
systems. They also suggest two other conclusions:

� All else equal, statistics on individual words out-
perform statistics based upon word classes, and this
may be su�cient to account for the di�erence in per-
formance between Collins and Magerman.

� When dealing with a training corpus of slightly un-
der a million words of parsed text, it is worth col-
lecting statistics on some more detailed con�gura-
tions (e.g., p̂(r j h; t; l)) as well as less detailed ones
(in particular, statistics based upon word classes).
These statistics probably account for the di�erence
in performance between Collins's system and that
described here.

Conclusion
We have presented a parser in which the grammar
and probabilistic parameters are induced from a tree
bank and have shown that its performance is superior
to previous parsers in this area. We also described
an experiment that suggests that its superiority stems
mainly from unsupervised learning plus the more ex-
tensive collection of statistics it uses, both more and
less detailed than those in previous systems.

References

1. Caraballo, S. and Charniak, E. Figures of
merit for best-�rst probabilistic chart parsing. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing . 1996, 127{132.

2. Charniak, E. Expected-Frequency Interpolation.
Department of Computer Science, Brown Univer-
sity, Technical Report CS96-37, 1996.

3. Charniak, E. Tree-bank grammars. In Proceed-
ings of the Thirteenth National Conference on Ar-
ti�cial Intelligence. AAAI Press/MIT Press, Menlo
Park, 1996, 1031{1036.

4. Collins, M. J. A new statistical parser based on
bigram lexical dependencies. In Proceedings of the
34th Annual Meeting of the ACL. 1996.

5. Magerman, D. M. Statistical decision-tree mod-
els for parsing. In Proceedings of the 33rd Annual
Meeting of the Association for Computational Lin-
guistics. 1995, 276{283.

6. Marcus, M. P., Santorini, B.
and Marcinkiewicz, M. A. Building a large an-
notated corpus of English: the Penn treebank. Com-
putational Linguistics 19 (1993), 313{330.

7. Pereira, F., Tishby, N. and Lee, L. Distribu-
tional clustering of English words. In Proceedings
of the Association for Computational Linguistics.
ACL, 1993.


