
C H A P T E R 2

Tracking with Non-Linear Dynamic
Models

In a linear dynamic model with linear measurements, there is always only one
peak in the posterior; very small non-linearities in dynamic models can lead to a
substantial number of peaks. As a result, it can be very difficult to represent the
posterior: it may be necessary to represent all the peaks to be able to compute
the mean or the covariance. We discuss these difficulties in section 2.1. There is
no general solution to this problem, but there is one mechanism which has proven
useful in some practical problems: we present this, rather technical, mechanism in
section 2.2, and show some applications in section 2.3.

It is quite typical of vision applications that there is some doubt about what
measurements to track — for example, a Kalman filter tracker following a series of
corner points may need to decide which image measurement corresponds to which
track. A poor solution to this problem may lead to apparently good tracks that
bear no relationship to the underlying motions. In section ??, we discuss how to
attach measurements to tracks.

2.1 NON-LINEAR DYNAMIC MODELS

If we can assume that noise is normally distributed, linear dynamic models are
reasonably easy to deal with, because a linear map takes a random variable with a
normal distribution to another random variable with a (different, but easily deter-
mined) normal distribution. We used this fact extensively in describing the Kalman
filter. Because we knew that everything was normal, we could do most calculations
by determining the mean and covariance of the relevant normal distribution, a
process that is often quite easy if one doesn’t try to do the integrals directly. Fur-
thermore, because a normal distribution is represented by its mean and covariance,
we knew what representation of the relevant distributions to maintain.

Many natural dynamic models are non-linear. There are two sources of prob-
lems. Firstly, in models where the dynamics have the form

xi ∼ N(f(xi−1, i); Σdi)

(where f is a non-linear function), both P (Xi|y0, . . . , yi−1) and P (Xi|y0, . . . , yi)
tend not to be normal. As section 2.1.1 will show, even quite innocuous looking
nonlinearities can lead to very strange distributions indeed. Secondly, P (Y i|Xi)
may not be Gaussian either. This phenomenon is quite common in vision; it leads to
difficulties that are still neither well understood nor easily dealt with (section 2.1.2).

Dealing with these phenomena is difficult. There is not, and will never be, a
completely general solution. It is always a good idea to see if a linear model can be
made to work. If one does not, there is the option of linearizing the model locally
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34 Chapter 2 Tracking with Non-Linear Dynamic Models

and assuming that everything is normal. This approach, known as the extended
Kalman filter tends to be unreliable in many applications. We describe it briefly
in the appendix, because it is useful on occasion. Finally, there is a method that
maintains a radically different representation of the relevant distributions from that
used by the Kalman filter. This method is described in section 2.2. The rest of this
section illustrates some of the difficulties presented by non-linear problems.

2.1.1 Unpleasant Properties of Non-Linear Dynamics

Non-linear models of state evolution can take unimodal distributions — like Gaus-
sians — and create multiple, well-separated modes, phenomena that are very poorly
modeled by a single Gaussian.

This effect is most easily understood by looking at an example. Let us have
the (apparently simple) dynamical model xi+1 = xi + 0.1 ∗ sinxi. Notice that
there is no random component to this dynamical model at all; now let us consider
P (X1), assuming that P (X0) is a Gaussian with very large variance (and so ba-
sically flat over a large range). The easiest way to think about this problem is
to consider what happens to various points; as figure 2.1 illustrates, points in the
range ((2k)π, (2k+ 2)π) move towards (2k+1)π. This means that probability must
collect at points (2k + 1)π (we ask you to provide some details in the exercises).

x

x
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FIGURE 2.1: The non-linear dynamics xi+1 = xi + 0.1 sin xi cause points n the range
((2k)π, (2k + 2)π) move towards (2k + 1)π. As the figure on the left illustrates, this is
because xi+0.1 sin xi is slightly smaller than xi for xi in the range ((2k + 1)π, (2k + 2)π)
and is slightly larger than xi for xi in the range ((2k)π, (2k + 1)π). In fact, the nonlinearity
of this function looks small — it is hardly visible in a scaled plot. However, as figure 2.2
shows, its effects are very significant.

This nonlinearity is apparently very small. Its effects are very substantial,
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however. One way to see what happens is to follow a large number of different
points through the dynamics for many steps. We choose a large collection of points
according to P (X0), and then apply our dynamic model to them. A histogram
of these points at each step provides a rough estimate of P (Xi), and we can plot
how they evolve, too; the result is illustrated in figure 2.2. As this figure shows,
P (Xi) very quickly looks like a set of narrow peaks, each with a different weight, at
(2k+1)π. Representing this distribution by reporting only its mean and covariance
involves a substantial degree of wishful thinking.
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FIGURE 2.2: On the top, we have plotted the time evolution of the state of a set of 100
points, for 100 steps of the process xi+1 = xi + 0.1 ∗ sin xi. Notice that the points all
contract rather quickly to (2k + 1)π, and stay there. We have joined up the tracks of the
points to make it clear how the state changes. On the bottom left we show a histogram
of the start states of the points we used; this is an approximation to P (x0). The histogram
on the bottom center shows a histogram of the point positions after 20 iterations; this
is an approximation to P (x20). The histogram on the bottom right shows a histogram
of the point positions after 70 iterations; this is an approximation to P (x70). Notice that
there are many important peaks to this histogram — it might be very unwise to model
P (xi) as a Gaussian.
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2.1.2 Difficulties with Likelihoods

There is another reason to believe that P (Xi|y0, . . . , yi) may be very complicated
in form. Even if the dynamics do not display the effects of section 2.1.1, the
likelihood function P (Y i|Xi) can create serious problems. For many important
cases we expect that the likelihood has multiple peaks. For example, consider
tracking people in video sequences. The state will predict the configuration of an
idealised human figure and P (Y i|Xi) will be computed by comparing predictions
about the image with the actual image, in some way. As the configuration of the
idealised human figure changes, it will cover sections of image that aren’t generated
by a person but look as though they are. For example, pretty much any coherent
long straight image region with parallel sides can look like a limb — this means
that as X changes to move the arm of the idealised figure from where it should be
to cover this region, the value of P (Y i|Xi) will go down, and then up again. The
likely result is a function P (Y i|Xi) with many peaks in it.

We will almost certainly need to keep track of more than one of these peaks
This is because the largest peak for any given frame may not always correspond to
the right peak. This ambiguity should resolve itself once we have seen some more
frames — we don’t expect to see many image assemblies that look like people,
move like people for many frames and yet aren’t actually people. However, until it
does, we may need to manage a representation of P (Xi|y0, . . . , yi) which contains
several different peaks. This presents considerable algorithmic difficulties — we
don’t know how many peaks there are, or where they are, and finding them in a
high dimensional space may be difficult. One partially successful approach is a form
of random search, known as particle filtering.

2.2 PARTICLE FILTERING

The main difficulty in tracking in the presence of complicated likelihood func-
tions or of non-linear dynamics is in maintaining a satisfactory representation of
P (xi|y0, . . . , yi). This representation should be handle multiple peaks in the dis-
tribution, and should be able to handle a high-dimensional state vector without
difficulty. There is no completely satisfactory general solution to this problem (and
there will never be). In this section, we discuss an approach that has been useful
in many applications.

2.2.1 Sampled Representations of Probability Distributions

A natural way to think about representations of probability distributions is to ask
what a probability distribution is for. Computing a representation of a probability
distributions is not our primary objective; we wish to represent a probability distri-
bution so that we can compute one or another expectation. For example, we might
wish to compute the expected state of an object given some information; we might
wish to compute the variance in the state, or the expected utility of shooting at
an object, etc. Probability distributions are devices for computing expectations —
thus, our representation should be one that gives us a decent prospect of computing
an expectation accurately. This means that there is a strong resonance between
questions of representing probability distributions and questions of efficient numer-
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ical integration.

Monte Carlo Integration using Importance Sampling. Assume that
we have a collection of N points ui, and a collection of weights wi. These points are
independent samples drawn from a probability distribution S(U ) — we call this the
sampling distribution; notice that we have broken with our usual convention
of writing any probability distribution with a P . We assume that S(U ) has a
probability density function s(U ).

The weights have the form wi = f(ui)/s(ui) for some function f . Now it is
a fact that

E

[
1

N

∑
i

g(ui)wi

]
=

∫
g(U )

f(U )

s(U)
s(U)dU

=

∫
g(U )f(U )dU

where the expectation is taken over the distribution on the collection of N inde-
pendent samples from S(U ) (you can prove this fact using the weak law of large
numbers). The variance of this estimate goes down as 1/N , and is independent of
the dimension of U .

Representing Distributions using Weighted Samples. If we think
about a distribution as a device for computing expectations — which are integrals
— we can obtain a representation of a distribution from the integration method de-
scribed above. This representation will consist of a set of weighted points. Assume
that f is non-negative, and

∫
f(U )dU exists and is finite. Then

f(X)∫
f(U )dU

is a probability density function representing the distribution of interest. We shall
write this probability density function as pf (X).

Now we have a collection of N points ui ∼ S(U ), and a collection of weights
wi = f(ui)/s(ui). Using this notation, we have that

E

[
1

N

∑
i

wi

]
=

∫
1
f(U)

s(U)
s(U)dU

=

∫
f(U )dU
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Algorithm 2.1: Obtaining a sampled representation of a probability distribution

Represent a probability distribution

pf(X) =
f(X)∫
f(U )dU

by a set of N weighted samples {
(ui, wi)

}
where ui ∼ s(u) and wi = f(ui)/s(ui).

Now this means that

Epf [g] =

∫
g(U )pf(U)dU

=

∫
g(U)f(U )dU∫
f(U )dU

= E

[∑
i g(ui)wi∑
iwi

]

≈

∑
i g(ui)wi∑
iwi

(where we have cancelled some N ’s). This means that we can in principle represent
a probability distribution by a set of weighted samples (algorithm 1). There are
some significant practical issues here, however. Before we explore these, we will
discuss how to perform various computations with sampled representations. We
have already shown how to compute an expectation (above, and algorithm 2).
There are two other important activities for tracking: marginalisation, and turning
a representation of a prior into a representation of a posterior.

Marginalising a Sampled Representation.

An attraction of sampled representations is that some computations are par-
ticularly easy. Marginalisation is a good and useful example. Assume we have a
sampled representation of pf (U) = pf ((M ,M)). We write U as two components
(M ,N) so that we can marginalise with respect to one of them.

Now assume that the sampled representation consists of a set of samples which
we can write as {

((mi,ni), wi)
}

In this representation, (mi,ni) ∼ s(M ,N) and wi = f((mi,ni))/s((mi,ni)).
We want a representation of the marginal pf(M) =

∫
pf (M ,N)dN . We

will use this marginal to estimate integrals, so we can derive the representation by
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Algorithm 2.2: Computing an expectation using a set of samples

We have a representation of a probability distribution

pf(X) =
f(X)∫
f(U )dU

by a set of weighted samples {
(ui, wi)

}
where ui ∼ s(u) and wi = f(ui)/s(ui). Then:

∫
g(U)pf (U)dU ≈

∑N
i=1 g(u

i)wi∑N
i=1w

i

thinking about integrals. In particular

∫
g(M)pf (M)dM =

∫
g(M)

∫
pf(M ,N)dNdM

=

∫ ∫
g(M )pf(M ,N)dNdM

≈

∑N
i=1 g(m

i)wi∑N
i=1 w

i

meaning that we can represent the marginal by dropping the ni components of the
sample (or ignoring them, which may be more efficient!).

Transforming a Sampled Representation of a Prior into a Sampled
Representation of a Posterior.

Appropriate manipulation of the weights of a sampled distribution yields rep-
resentations of other distributions. A particularly interesting case is representing a
posterior, given some measurement. Recall that

p(U |V = v0) =
p(V = v0|U)p(U )∫
p(V = v0|U)p(U)dU

=
1

K
p(V = v0|U)p(U)

where v0 is some measured value taken by the random variable V .

Assume we have a sampled representation of p(U), given by
{
(ui, wi)

}
. We
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Algorithm 2.3: Computing a representation of a marginal distribution

Assume we have a sampled representation of a distribution

pf(M ,N)

given by {
((mi,ni), wi)

}
Then {

(mi, wi)
}

is a representation of the marginal,∫
pf (M ,N)dN

can evaluate K fairly easily:

K =

∫
p(V = v0|U)p(U )dU

= E

[∑N
i=1 p(V = v0|u

i)wi∑N
i=1 w

i

]

≈

∑N
i=1 p(V = v0|u

i)wi∑N
i=1 w

i

Now let us consider the posterior.∫
g(U)p(U |V = v0)dU =

1

K

∫
g(U )p(V = v0|U)p(U)dU

≈
1

K

∑N
i=1 g(u

i)p(V = v0|ui)wi∑N
i=1 w

i

≈

∑N
i=1 g(u

i)p(V = v0|ui)wi∑N
i=1 p(V = v0|u

i)wi

(where we substituted the approximate expression for K in the last step). This
means that, if we take

{
(ui, wi)

}
and replace the weights with

w′i = p(V = v0|u
i)wi

the result
{
(ui, w′i)

}
is a representation of the posterior.

2.2.2 The Simplest Particle Filter

Assume that we have a sampled representation of P (Xi−1|y0, . . . , yi−1), and we
need to obtain a representation of P (Xi|y0, . . . , yi). We will follow the usual two
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Algorithm 2.4: Transforming a sampled representation of a prior into a sampled
representation of a posterior.

Assume we have a representation of p(U) as{
(ui, wi)

}

Assume we have an observation V = v0, and a likelihood model p(V |U). The
posterior, p(U |V = v0) is represented by

{
(ui, w′i)

}

where
w′i = p(V = v0|u

i)wi

steps of prediction and correction.
We can regard each sample as a possible state for the process at step X i−1.

We are going to obtain our representation by firstly representing

P (Xi,Xi−1|y0, . . . , yi−1)

and then marginalising out Xi−1 (which we know how to do). The result is the
prior for the next state, and, since we know how to get posteriors from priors, we
will obtain P (Xi|y0, . . . , yi).

Prediction. Now

p(Xi,Xi−1|y0, . . . , yi−1) = p(Xi|Xi−1)p(X i−1|y0, . . . , yi−1)

Write our representation of p(X i−1|y0, . . . , yi−1) as{
(uki−1, w

k
i−1)
}

(the superscripts index the samples for a given step i, and the subscript gives the
step).

Now for any given sample uki−1, we can obtain samples of p(Xi|Xi−1 = u
k
i−1)

fairly easily. This is because our dynamic model is

xi = f(xi−1) + ξi

where ξi ∼ N(0,Σmi). Thus, for any given sample u
k
i−1, we can generate samples

of p(Xi|Xi−1 = uki−1) as {
(f(uki−1) + ξ

l
i, 1)
}
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where ξli ∼ N(0,Σmi). The index l indicates that we might generate several such
samples for each uki−1.

We can now represent p(X i,Xi−1|y0, . . . , yi−1) as{
((f(uki−1) + ξ

l
i,u

k
i−1), w

k
i−1)
}

(notice that there are two free indexes here, k and l; by this we mean that, for each
sample indexed by k, there might be several different elements of the set, indexed
by l).

Because we can marginalise by dropping elements, the representation of

P (xi|y0, . . . , yi−1)

is given by {
(f(uki−1) + ξ

l
i, w

k
i−1)
}

(we walk through a proof in the exercises). We will reindex this collection of samples
— which may have more than N elements — and rewrite it as{

(uk,−i , w
k,−
i )
}

assuming that there are M elements. Just as in our discussion of Kalman filters,
the superscript ‘−’ indicates that this our representation of the i’th state before a
measurement has arrived. The superscript k gives the individual sample.

Correction. Correction is simple: we need to take the prediction, which
acts as a prior, and turn it into a posterior. We do this by choosing an appropriate
weight for each sample, following algorithm 4. The weight is

p(Y i = yi|Xi = s
k,−
i )w

k,−
i

(you should confirm this by comparing with algorithm 4). and our representation
of the posterior is {

(sk,−i , p(Y i = yi|Xi = s
k,−
i )w

k,−
i )
}

The Tracking Algorithm. In principle, we now have most of a tracking
algorithm — the only missing step is to explain where the samples of p(X0) came
from. The easiest thing to do here is to start with a diffuse prior of a special form
that is easily sampled — a Gaussian with large covariance might do it — and give
each of these samples a weight of 1. It is a good idea to implement this tracking
algorithm to see how it works (exercises!); you will notice that it works poorly
even on the simplest problems (figure 2.3 compares estimates from this algorithm
to exact expectations computed with a Kalman filter). The algorithm gives bad
estimates because most samples represent no more than wasted computation. In
jargon, the samples are called particles.

If you implement this algorithm, you will notice that weights get small very
fast; this isn’t obviously a problem, because the mean value of the weights is can-
celled in the division, so we could at each step divide the weights by their mean
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FIGURE 2.3: The simple particle filter behaves very poorly, as a result of a phenomenon
called sample impoverishment, which is rather like quantisation error. In this example,
we have a point on the line drifting on the line (i.e. xi ∼ N(xi−1, σ

2)). The measurements
are corrupted by additive Gaussian noise. In this case, we can get an exact representation
of the posterior using a Kalman filter. In the figure on the left, we compare a repre-
sentation obtained exactly using a Kalman filter with one computed from simple particle
filtering. We show the mean of the posterior as a point with a one standard deviation bar
(previously we used three standard deviations, but that would make these figures difficult
to interpret). The mean obtained using a Kalman filter is given as an x; the mean ob-
tained using a particle filter is given as an o; we have offset the standard deviation bars
from one another so as to make the phenomenon clear. Notice that the mean is poor, but
the standard deviation estimate is awful, and gets worse as the tracking proceeds. In par-
ticular, the standard deviation estimate woefully underestimates the standard deviation
— this could mislead a user into thinking the tracker was working and producing good
estimates, when in fact it is hopelessly confused. The figure on the right indicates what
is going wrong; we plot the tracks of ten particles, randomly selected from the 100 used.
Note that relatively few particles ever lie within one standard deviation of the mean of
the posterior; in turn, this means that our representation of P (xi+1|y0, . . . , y0) will tend
to consist of many particles with very low weight, and only one with a high weight. This
means that the density is represented very poorly, and the error propagates.

value. If you implement this step, you will notice that very quickly one weight
becomes close to one and all others are extremely small. It is a fact that, in the
simple particle filter, the variance of the weights cannot decrease with i (meaning
that, in general, it will increase and we will end up with one weight very much
larger than all others).

If the weights are small, our estimates of integrals are likely to be poor. In
particular, a sample with a small weight is positioned at a point where f(u) is much
smaller than p(u); in turn (unless we want to take an expectation of a function
which is very large at this point) this sample is likely to contribute relatively little
to the estimate of the integral.

Generally, the way to get accurate estimates of integrals is to have samples
that lie where the integral is likely to be large — we certainly don’t want to miss
these points. We are unlikely to want to take expectations of functions that vary
quickly, and so we would like our samples to lie where f(u) is large. In turn, this
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means that a sample whose weight w is small represents a waste of resources —
we’d rather replace it with another sample with a large weight. This means that
the effective number of samples is decreasing — some samples make no significant
contribution to the expectations we might compute, and should ideally be replaced
(figure 2.3 illustrates this important effect). In the following section, we describe
ways of maintaining the set of particles that lead to effective and useful particle
filters.

2.2.3 A Workable Particle Filter

Particles with very low weights are fairly easily dealt with — we will adjust the col-
lection of particles to emphasize those that appear to be most helpful in representing
the posterior. This will help us deal with another difficulty, too. In discussing the
simple particle filter, we did not discuss how many samples there were at each stage
— if, at the prediction stage, we drew several samples of P (Xi|Xi−1 = s

k,+
i−1) for

each sk,+i−1, the total pool of samples would grow as i got bigger. Ideally, we would
have a constant number of particles N . All this suggests that we need a method to
discard samples, ideally concentrating on discarding unhelpful samples. There are
a number of strategies that are popular.

Resampling the Prior. At each step i, we have a representation of

P (X i−1|y0, . . . , yi−1)

via weighted samples. This representation consists of N (possibly distinct) samples,
each with an associated weight. Now in a sampled representation, the frequency
with which samples appear can be traded off against the weight with which they
appear. For example, assume we have a sampled representation of P (U) consisting
of N pairs (sk, wk). Form a new set of samples consisting of a union of Nk copies
of (sk, 1), for each k. If

Nk∑
k Nk

= wk

this new set of samples is also a representation of P (U) (you should check this).
Furthermore, if we take a sampled representation of P (U) using N samples,

and draw N ′ elements from this set with replacement, uniformly and at random,
the result will be a representation of P (U), too (you should check this, too). This
suggests that we could (a) expand the sample set and then (b) subsample it to get
a new representation of P (U). This representation will tend to contain multiple
copies of samples that appeared with high weights in the original representation.

This procedure is equivalent to the rather simpler process of making N draws
with replacement from the original set of samples, using the weights wi as the
probability of drawing a sample. Each sample in the new set would have weight
1; the new set would predominantly contain samples that appeared in the old set
with large weights. This process of resampling might occur at every frame, or only
when the variance of the weights is too high.

Resampling Predictions.
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Algorithm 2.5: A practical particle filter resamples the posterior.

Initialization: Represent P (X0) by a set of N samples{
(sk,−0 , w

k,−
0 )
}

where
sk,−0 ∼ Ps(S) and w

k,−
0 = P (sk,−0 )/Ps(S = s

k,−
0 )

Ideally, P (X0) has a simple form and s
k,−
0 ∼ P (X0) and w

k,−
0 = 1.

Prediction: Represent P (Xi|y0, yi−1) by{
(sk,−i , w

k,−
i )
}

where
sk,−i = f(sk,+i−1) + ξ

k
i and w

k,−
i = wk,+i−1 and ξ

k
i ∼ N(0,Σdi)

Correction: Represent P (Xi|y0, yi) by{
(sk,+i , w

k,+
i )
}

where
sk,+i = sk,−i and wk,+i = P (Y i = yi|Xi = s

k,−
i )w

k,−
i

Resampling: Normalise the weights so that
∑
i w
k,+
i = 1 and compute the

variance of the normalised weights. If this variance exceeds some threshold,
then construct a new set of samples by drawing, with replacement, N samples
from the old set, using the weights as the probability that a sample will be drawn.
The weight of each sample is now 1/N .

A slightly different procedure is to generate several samples of P (Xi|X i−1 =
sk,+i−1) for each s

k,+
i−1, makeN draws, with replacement, from this set using the weights

wi as the probability of drawing a sample, to get N particles. Again, this process
will emphasize particles with larger weight over those with smaller weights.

The Consequences of Resampling.

Figure 2.4 illustrates the improvements that can be obtained by resampling.
Resampling is not a uniformly benign activity, however: it is possible — but unlikely
— to lose important particles as a result of resampling, and resampling can be
expensive computationally if there are many particles.
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Algorithm 2.6: An alternative practical particle filter.

Initialization: Represent P (X0) by a set of N samples{
(sk,−0 , w

k,−
0 )
}

where
sk,−0 ∼ Ps(S) and w

k,−
0 = P (sk,−0 )/Ps(S = s

k,−
0 )

Ideally, P (X0) has a simple form and s
k,−
0 ∼ P (X0) and w

k,−
0 = 1.

Prediction: Represent P (Xi|y0, yi−1) by{
(sk,−i , w

k,−
i )
}

where
sk,l,−i = f(sk,+i−1) + ξ

l
i and w

k,l,−
i = wk,+i−1

and
ξli ∼ N(0,Σdi)

and the free index l indicates that each sk,+i−1 generates M different values of

sk,l,−i . This means that there are now MN particles.
Correction: We reindex the set of MN samples by k. Represent P (Xi|y0, yi)
by {

(sk,+i , w
k,+
i )
}

where
sk,+i = sk,−i and wk,+i = P (Y i = yi|Xi = s

k,−
i )w

k,−
i

Resampling: As in algorithm 5.

2.2.4 If’s, And’s and But’s — Practical Issues in Building Particle Filters

Particle filters have been extremely successful in many practical applications in
vision, but can produce some nasty surprises. One important issue has to do with
the number of particles; while the expected value of an integral estimated with
a sampled representation is the true value of the integral, it may require a very
large number of particles before the variance of the estimator is low enough to be
acceptable. It is difficult to say how many particles will be required to produce
usable estimates. In practice, this problem is usually solved by experiment.

Unfortunately, these experiments may be misleading. You can (and should!)
think about a particle filter as a form of search — we have a series of estimates of
state, which we update using the dynamic model, and then compare to the data;
estimates which look as though they could have yielded the data are kept, and the
others are discarded. The difficulty is that we may miss good hypotheses. This
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FIGURE 2.4: Resampling hugely improves the behaviour of a particle filter. We now show
a resampled particle filter tracking a point drifting on the line (i.e. xi ∼ N(xi−1, σ

2)).
The measurements are corrupted by additive Gaussian noise, and are the same as for
figure 2.3. In the figure on the left, we compare an exact representation obtained using
a Kalman filter with one computed from simple particle filtering. We show the mean of
the posterior as a point with a one standard deviation bar. The mean obtained using
a Kalman filter is given as an ‘x’; the mean obtained using a particle filter is given as
an ‘o’; we have offset the standard deviation bars from one another so as to make the
phenomenon clear. Notice that estimates of both mean and standard deviation obtained
from the particle filter compare well with the exact values obtained from the Kalman filter.
The figure on the right indicates where this improvement came from; we plot the tracks
of ten particles, randomly selected from the 100 used. Because we are now resampling
the particles according to their weights, particles that tend to reflect the state rather well
usually reappear in the resampled set. This means that many particles lie within one
standard deviation of the mean of the posterior, and so the weights on the particles tend
to have much smaller variance, meaning the representation is more efficient.

could occur if, for example, the likelihood function had many narrow peaks. We
may end up with updated estimates of state that lie in some, but not all of these
peaks; this would result in good state hypotheses being missed. While this problem
can (just!) be caused to occur in one dimension, it is particularly serious in high
dimensions. This is because real likelihood functions can have many peaks, and
these peaks are easy to miss in high dimensional spaces. It is extremely difficult
to get good results from particle filters in spaces of dimension much greater than
about 10.

The problem can be significant in low dimensions, too — its significance de-
pends, essentially, on how good a prediction of the likelihood we can make. This
problem manifests itself in the best-known fashion when one uses a particle filter to
track people. Because there tend to be many image regions that are long, roughly
straight, and coherent, it is relatively easy to obtain many narrow peaks in the like-
lihood function — these correspond, essentially, to cases where the configuration
for which the likelihood is being evaluated has a segment lying over one of these
long, straight coherent image regions. While there are several tricks for addressing
this problem — all involve refining some form of search over the likelihood — there
is no standard solution yet.
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2.3 TRACKING PEOPLE WITH PARTICLE FILTERS

Tracking people is difficult. The first difficulty is that there is a great deal of state
to a human — there are many joint angles, etc. that may need to be represented.
The second difficulty is that it is currently very hard to find people in an image —
this means that it can be hard to initiate tracks. Most systems come with a rich
collection of constraints that must be true before they can be used. This is because
people have a large number of degrees of freedom: bits of the body move around,
we can change clothing, etc., which means it is quite difficult to predict appearance.

People are typically modelled as a collection of body segments, connected with
rigid transformations. These segments can be modelled as cylinders — in which
case, we can ignore the top and bottom of the cylinder and any variations in view,
and represent the cylinder as an image rectangle of fixed size — or as ellipsoids.
The state of the tracker is then given by the rigid body transformations connecting
these body segments (and perhaps, various velocities and accelerations associated
with them).

Both particle filters and (variants of) Kalman filters have been used to track
people. Each approach can be made to succeed, but neither is particularly robust.
There are two components to building a particle filter tracker: firstly, we need a
motion model and secondly, we need a likelihood model.

We can use either a strong motion model — which can be obtained by at-
taching markers to a model and using them to measure the way the model’s joint
angles change as a function of time — or a weak motion model — perhaps a drift
model. Strong motion models have some disadvantages: perhaps the individual we
are tracking moves in a funny way; and we will need different models for walking,
walking carrying a weight, jogging and running (say). The difficulty with a weak
motion model is that we are pretty much explicitly acknowledging that each frame
is a poor guide to the next.

Likelihood models are another source of difficulties, because of the complexity
of the relationship between the tracker’s state and the image. The likelihood func-
tion (P (image features|person present at given configuration)) tends to have many
local extrema. This is because the likelihood function is evaluated by, in essence,
rendering a person using the state of the tracker and then comparing this rendering
to the image. Assume that we know the configuration of the person in the previous
image; to assess the likelihood of a particular configuration in the current image,
we use the configuration to compute a correspondence between pixels in the current
image and in the previous image. The simplest likelihood function can be obtained
using the sum of squared differences between corresponding pixel values — this
assumes that clothing is rigid with respect to the human body, that pixel values
are independent given the configuration, and that there are no shading variations.
These are all extremely dubious assumptions.

Of course, we choose which aspects of an image to render and to compare; we
might use edge points instead of pixel values, to avoid problems with illumination.
Multiple extrema in the likelihood can be caused by: the presence of many extended
coherent regions, which look like body segments, in images; the presence of many
edge points unrelated to the person being tracked (this is a problem if we use edge
points in the comparison); changes in illumination; and changes in the appearance
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FIGURE 2.5: A typical likelihood computation identifies points in the image that pro-
vide evidence that a person is present. In one use of a particle filter for tracking people,
Deutscher, Blake and Reid look for two types of evidence: the first is boundary informa-
tion, and the second is “non-background” information. Boundary points are estimated
using an edge detector, and “non-background” points are obtained using background sub-
traction; the figure on the left illustrates these types of point. On the far left, the image;
center left, points near edges obtained using smoothed gradient estimates; near left,
points where there is motion, obtained using background subtraction. Now each particle
gives the state of the person, and so can be used to determine where each body segment lies
in an image; this means we can predict the boundaries of the segments and their interiors,
and compute a score based on the number of edge points near segment boundaries and
the number of “non-background” points inside projected segments ( near right shows
sample points that look for edges and far right shows sample points that look for moving
points). Figure from “Articulated Body Motion Capture by Annealed Particle Filtering,”
J. Deutscher, A. Blake and I. Reid, Proc. Computer Vision and Pattern Recognition 2000
c© 2000, IEEE

of body segments caused by clothing swinging on the body. The result is a tendency
for trackers to drift (see, for example, the conclusions in [Sidenbladh et al., 2000b];
the comments in [Yacoob and Davis, 2000]).

In all of the examples we show, the tracker must be started by hand. An
alternative to using a strong motion model is to use a weak motion model and rely
on the search component of particle filtering. The best example of this approach
is a device, due to Deutscher et al., known as an annealed particle filter (fig-
ure 2.6), which essentially searches for the global extremum through a sequence
of smoothed versions of the likelihood [Deutscher et al., 2000]. However, clutter
creates peaks that can require intractable numbers of particles. Furthermore, this
strategy requires a detailed search of a high dimensional domain (the number of
people being tracked times the number of parameters in the person model plus
some camera parameters).
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FIGURE 2.6: If a weak motion model is used to track a person with a particle filter,
the likelihood function can create serious problems. This is because the state is high-
dimensional, and there are many local peaks in the likelihood — even for a person on
a black background, as in these images. It is quite possible that none of our particles
are near the peaks, meaning that the filter’s representation becomes unreliable. One
way to deal with this is to search the likelihood by annealing it. This process creates a
series of increasingly smooth approximations to the likelihood, whose peaks lie close to
or on the peaks of the likelihood. We weight particles with a smoothed approximation,
then resample the particles according to their weights, allow them to drift, then weight
them with a less smooth approximation, etc. The result is a random search through the
likelihood that should turn up the main local minima. This yields a tracker that can
track people on simple backgrounds, but requires only very general motion models — the
tracker illustrated above models human motion as drift. Figure from “Articulated Body
Motion Capture by Annealed Particle Filtering,” J. Deutscher, A. Blake and I. Reid, Proc.
Computer Vision and Pattern Recognition 2000 c© 2000, IEEE

2.4 NOTES

Space has forced us to omit some topics, important in radar tracking and likely
to become important in vision. Firstly, the radar community is accustomed to
generating tracks automatically; this practice is not unknown in vision, but most
trackers are initialized by hand. Secondly, the radar community is accustomed to
tracking multiple targets, with multiple returns; this complicates data association
significantly, which is now seen as a weighted matching problem and dealt with using
one of the many exact algorithms for that problem. Thirdly, the radar community
is accustomed to dealing with tracking for objects that can switch dynamic model
— this leads to so-called IMM filters, where a series of filters with distinct dynamic
models propose different updates, and these proposals are weighted by evidence and
updated (for a good general summary of tracking practice in radar, see [Blackman
and Popoli, 1999]). There is a little work on this topic in the vision community, but
it tends to be somewhat difficult to do with a particle filter (actually, this means it
needs an inconvenient number of particles; you can do pretty much anything with
a particle filter, if you have enough particles).
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Topic What you must know

Sampled rep-
resentations

A probability distribution is a device for computing expectations,
which are integrals. A set of samples from one probability distribu-
tion can be weighted such that a weighted sum of function values
taken at the samples is a good estimate of the expectation of that
function with respect to some (possibly different) probability distri-
bution. Such a set of samples is called a sampled representation.

Particle filter-
ing

A collection of sample states is maintained so that the samples rep-
resent the posterior distribution. Typically, these states are prop-
agated forward in time according to the dynamics, compared with
observations, weighted according to the observation likelihood, and
then resampled to remove samples with low weights. The algorithm
should be seen as a randomised search of the likelihood, using the
prior as a proposal process. This approach useful and powerful if (a)
the state space is of low dimension and (b) the likelihood function is
not too complicated.

Applications
of particle
filters

Particle filters have been widely applied to tracking kinematic rep-
resentations of human figures. In this application, they have had
considerable success, but currently require manual initialisation; this
is a significant impediment to their adoption in practical applica-
tions.

Chapter summary for chapter 2: When object dynamics is not linear, the
posterior distributions encountered in tracking problems tend to have forms that
are difficult to represent. Particle filtering is an inference algorithm that is well
suited to tracking non-linear dynamics.

The Particle Filter

We have been able to provide only a brief overview of a subject that is currently
extremely active. We have deliberately phrased our discussion rather abstractly,
so as to bring out the issues that are most problematic, and to motivate a view
of particle filters as convenient approximations. Particle filters have surfaced in
a variety of forms in a variety of literatures. The statistics community, where
they originated, knows them as particle filters (e.g. [Kitagawa, 1987]; see also the
collection [Doucet et al., 2001]). In the AI community, the method is sometimes
called survival of the fittest [Kanazawa et al., 1995]. In the vision community, the
method is sometimes known as condensation [Isard and Blake, 1996; Blake and
Isard, 1996; Blake and Isard, 1998].

Particle filters have been the subject of a great deal of work in vision. Much
of the work attempts to sidestep the difficulties with likelihood functions that we
sketched in the particle filtering section (see, in particular, the annealing method
of [Deutscher et al., 2000] and the likelihood corrections of [Sullivan et al., 1999]).
Unfortunately, all uses of the particle filter have been relentlessly top-down — in
the sense that one updates an estimate of state and then computes some comparison
between an image and a rendering, which is asserted to be a likelihood. While this
strategy represents an effective end-run around data association, it means that we
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are committed to searching rather nasty likelihoods.

There is a strong analogy between particle filters and search. This can be used
to give some insight into what they do and where they work well. For example,
a high dimensional likelihood function with many peaks presents serious problems
to a particle filter. This is because there is no reason to believe that any of the
particles each step advances will find a peak. This is certainly not an intrinsic
property of the technique — which is just an algorithm — and is almost certainly
a major strategic error. The consequence of this error is that one can track almost
anything with a particle filter (as long as the dimension of the state space is small
enough) but it has to be initialized by hand. This particular ghost needs to be
exorcised from the party as soon as possible.

The exorcism will probably involve thinking about how to come up with clean
probabilistic models that (a) allow fast bottom-up inference and (b) don’t involve
tangling with likelihoods with as complex a form as those commonly used. We
expect an exciting struggle with this problem over the next few years.

Particle filters are an entirely general inference mechanism (meaning that
they can be used to attack complex inference problems uniting high level and low
level vision [Isard and Blake, 1998b; Isard and Blake, 1998a]). This should be
regarded as a sign that it can be very difficult to get them to work, because there
are inference problems that are, essentially, intractable. One source of difficulties
is the dimension of the state space — it is silly to believe that one can represent
the covariance of a high-dimensional distribution with a small number of particles,
unless the covariance is very strongly constrained. A particular problem is that it
can be quite hard to tell when a particle filter is working — obviously, if the tracker
has lost track, there is a problem, but the fact that the tracker seems to be keeping
track is not necessarily a guarantee that all is well. For example, the covariance
estimates may be poor; we need to ask for how long the tracker will keep track; etc.

One way to simplify this problem is to use tightly parametrised motionmodels.
This reduces the dimension of the state space in which we wish to track, but at the
cost of not being able to track some objects or of being compelled to choose which
model to use. This approach has been extremely successful in applications like
gesture recognition [Black and Jepson, 1998]; tracking moving people [Sidenbladh
et al., 2000a]; and classifying body movements [Rittscher and Blake, 1999]. A
tracker could track the state of its own platform, instead of tracking a moving
object [Dellaert et al., 1999].

There are other methods for maintaining approximations of densities. One
might, for example, use a mixture of Gaussians with a constant number of compo-
nents. It is rather natural to do data association by averaging, which will result in
the number of elements in the mixture going up at each step; one is then supposed
to cluster the elements and cull some components. We haven’t seen this method
used in vision circles yet.

Starting a People Tracker

Desiderata for a tracking application are:

• that tracks are initiated automatically;
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• that tracks can be discarded automatically, as necessary (this means that the
occasional erroneous track won’t affect the count of total objects);

• that the tracker can be shown to work robustly over long sequences of data.

We discussed relatively few of the many kinematic human trackers, because none
can meet these tests. It would be nice if this remark were obsolete by the time
this book reaches its readers, but we don’t think this will be the case (which is
why we made it!). Tracking people on a general background remains extremely
challenging; the difficulty is knowing how to initiate the track, which is hard because
the variations in the appearance of clothing mean that it is generally difficult to
know which pixels come from a person. Furthermore, the inference problem is very
difficult, because the conditional independence assumptions that simplify finding
people no longer apply — the position of the upper arm in frame n, say, depends
on both the position of the torso in frame n and the position of the upper arm in
frame n−1. It is possible to evade this difficulty in the first instance by assembling
multi-frame motion vectors [Song et al., 1999; Song et al., 2000], but these too have
unpleasant dependencies over time (the motion of the upper arm in frame n, etc.),
and the consequences of ignoring these dependencies are unknown.

Typically, current person trackers either initialize the tracker by hand, use
aggressively simplified backgrounds which have high contrast with the moving per-
son, or use background subtraction. These tricks are justified, because they make
it possible to study this (extremely important) problem, but they yield rather un-
convincing applications.

There is currently (mid 2001) no person tracker that represents the config-
uration of the body and can start automatically; all such trackers use manual
starting methods. One way to start such a tracker would be to find all possi-
ble people, and then track them. But finding people is difficult, too. No pub-
lished method can find clothed people in arbitrary configurations in complex im-
ages. There are three standard approaches to finding people described in the
literature. Firstly, the problem can be attacked by template matching (exam-
ples include [Oren et al., 1997], where upright pedestrians with arms hanging
at their side are detected by a template matcher; [Niyogi and Adelson, 1995;
Liu and Picard, 1996; Cutler and Davis, 2000], where walking is detected by the
simple periodic structure that it generates in a motion sequence; [Wren et al., 1995;
Haritaoglu et al., 2000], which rely on background subtraction — that is, a tem-
plate that describes “non-people”). Matching templates to people (rather than to
the background) is inappropriate if people are going to appear in multiple con-
figurations, because the number of templates required is too high. This moti-
vates the second approach, which is to find people by finding faces (sections ??
and ??, and [Poggio and Sung, 1995; Rowley et al., 1996a; Rowley et al., 1996b;
Rowley et al., 1998a; Rowley et al., 1998b; Sung and Poggio, 1998]). The approach
is most successful when frontal faces are visible.

The third approach is to use the classical technique of search over correspon-
dence (search over correspondences between point features is an important early
formulation of object recognition; the techniques we describe have roots in [Faugeras
and Hebert, 1986; Grimson and Lozano-Pérez, 1987; Thompson and Mundy, 1987;
Huttenlocher and Ullman, 1987]). In this approach, we search over correspondence
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between image configurations and object features. There are a variety of exam-
ples in the literature (for a variety of types of object; see, for example, [Huang
et al., 1997; Ullman, 1996]). Perona and collaborators find faces by searching for
correspondences between eyes, nose and mouth and image data, using a search
controlled by probabilistic considerations [Leung et al., 1995; Burl et al., 1995].
Unclad people are found by [Fleck et al., 1996; Forsyth and Fleck, 1999], using a
correspondence search between image segments and body segments, tested against
human kinematic constraints. A much improved version of this technique, which
learns the model from data, appears in [Ioffe and Forsyth, 1998].
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II APPENDIX: THE EXTENDED KALMAN FILTER, OR EKF

We consider non-linear dynamic models of the form

xi ∼ N(f(xi−1, i); Σdi)

Again, we will need to represent with

P (xi|y0, . . . , yi−1)

(for prediction) and
P (xi|y0, . . . , yi)

(for correction). We take the position that these distributions can be represented
by supplying a mean and a covariance. Typically, the representation works only
for distributions that look rather like normal distributions — a big peak at one
spot, and then a fast falloff. To obtain an extended Kalman filter, we linearize the
dynamics about the current operating point, and linearize the measurement model.
We do not derive the filter equations (it’s a dull exercise in Laplace’s approximation
to integrals), but simply present them in algorithm 7. We write the Jacobian of a
function g — this is the matrix whose l, m’th entry is

∂fl

∂xm

— as J (g), and when we want to show that it has been evaluated at some point
xj, we write J (g;xj).
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Algorithm 2.7: The extended Kalman filter maintains estimates of the mean and
covariance of the various distributions encountered while tracking a state variable of some

fixed dimension using the given non-linear dynamic model.

Dynamic Model:

xi ∼ N(f(xi−1, i),Σdi)

yi ∼ N(h(xi, i),Σmi)

Start Assumptions: x−0 and Σ
−
0 are known

Update Equations: Prediction

x−i = f(x
+
i−1)

Σ−i = Σdi + J (f ;x
+
i−1)

−TΣ+i−1J (f ;x
+
i−1)

−1

Update Equations: Correction

Ki = Σ
−
i J

T

h;x−i

[
J (h;x−i )Σ

−
i J (h;x

−
i )
T + Σmi

]−1

x+i = x
−
i +Ki

[
yi − h(x

−
i , i)
]

Σ+i =
[
Id −KiJ (h;x

−
i )
]
Σ−i


