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Wheel Alignment:

Camber, Caster, Toe-In, SAI, …



Camber: angle between axle and horizontal plane.

Toe: angle between projection of axle on horizontal plane and a per-
pendicular to thrust line.

Caster: angle in side elevation between steering axis and vertical.

SAI: angle in frontal elevation between steering axis and vertical.



Planar Target

Mounted Rigidly on Rim



CCD Cameras and LED Illumination



Determining Rolling Axis



Determining Steering Axis



Photogrammetric Problems:

• Interior Orientation (2D ↔ 3D)

• Exterior Orientation (3D ↔ 2D)

• Absolute Orientation (3D ↔ 3D)

• Relative Orientation (2D ↔ 2D)



Interior Orientation:

Principal Point + Principal Distance

Center of Projection: (uo, vo, f)



Exterior Orientation:

Rotation + Translation of Camera: R and t



Rigid body transformation:

rotation and translation —
of object coordinate system into camera coordinate system.


xcyc
zc


 = R


xtyt
zt


+


xoyo
zo


 (1)

R is a 3× 3 orthonormal matrix that represents rotation,
while t = (xo,yo, zo)T represents translation.

Constraints:

Orthonormality: RTR = I
(six independent second order constraints).

Rotation rather than reflection: det(R) = +1
(one third order constraint).



Perspective projection:

Camera coordinate system (3D) into image coordinate system (2D) (*) (**).

u = f(xc/zc)+uo
v = f(yc/zc)+ vo (2)

f is principal distance — “effective focal length”

while (uo, vo)T is principal point — “image center”

Interior orientation of the camera is given by (uo, vo, f )T .

(*) Camera coordinate system origin is at center of projection.

(**) Camera coordinate system is aligned with image axes.



Planar object:

Let zt = 0 in the plane of the object.

xcyc
zc


 =


 r11 r12 r13

r21 r22 r23

r31 r32 r33




xtyt

0


+


xoyo
zo


 (3)

Absorbing the translation (xo,yo, zo)T into the 3× 3 matrix,
and dividing the third component by f we get:


 xc
yc
zc/f


 =


 r11 r12 xo
r21 r22 yo
r31/f r32/f zo/f




xtyt

1


 (4)

Now perspective projection (eq. 2) gives (if we let k = zc/f ):

k(u−uo)k(v − vo)

k


 =


 r11 r12 xo
r21 r22 yo
r31/f r32/f zo/f




xtyt

1


 (5)

(Odd form makes it easier to match result with projective geometry formulation).



Homogeneous Representation:

Homogeneous representation of point in plane uses three numbers [Wylie 70].

(u,v,w)T

Actual planar coordinates are obtained by dividing first two elements by third:

x = u/w and y = v/w

Representation not unique since (ku, kv, kw)T corresponds to same point.

A 3× 3 matrix T can represent a homogeneous transformation
from the object plane to the image plane.


kukv
k


 =


 t11 t12 t13

t21 t22 t23

t31 t32 t33




xtyt

1


 (6)



Matching Homogeneous Transformation:

We can match 
k(u−uo)k(v − vo)

k


 =


 r11 r12 xo
r21 r22 yo
r31/f r32/f zo/f




xtyt

1


 , (5)

with 
kukv
k


 =


 t11 t12 t13

t21 t22 t23

t31 t32 t33




xtyt

1


 (6)

provided
t11 = r11, t12 = r12, t13 = xo
t21 = r21, t22 = r22, t23 = yo
t31 = r31/f , t32 = r32/f , t33 = zo/f

(7)

(In addition, measurements in the image must be made in a coordinate system
with the origin at the principal point, so that uo, vo = 0.)



Constraints on Transform:

T same as kT (Scale factor ambiguity). Pick t33 = 1 (leaves 8 DOF).

T must satisfy two non-linear constraints

t11t12 + t21t22 + f 2t31t32 = 0 (8)

and
t11t11 + t21t21 + f 2t31t31 = t12t12 + t22t22 + f 2t32t32 (9)

(from the orthonormality of R).

Two non-linear constraints reduce DOF from 8 to 6 —

rotation has 3 DOF and translation has 3 DOF.



Projective Transformation versus Perspective Projection:

Given real perspective projection, one can always compute a matrix T .

But it is not possible to go in the other direction —
for most matrices T , there is no corresponding perspective projection.

Only a subset of measure of zero of homogeneous transformations T
allow physical interpretation as rigid body motion and perspective projection.

An arbitrary 3× 3 matrix T will not satisfy the two non-linear constraints.



Disallowed Mappings:

Mappings allowed by projective geometry but not by perspective projection —

skewing and anisotropic scaling

Distort a normal perspective image by the additional operations
(

1 s
0 1

)
or

(
1 0
0 k

)

result is not an “image” —
from any position with any camera orientation.

Yet such distortions merely transform matrix T —
thus are allowed in projective geometry.



Disallowed Mappings:



Picture of a Picture:

Is there a physical imaging situation that corresponds to
homogeneous transformation by an arbitrary matrix T?

The transformations of perspective geometry correspond to
taking a perspective image of a perspective image.

In this case, the overall transformation need not satisfy the non-linear constraints.

But, we are interested in “direct” images, not pictures taken of a picture!



Finding T:

Correspondence between (xi,yi,1)T and (kui, kvi, k)T (Horn 86):

xit11 +yit12 + t13 − xiuit31 −yiuit32 −uit33 = 0

xit21 +yit22 + t23 − xivit31 −yivit32 − vit33 = 0

Four correspondences yield system of 8 homogeneous equations:




x1 y1 1 0 0 0 −x1u1 −y1u1 −u1

x2 y2 1 0 0 0 −x2u2 −y2u2 −u2

x3 y3 1 0 0 0 −x3u3 −y3u3 −u3

x4 y4 1 0 0 0 −x4u4 −y4u4 −u4

0 0 0 x1 y1 1 −x1v1 −y1v1 −v1

0 0 0 x2 y2 1 −x2v2 −y2v2 −v2

0 0 0 x3 y3 1 −x3v3 −y3v3 −v3

0 0 0 x4 y4 1 −x4v4 −y4v4 −v4







t11

t12

t13

t21

t22

t23

t31

t32

t33




=




0
0
0
0
0
0
0
0
0




T has 9 elements, but only 8 DOF, since any multiple of T describes same mapping.

Arbitrarily pick value for one element of T , say t33 = 1.

Leaves 8 non-homogeneous equations in 8 unknown.



Recovering Orientation using Vanishing Points

Consider
(αa,αb,1)T

as α→∞. That is, (a, b,0)T .

The vanishing point for line with direction (a, b)T in object plane is

u = (t11a+ t12b)/(t31a+ t32b)
v = (t21a+ t22b)/(t31a+ t32b)

(10)

The line from the COP (0,0,0)T , to vanishing point in image plane (u,v, f )T ,
is parallel (in 3D) to line on object.

Apply to x- and y-axes of object, and from the two vanishing points
find directions of the two axes in camera coordinate system.



Recovering Orientation using Vanishing Points

Vanishing point for x-axis is (1,0,0)T in object coordinate system.

T(1,0,0)T = (t11, t21, t31)T

Vanishing point for y-axis is (0,1,0)T in object coordinate system.

T(0,1,0)T = (t12, t22, t32)T

These correspond to (t11/t31, t21/t31)T and (t12/t32, t22/t32)T in the image.

Connect COP (0,0,0)T , to the vanishing points in the image plane

x = (t11, t21, f t31)T ,

y = (t12, t22, f t32)T .
(11)



Recovering Rotation

Make unit vectors in the direction of the x- and y-axes of the object plane.

x̂ = x/‖x‖ and ŷ = y/‖y‖

So if f is known, directions of object coordinate axes (in camera coordinates)
can be found from first two columns of T .

Construct triad using
ẑ = x̂× ŷ

This leads to

RT =

 x̂T

ŷT

ẑT


 or R =

(
x̂ ŷ ẑ

)
(12)



Recovering Direction of Translation

Homogeneous coordinates of the origin on the object plane: (0,0,1)T

T(0,0,1)T = (t13, t23, t33)T

Image of origin is at (t13/t33, t23/t33)T .

Connecting origin to this point yields vector parallel to

t = (t13, t23, f t33)T . (13)

This is the direction of the translational vector to the object origin
obtained directly from last column of T .



Recovering Translation

The z component of translation is (f/M) —
where M is lateral magnification.

Need line in object plane that is parallel to the image plane —
take cross-product of ẑ found above and (0,0,1)T :

(z1, z2, z3)T × (0,0,1)T = (−z2, z1,0)T

This point on object is imaged at T(−z2, z1,0)T

Find length of line li from there to image of origin, at (t13/t33, t23/t33)T

Divide by lt =
√
z2

1 + z2
2 to find M = li/lt .

Finally, t = M(t13, t23, f t33)T /(f t33)



Analysis

In general T does not correspond to rigid body motion and perspective projection.

Why were we able to calculate rigid body motion R and t?

We selectively neglected “inconvenient” information in T !

Now construct T ′ based on recovered R and t.

In general, T ′ �= T !

Even worse, x̂ and ŷ, as constructed, need not be orthogonal.

In general R, as constructed, is not a rotation!

For R to be orthonormal, (t11, t21, f t31)T · (t12, t22, f t32)T = 0.

Least squares estimate of T from data does not ensure this.

Can find “nearest” orthogonal x̂ and ŷ, but. . .

Same story for the other non-linear constraint on elements of T .



Sensitivity to Error in Measurements.

With perfect measurements, T has desired properties.

What is error in R and t as function of error in measurements?

Difficult to find analytically because of complex steps.

Error in rotation: Angle of δR = RT1R2.

Monte Carlo simulation

Results:

Sensitivity depends on FOV.

Sensitivity depends on orientation of planar target.

Sensitivity depends on choice of origin!



Two Step Optimization

(1) Find linear transformation T that best fits the data.

(2) Find rigid body transformation R and t “nearest” to T .

One Step Optimization

Adjust R and t directly —
to minimize sum of squares of errors in image position.

The results are different.

Least squares adjustment to find a best fit T in two-step method
minimizes quantities without any direct physical significance.

Can be interpreted as weighted sum of image errors —
but with arbitrary weights.



Minimize Image Errors:

• Observed  Points

• Predicted Points — based on R and t



Minimizing the Image Projection Error

Properly model rigid body motion and perspective projection.

Error is image plane distance between predicted and observed features.

Non-linear problem. No closed form solution.

Find R and t that minimizes sum of squares of image errors.

Easy optimization — if good representation for rotation is chosen.

Unit quaternions (equivalently Pauli Spin matrices, Euler parameters, etc.)

Newton-Raphson method is then sufficient.

Seven unknowns (q̊ and t) and one constraint (q̊ · q̊ = 1).



Comparing Error Sensitivity

Sample Experiment:

Target: Four features in 168 mm by 168 mm pattern
Distance: 1600 mm
Focal length: 18mm
Pixel size: 8.4 µ by 8.4 µ
Object Plane Orientation: normal 60° from optical axis
Error in image plane measurements: 0.05 pixel (1/20)

Monte Carlo simulation.

Projective geometry (PG) error is 1.1°.
Noise gain 22 degrees / pixel.

Perspective projection (PP) method error is 0.04°.
Noise gain 0.8 degrees / pixel.

Projective Geometry based method more than an order of magnitude worse.

With three points, PP method error is still only 0.06°.

With more points, errors decrease in proportion to ≈ 1/
√
N

Projective Geometry based method bad under variety of conditions tested.



Image Analyst Pattern



Image Analyst Centroiding Method
• Green dot: True centroid of original disk
• Red dot: Centroid of thresholded binary image

Line Blob Centroiding Method
• Green dot: True centroid of original disk
• Red dot: Line blob estimate of centroid



0 5 10 15 20 25 30 35 40 45 50
0.0

0.05

0.1

0.15

Diameter of blobs in pixels

Upper curve: Image Analyst method

Upper curve: trend 0.310 / sqrt(D)

Lower curve: "Line Blob" method

Lower curve: trend 0.053 / sqrt(D)



Main Algorithm (patent disclosure)

Image

Points

Section 9.4

matrix T

Main Algorithm

R and t

Image Fitting (working implementation)

Image

Points

First Guess

Ro and to

Iterative Improvement

Rn and tn



Patent Disclosure

Image

Image Analyst

1/10 pixel

Main Algorithm

X 20 deg/pixel 2 deg

Working Implementation

Image

Line Blob

2/100 pixel

Image Fitting

X 1 deg/pixel 2/100 deg



Summary

Methods based on projective geometry are fundamentally different
from methods based on perspective projection;

Methods based on projective geometry yield a transformation matrix T
that in general does not correspond to a physical imaging situation —
that is, rotation, translation, and perspective projection;

Optimization methods based on actual physical imaging situation
produce considerably more accurate results.

Additional Notes

One can make very accurate measurements using images;

One needs to carefully design the target to get high accuracy;

One needs to carefully design the target to get reliability.



References:

Absolute Orientation:

“Closed Form Solution of Absolute Orientation using Unit Quaternions,”
Journal of the Optical Society A, Vol. 4, No. 4, pp. 629–642, Apr. 1987.

Relative Orientation:

“Relative Orientation Revisited,”
Journal of the Optical Society of America, A, Vol. 8, pp. 1630–1638, Oct. 1991.

Interior Orientation / Exterior Orientation:

“Tsai’s Camera Calibration Method Revisited,”
on http:\\www.ai.mit.edu\people\bkph

Detailed Example:

“Projective Geometry Considered Harmful,”
on http:\\www.ai.mit.edu\people\bkph



Projective Geometry Considered Harmful

Berthold K.P. Horn




