Perspective Projection Describes Image Formation
Berthold K.P. Horn



Wheel Alignment:

Camber, Caster, Toe-In, SAI, ...



Front

At Zero Toa
co

Camber: angle between axle and horizontal plane.

Toe: angle between projection of axle on horizontal plane and a per-
pendicular to thrust line.

Caster: angle in side elevation between steering axis and vertical.
SAIL angle in frontal elevation between steering axis and vertical.




Planar Target

Mounted Rigidly on Rim



CCD Cameras and LED Illumination






Determining Steering Axis



Photogrammetric Problems:

Interior Orientation (2D < 3D)

Exterior Orientation (3D - 2D)

Absolute Orientation (3D < 3D)

Relative Orientation (2D ~ 2D)



Interior Orientation:
Principal Point + Principal Distance
Center of Projection: (uo, Vo f)



Exterior Orientation:
Rotation + Translation of Camera: R and t



Rigid body transformation:

rotation and translation —

of object coordinate system into camera coordinate system.

Xc Xt Xo
Ye | =Ryt |+ ]| o
Zc Zt Zo

R is a 3 x 3 orthonormal matrix that represents rotation,
while t = (x,, Vo, Zo)! represents translation.

Constraints:

Orthonormality: RI'R =1
(six independent second order constraints).

Rotation rather than reflection: det(R) = +1
(one third order constraint).

(1)



Perspective projection:

Camera coordinate system (3D) into image coordinate system (2D) (*) (*¥).

u = f(xc/zc) + U

2
v =f(ye/ze) + Vo (2)

f is principal distance — “effective focal length”
while (u,,v,)! is principal point — “image center”

Interior orientation of the camera is given by (u,, Vo, f)?.

(*) Camera coordinate system origin is at center of projection.

(**) Camera coordinate system is aligned with image axes.



Planar object:

Let z; = 0 in the plane of the object.

Xc Y11 Tiz 7113 Xt Xo
Ve | = 21 To2 723 Ye | + | o (3)
Zc 31 132 133 0 Zo

Absorbing the translation (x,, V., Zo)! into the 3 X 3 matrix,
and dividing the third component by f we get:

X 11 Y12 Xo Xt
Ye | =1 721 (27, Yo Vi (4)
zcel f r31/f v2/f zolf 1

Now perspective projection (eq. 2) gives (if we let k = z./ f):

k(u—uy) 711 112 Xo Xt
k(v—-vy) | =] 7121 122 Yo Vi (5)
k v31/f v2lf zZolf 1

(Odd form makes it easier to match result with projective geometry formulation).



Homogeneous Representation:

Homogeneous representation of point in plane uses three numbers [Wylie 70].
(u,v,w)!
Actual planar coordinates are obtained by dividing first two elements by third:
XxX=u/w and y=v/w

Representation not unique since (ku, kv, kw)! corresponds to same point.

A 3 X 3 matrix T can represent a homogeneous transformation
from the object plane to the image plane.

ku ti11 tiz t13 Xt

kv | = ta1 ta t23 Vi (6)
k t31 t32 133 1

—



Matching Homogeneous Transformation:

We can match

k(u —uo) 111 712 Xo Xt
k(v—-vo) [ =] T2 122 Yo Ve |, (5)
k ra1lf v2lf zolf 1
with
ku t11 ti2 t13 Xt
kv | =1 tx1 tr t3 Vi (6)
k t31 t32 (33 1
provided

t11 =111, L2 =712, 113 = Xo
tro1 = 121, lop =722, Il23=2 (7)
t31 =131/f, t32="32/f, 133=20/f

(In addition, measurements in the image must be made in a coordinate system
with the origin at the principal point, so that u,, v, = 0.)



Constraints on Transform:

T same as kT (Scale factor ambiguity). Pick £33 = 1 (leaves 8 DOF).

T must satisfy two non-linear constraints
tintiz + tartor + fta1t30 =0 (8)

and
t11611 + tarbo1 + f2t31831 = t1atin + topbon + f2t30t30 (9)

(from the orthonormality of R).

Two non-linear constraints reduce DOF from 8 to 6 —

rotation has 3 DOF and translation has 3 DOF.



Projective Transformation versus Perspective Projection:
Given real perspective projection, one can always compute a matrix T.

But it is not possible to go in the other direction —
for most matrices T, there is no corresponding perspective projection.

Only a subset of measure of zero of homogeneous transformations T
allow physical interpretation as rigid body motion and perspective projection.

An arbitrary 3 X 3 matrix T will not satisfy the two non-linear constraints.



Disallowed Mappings:

Mappings allowed by projective geometry but not by perspective projection —
skewing and anisotropic scaling

Distort a normal perspective image by the additional operations

1 s or 1 O
0 1 0 Kk
result is not an “image” —

from any position with any camera orientation.

Yet such distortions merely transform matrix T —
thus are allowed in projective geometry.



Disallowed Mappings:




Picture of a Picture:

Is there a physical imaging situation that corresponds to
homogeneous transformation by an arbitrary matrix 77

The transformations of perspective geometry correspond to
taking a perspective image of a perspective image.

In this case, the overall transformation need not satisfy the non-linear constraints.

But, we are interested in “direct” images, not pictures taken of a picture!



Finding T
Correspondence between (x;, vi,1)! and (ku;, kvi, k)T (Horn 86):

Xit11 + yit12 + t13 — xXiUit31 — yiuitzp — uit33 =0
Xilp1 + Yilop + t23 — XiVil31 — ViVit3p — vil33 =0

Four correspondences yield system of 8 homogeneous equations:

——
—

—X1U1 —Y1ur —up ) (tn\

/Xl V1 1 0 0 0 t 8
x2 21 0 0 0 —xxux —)3uzx -—-u t12 0
x3 y3 1 0 0 O —x3u3 —ysusz -—-us tB 0
x4 Y4 1 0 0 0 —Xx4uUs —Y4Us —Uy4 t21 o
0O 0 0 x1 »m 1 —-xiv1 —-H»yivi -V t22 0
0O 0 O x2 y2 1 —-xv2 —->2U2 -—1p t23 0
0 0 O x3 y3 1 -—x3v3 —)3v3 —U3 t31 0

\ 0 0 0 x4 ya 1 —X4Vs —-Yavs —Va) Ktii/ \O/

T has 9 elements, but only 8 DOF, since any multiple of T describes same mapping.
Arbitrarily pick value for one element of T, say t33 = 1.

Leaves 8 non-homogeneous equations in 8 unknown.



Recovering Orientation using Vanishing Points
Consider
(xa, b, 1)
as ¢ — oo. Thatis, (a,b,0)?.
The vanishing point for line with direction (a, b)! in object plane is

U = (ty1a + ti2b)/(tz31a + t32b)

10
vV = (tx1a + t22b)/(t31a + t32b) (10

The line from the COP (0,0, 0)!, to vanishing point in image plane (u, v, )7,
is parallel (in 3D) to line on object.

Apply to x- and y-axes of object, and from the two vanishing points
find directions of the two axes in camera coordinate system.



Recovering Orientation using Vanishing Points

Vanishing point for x-axis is (1,0,0)! in object coordinate system.
T(1,0,0)" = (t11,t21,t31)"

Vanishing point for y-axis is (0,1,0)! in object coordinate system.

T(0,1,0)1 = (t12,t20,t32)7

These correspond to (t11/t31,t21/t31)" and (t12/t32, t22/t32) ! in the image.

Connect COP (0,0,0)7, to the vanishing points in the image plane

X = (t11,t21, ft31)7,
y = (t1o, too, fit32) .

(11)



Recovering Rotation

Make unit vectors in the direction of the x- and y-axes of the object plane.

laY

x=Xx/|Ix]] and y=vy/lyll

So if f is known, directions of object coordinate axes (in camera coordinates)
can be found from first two columns of T.

Construct triad using
Z=XXYVy

This leads to

b\]

(12)
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Recovering Direction of Translation

Homogeneous coordinates of the origin on the object plane: (0,0,1)'
T(0,0,1)" = (t13,t23,t33)"

Image of origin is at (t13/t33, t»3/t33)!.

Connecting origin to this point yields vector parallel to

t = (t13,to3, ft33)".

This is the direction of the translational vector to the object origin
obtained directly from last column of T.

(13)



Recovering Translation

The z component of translation is (f/M) —
where M is lateral magnification.

Need line in object plane that is parallel to the image plane —
take cross-product of Z found above and (0,0, 1)’:

(z1,22,23)! x(0,0,1)! = (=22,21,0)!

This point on object is imaged at T(—z»,z1,0)"

Find length of line I; from there to image of origin, at (t13/t33, t23/t33)!
Divide by I; = \/z% + z5 to find M = [;/1;.

Finally, t = M (t13, t23, ft33) "/ (ft33)



Analysis

In general T does not correspond to rigid body motion and perspective projection.
Why were we able to calculate rigid body motion R and t?
We selectively neglected “inconvenient” information in T
Now construct T’ based on recovered R and t.
In general, T’ # T
Even worse, X and Vy, as constructed, need not be orthogonal.
In general R, as constructed, is not a rotation!
For R to be orthonormal, (11, t21, ft31)! - (t12, too, fE32)! = 0.
Least squares estimate of T from data does not ensure this.
Can find “nearest” orthogonal X and vy, but...

Same story for the other non-linear constraint on elements of T.



Sensitivity to Error in Measurements.

With perfect measurements, T has desired properties.

What is error in R and t as function of error in measurements?
Difficult to find analytically because of complex steps.

Error in rotation: Angle of 6R = R{ R>.

Monte Carlo simulation

Results:

Sensitivity depends on FOV.
Sensitivity depends on orientation of planar target.

Sensitivity depends on choice of origin!



Two Step Optimization
(1) Find linear transformation T that best fits the data.

(2) Find rigid body transformation R and t “nearest” to T.

One Step Optimization

Adjust R and t directly —
to minimize sum of squares of errors in image position.

The results are different.

Least squares adjustment to find a best fit T in two-step method
minimizes quantities without any direct physical significance.

Can be interpreted as weighted sum of image errors —
but with arbitrary weights.



Minimize Image Errors:
Observed Points
* Predicted Points — based on R and t



Minimizing the Image Projection Error

Properly model rigid body motion and perspective projection.

Error is image plane distance between predicted and observed features.
Non-linear problem. No closed form solution.

Find R and t that minimizes sum of squares of image errors.

Easy optimization — if good representation for rotation is chosen.

Unit quaternions (equivalently Pauli Spin matrices, Euler parameters, etc.)
Newton-Raphson method is then sufficient.

Seven unknowns (q and t) and one constraint (4 - q = 1).



Comparing Error Sensitivity
Sample Experiment:

Target: Four features in 168 mm by 168 mm pattern
Distance: 1600 mm

Focal length: 18mm

Pixel size: 8.4 u by 8.4 u

Object Plane Orientation: normal 60° from optical axis
Error in image plane measurements: 0.05 pixel (1/20)

Monte Carlo simulation.

Projective geometry (PG) erroris 1.1°.
Noise gain 22 degrees / pixel.

Perspective projection (PP) method error is 0.04°.
Noise gain 0.8 degrees / pixel.

Projective Geometry based method more than an order of magnitude worse.
With three points, PP method error is still only 0.06°.
With more points, errors decrease in proportion to =~ 1/+/N

Projective Geometry based method bad under variety of conditions tested.



Image Analyst Pattern



Image Analyst Centroiding Method Line Blob Centroiding Method
» Green dot: True centroid of original disk » Green dot: True centroid of original disk
* Red dot: Centroid of thresholded binary image * Red dot: Line blob estimate of centroid



Upper curve: Image Analyst method
Upper curve: trend 0.310/ sqrt(D)
0.15
Lower curve: "Line Blob" method
Lower curve: trend 0.053 / sqrt(D)
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Main Algorithm (patent disclosure)

Image

Points

>—

Section 9.4

matrix T

AN

Image Fitting (working implementation)

Image

Points

Main Algorithm

First Guess

Ro and to

Iterative Improvement

Randt

Rn and tn




Patent Disclosure

> Image Analyst

Image 1/10 pixel

Working Implementation

>—— Line Blob >

Image 2/100 pixel

Main Algorithm —>
X 20 deg/pixel 2 deg
Image Fitting —>
X 1 deg/pixel 2/100 deg



Summary
Methods based on projective geometry are fundamentally different
from methods based on perspective projection;

Methods based on projective geometry yield a transformation matrix T
that in general does not correspond to a physical imaging situation —
that is, rotation, translation, and perspective projection;

Optimization methods based on actual physical imaging situation
produce considerably more accurate results.

Additional Notes

One can make very accurate measurements using images;
One needs to carefully design the target to get high accuracy;

One needs to carefully design the target to get reliability.
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