6.891

Computer Vision and Applications

Prof. Trevor. Darrell

- · Class overview
- Administrivia & Policies
- Lecture 1
 - Perspective projection (review)
 - Rigid motions (review)
 - Camera Calibration
- Readings: Forsythe & Ponce, 1.1, 2.1, 2.2, 2.3, 3.1, 3.2

Vision

- What does it mean, to see? "to know what is where by looking".
- How to discover from images what is present in the world, where things are, what actions are taking place.

from Marr, 1982

Why study Computer Vision?

- One can "see the future" (and avoid bad things...)!
- Images and movies are everywhere; fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - movie post-processing
 - face finding
- Greater understanding of human vision
- Various deep and attractive scientific mysteries - how does object recognition work?

Why study Computer Vision?

- · People draw distinctions between what is seen
 - "Object recognition"
 - This could mean "is this a fish or a bicycle?"
 - It could mean "is this George Washington?"
 - It could mean "is this poisonous or not?"
 - It could mean "is this slippery or not?"
 - It could mean "will this support my weight?"
 - Great mystery

 How to build programs that can draw useful distinctions based on image properties.

Cameras, lenses, and sensors

•Pinhole cameras •Lenses •Projection models •Geometric camera parameters

Figure 1.16 The first photograph on record, *la table servie*, obtained by Nicéphore Niepce in 1822. *Collection Harlinge–Viollet*.

From Computer Vision, Forsyth and Ponce, Prentice-Hall, 2002

A. Efros and W. T Freeman, Image quilting for text synthesis and transfer, SIGGRAPH 2001

Multi-view Geometry

What are the relationships between images of point features in more than one view?

Given a point feature in one camera view, predict it's location in a second (or third) camera?

Ego-Motion / "Match-move"

Where are the cameras?

Track points, estimate consistent poses...

Render synthetic objects in real world!

Tracking

Follow objects and estimate location ..

- radar / planes
- pedestrians
- cars
- face features / expressions
- Many ad-hoc approaches...
- General probabilistic formulation: model density over time.

- Use a model to predict next position and refine using next image
- Model:
 - simple dynamic models (second order dynamics)
 - kinematic models
 - etc.
- Face tracking and eye tracking now work rather well

And...

- Visual Category Learning
- Image Databases
- Image-based Rendering
- Visual Speechreading
- Medical Imaging

Administrivia

- Syllabus
- Grading
- Collaboration Policy
- Project

Lecture	Date	Description	Readings	Assignments	Mate
1	2/3	Course Introduction Cameras, Lenses and Sensors	Req: FP 1.1, 2.1, 2.2, 2.3, 3.1, 3.2	PSo out	
2	2/5	Image Filtering	Req: FP 7.1 - 7.6		
3	2/10	Image Representations: pyramids	Req: FP 7.7, 9.2		
4	2/12	Texture	Req: FP 9.1, 9.3, 9.4	PS0 due	
	2/17	Monday Classes Held (NO I	.ECTURE)		
5	2/19	Color	Req: FP 6.1-6.4	PS1 out	
6	2/24	Local Features			
7	2/26	Multiview Geometry	Req: FP 10	PS1 due	
8	3/2	Affine Reconstruction	Req: FP 12		
9	3/4	Projective Reconstruction	Req: FP 13	PS2 out	
10	3/9	Scene Reconstruction			
11	3/11	Non-Rigid Motion		PS2 due	
12	3/16	Morphable and Active Appearance Models		EX1 out	
13	3/18	Model-Based Object Recognition		EX1 due	
	3/23- 3/25	Spring Break (NO LECTUR	E)		

	3/23- 3/25	Spring Break (NO LECTURE)	
14	3/30	Face Detection and Recognition I	
15	4/1	Face Detection and Recognition II	Project proposal due
16	4/6	Category Learning	
17	4/9	Segmentation I	PS3 out
18	4/13	Segmentation II	
19	4/15	Medical Imaging	PS3 due
20	4/20	Tracking I	
21	4/22	Tracking II	PS4 out
22	4/27	Image-Based Rendering	
23	4/29	Example-based inference	PS4 due
24	5/4	Multimodal Interfaces	EX2 out
25	5/6	Image Databases	EX2 due
26	5/11	Project Presentations 11- 2pm	
27	5/13	Projects Dueno class	Project final report due (extension to 5/16 on request)

Grading

- Two take-home exams
- · Five problem sets with lab exercises in Matlab
- No final exam
- · Final project

Collaboration Policy

Problem sets may be discussed, but all written work and coding must be done individually. Take-home exams may not be discussed. Individuals found submitting duplicate or substantially similar materials due to inappropriate collaboration may get an F in this class and other sanctions.

Project

The final project may be

- An original implementation of a new or published idea
 A detailed empirical evaluation of an existing
- A detailed empirical evaluation of an existin implementation of one or more methods
- A paper comparing three or more papers not covered in class, or surveying recent literature in a particular area
- class, or surveying recent literature in a particular area A project proposal not longer than two pages must be submitted and approved by April 1st.

Problem Set 0

- Out today, due 2/12
- · Matlab image exercises
 - load, display images
 - pixel manipulation
 - RGB color interpolation
 - image warping / morphing with interp2
- simple background subtraction
- All psets graded loosely: check, check-, 0.
- (Outstanding solutions get extra credit.)

Cameras, lenses, and calibration

Today:

- Camera models (review)
- Projection equations (review)
- You should have been exposed to this material in previous courses; this lecture is just a (quick) review.
- Calibration methods (new)

More accurate models of real lenses

- Finite lens thickness
- Higher order approximation to $sin(\theta)$
- Chromatic aberration
- Vignetting

Summary so far

- Want to make images
- Pinhole camera models the geometry of perspective projection
- · Lenses make it work in practice
- Models for lenses
 - Thin lens, spherical surfaces, first order optics
 - Thick lens, higher-order optics, vignetting.

Some background material...

- Rigid motion: translation and rotation
- · Homogenous coordinates

$$\begin{array}{c} \textbf{Rotation matrix} \\ \text{this} & \begin{pmatrix} B_X \\ B_Y \\ B_Z \end{pmatrix} = \begin{pmatrix} \hat{i}_B \cdot \hat{i}_A A_X & \hat{i}_B \cdot \hat{j}_A A_Y & \hat{i}_B \cdot \hat{k}_A A_Z \\ \hat{j}_B \cdot \hat{i}_A A_X & \hat{j}_B \cdot \hat{j}_A A_Y & \hat{j}_B \cdot \hat{k}_A A_Z \\ \hat{k}_B \cdot \hat{i}_A A_X & \hat{k}_B \cdot \hat{j}_A A_Y & \hat{k}_B \cdot \hat{k}_A A_Z \end{pmatrix} \\ \text{implies} & B P = \frac{B}{A} R \ ^A P \\ \text{where} & & \\ & &$$

$\begin{bmatrix} \text{In vector form} \begin{pmatrix} P_{1}^{T} & 0^{T} & -u_{1}p_{1}^{T} \\ 0^{T} & P_{1}^{T} & -v_{1}p_{1}^{T} \\ \cdots & \cdots & \cdots \\ P_{n}^{T} & 0^{T} & -u_{n}p_{n}^{T} \\ 0^{T} & P_{n}^{T} & -v_{n}p_{n}^{T} \end{pmatrix} \begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$	Camera calibration
Showing all the elements: $\begin{pmatrix} P_{1x} & P_{1y} & P_{1z} & 1 & 0 & 0 & 0 & -u_{1}P_{1x} & -u_{1}P_{1y} \\ 0 & 0 & 0 & 0 & P_{1x} & P_{1y} & P_{1z} & 1 & -v_{1}P_{1x} & -v_{1}P_{1y} \\ \dots & \dots & \dots \\ P_{nx} & P_{ny} & P_{nz} & 1 & 0 & 0 & 0 & 0 & -u_{n}P_{nx} & -u_{n}P_{ny} \\ 0 & 0 & 0 & 0 & P_{nx} & P_{ny} & P_{nz} & 1 & -v_{n}P_{nx} & -v_{n}P_{ny} \end{bmatrix}$	$ \begin{array}{c} -u_1P_{12} & -u_1 \\ -v_1P_{12} & -v_1 \\ -u_nP_{n2} & -v_n \\ -v_nP_{n2} & -v_n \end{array} \begin{pmatrix} m_{11} \\ m_{12} \\ m_{13} \\ m_{24} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} $

