6.8391

Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 11: Model-based vision
* Hypothesize and test

« Interpretation Trees

e Alignment

e Pose Clustering

* Geometric Hashing

Readings: F&P Ch 18.1-18.5



[ ast time

Projective SFM
— Projective spaces
— Cross ratio
— Factorization algorithm

— Euclidean upgrade



Projective transformations

Definition:

A projectivity is an invertible mapping h from P2 to itself
/ such that three points x,,X,,X, lie on the same line if and

only if A(x,),h(x,),h(x5) do.

LS

cene plane

Theorem:

A mapping /#:P>—P? is a projectivity if and only if there

exist a non-singular 3x3 matrix H such that for any point
\Ig}‘zﬁﬁ in P2 reprented by a vector x it is true that 4(x)=Hx
2 Definition: Projective transformation

' _
X hy, h, hs|x

! _
Xy = hy By hy || X, or Xx'=Hx

X' _h31 hs, h33_ X3 8DOF
projectivity=collineation=projective transformation=homography

[F&P, www.cs.unc.edu/~marc/mvg]
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The value of this cross ratio 1s independent of
the intersecting line or plane:

[F&P]



Two-trame reconstruction

(1) Compute F from correspondences

(11) Compute camera matrices from F

(111) Compute 3D point for each pair of
corresponding points

computation of F

use x‘ Fx.=0 equations, linear in coeff. F

8 points (linear), 7 points (non-linear), 8+ (least-squares)
(more on this next class)

computation of camera matrices

Possible choice:

P=[1]0] P'=[[e'].F|e']

triangulation
compute intersection of two backprojected rays
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[www.cs.unc.edu/~marc/mvg]



Perspective factorization
Amy =P M i=1..,m,j=1,..m

All equations can be collected for all 7 as

I m1A1 ) P1
m=PM  yhere,
mzAz Pz
m = . P =
_mnAn _] _Pm _
with: -
m, =[m,m,,..m |, M=[M, M,,...M |

A, =diag(A,,Ayses A, )

i1
m are known, but A,P and M are unknown...

Observe that PM 1s a product of a 3mx4 matrix and a 4x#
matrix, 1.e. 1t 1s a rank 4 matrix

[www

.cs.unc.edu/~marc/mvg]



[terative perspective factorization

When A, are unknown the following algorithm can be used:
1. Set A,=1 (aftine approximation).

2. Factorize PM and obtain an estimate of P and M. If s; 1s
sufficiently small then STOP.

3. Use m, P and M to estimate A, from the camera equations
(linearly) m;, A=P.M

4. Goto 2.

In general the algorithm minimizes the proximity measure
P(A,P.M)=s;

Structure and motion recovered up to an arbitrary projective
transformation

[www.cs.unc.edu/~marc/mvg]
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Euclidean up grade

Given a camera with known intrinsic parameters, we
can take the calibration matrix to be the identity and
write the perspective projection equation in some
Fuclidean world coordinate system as

(R 1 (11"’) - (R M) (}ﬁ

for any non-zero scale factor A. If M; and P;denote the
shape and motion parameters measured in some
Fuclidean coordinate system, there must exist a 4 x4
matrix O st

p:

M M Qand P; = Q7'P,. g

[F&P]



Today: “Model-based Vision”

Still feature and geometry-based, but now
with moving objects rather than cameras...

Topics:
— Hypothesize and test
— Interpretation Trees
— Alignment
— Pose Clustering
— Invariances

— Geometric Hashing



Approach

* (Given
— CAD Models (with features)
— Detected features in an 1mage
* Hypothesize and test recognition...

— (Quess
— Render

— Compare

10



Hypothesize and Test Recognition

« Hypothesize object identity and correspondence
— Recover pose
— Render object in camera

— Compare to 1mage

* Issues
— where do the hypotheses come from?

— How do we compare to image (verification)?

11



Features?

 Points

but also,

e Lines

* Conics

* Other fitted curves

* Regions (particularly the center of a region,
etc.)

12



How to generate hypotheses?

 Brute force

— Construct a correspondence for all object features to
every correctly sized subset of image points

— Expensive search, which 1s also redundant.
— L objects with N features
— M features in 1mage
— O(LMN) !
* Add geometric constraints to prune search, leading
to interpretation tree search

* Try subsets of features (frame groups)... ,



Interpretation Trees

* Tree of possible model-image feature assignments

* Depth-first search

* Prune when unary (binary, ...) constraint violated

— length

— darcea

— orientation

2

Model

14



Interpretation Trees

24 g3 1 g2 g2

O

“Wild cards” handle spurious 1image features
[ A.M. Wallace. 1988. ]



Adding constraints

* Correspondences between image features and
model features are not independent.

* A small number of good correspondences yields a
reliable pose estimation --- the others must be
consistent with this.

* Generate hypotheses using small numbers of
correspondences (e.g. triples of points for a
calibrated perspective camera, etc., etc.)

16



Pose consistency / Alignment

Given known camera type in some unknown
configuration (pose)

— Hypothesize configuration from set of initial features
— Backproject

— Test

“Frame group” -- set of sufficient correspondences
to estimate configuration, e.g.,
— 3 points

— 1ntersection of 2 or 3 line segments, and 1 point

17



Alignment

For all object frame groups O
For all imapge frame groups F
For all correspondences (' between
elements of F and elements
of O

Use I, ¢ and O to infer the missing parameters
in a camera model

Use the camera model estimate to render the object

1f the rendering conforms to the 1mage,
the object 1s present
end
end
end
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Pose clustering

« Each model leads to many correct sets of
correspondences, each of which has the
same pose

* Vote on pose, in an accumulator array (per
object)

20



Pose
Clustering

For all objects OJ
For all cbject frame groups ()]
For all image frame groups [I'(/[)
For all correspondences (' between
elements of F([) and elements
of 10

Use F([), I'{0) and ' to infer object pese PP(())

Add a vote to (J's pose space at the bucket
corresponding to FP(0).
end
end
end
end
For all objects OJ
For all elements /P(()) of (J’s pose space that have
encugh votes

Use the ()} and the
camera model estimate to render the object

If the rendering conferms to the image,
the object is present
end
end




a0-Calc OBJECT C-130.mode)




Pose clustering

Problems

— Clutter may lead to more votes than the target!
— Difficult to pick the right bin size

Confidence-weighted clustering
— See where model frame group 1s reliable
(visible!)

— Downweight / discount votes from frame
groups at poses where that frame group 1s
unreliable. .. 2



pick feature pair

dark regions show reliable views of those,,
features
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Detecting 0.1% 1nliers among 99.9% outliers?

« Example: David Lowe’s SIFT-based Recognition system

* Goal: recognize clusters of just 3 consistent features
among 3000 feature match hypotheses

* Approach

— Vote for each potential match according to model 1D
and pose

— Insert into multiple bins to allow for error in similarity
approximation

— Using a hash table instead of an array avoids need to
form empty bins or predict array size

29
[Lowe]



Lowe’s Model verification step

Examine all clusters with at least 3 features
Perform least-squares affine fit to model.

Discard outliers and perform top-down check for
additional features.

Evaluate probability that match 1s correct

— Use Bayesian model, with probability that features
would arise by chance 1f object was not present

— Takes account of object size in image, textured regions,

model feature count in database, accuracy of fit (Lowe,
CVPR 01)

30
[Lowe]



Solution for affine parameters

« Affine transform of [x,y] to [u,v]:

w | | m1 oM i
v | mMs 1My Uy

« Rewrite to solve for transform parameters:

|

2

Ly

|

L8
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[Lowe]



Models for planar surfaces with SIFT keys:
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Planar recognition

Planar surfaces can be
reliably recognized at a
rotation of 60° away
from the camera

Affine fit approximates
perspective projection
Only 3 points are
needed for recognition

[Lowe]



3D Object Recognition

e Extract outlines
with background
subtraction

34
[Lowe]



3D Object Recognition

* Only 3 keys are
needed for
recognition, so extra
keys provide
robustness

 Affine model 1s no
longer as accurate

35
[Lowe]



Recognition under occlusion

36
[Lowe]



Location recognition

37
[Lowe]




Robot Localization

 Joint work with Stephen Se, Jim Little

[Lowe]



Map continuously built over time

39

[Lowe]



Locations of map features in 3D

Camera (Euclidean view)

40
[Lowe]



Invariant recognition

e Affine invariants
— Planar invariants

— Geometric hashing

* Projective invariants

— Determinant ratio

e Curve 1nvariants

41



Invariance

* There are geometric properties that are invariant to
camera transformations

« Easiest case: view a plane object 1n scaled
orthography.

* Assume we have three base points P_1 on the
object

— then any other point on the object can be written as

=1 "‘:Uka(Pz _P1)+ :ukb(P3 _P1)

42



Invariance

* Now 1mage points are obtained by multiplying
by a plane affine transformation, so

p. = AP,
= A(Pl +:Uka(P2 _Pl)'l' ﬂkb(P3 _Pl))
=Dt luka(pZ _p1)+:ukb(p3 _pl)

43



Invariance
b=h5+ /uka(PZ _Pl)+ /ukb(P3 _Pl)
p, = AP,

= A(Pl +/uka(P2 — Pl)"' :ukb(P3 _Pl))
= p+ (D, — )+ 1 (P35 — Py)

Given the base points in the image, read off the u
values for the object

— they’re the same in object and in 1image --- invariant

— search correspondences, form p’s and vote

44



Geometric Hashing

* Objects are represented as sets of “features”
* Preprocessing:

— For each tuple b of features, compute location
(n) of all other features in basis defined by b

— Create a table indexed by (p)
— Each entry contains b and object ID

S. Rusinkiewicz 45

[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]



GH: Identification

Find features 1n target 1mage

Choose an arbitrary basis b’

For each feature:

— Compute (p”) 1n basis b’

— Look up 1n table and vote for (Object, b)
For each (Object, b) with many votes:
— Compute transformation that maps b to 5’

— Confirm presence of object, using all available

features

S. Rusinkiewicz 46

[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]



Geometric Hashing
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Figure 1. Determining the hash table entries when points 4 and 1 are used to define a basis. The models are allowed to
undergo rotation, translation, and scaling. On the left of the figure, model M, comprises five points.

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 1997
[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]
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Figure 2. The locations of the hash table entries for model M. Each
entry is labeled with the information "model M," and the basis pair
(i, j) used to generate the entry. The models are allowed to
undergo rotation, translation, and scaling.

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 1997 48
[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]



Maodel

Image

Geometric Hashing

40

i

Cast 1 vote
for each entry
inkin's list

In the end histogram
all entries with one

or more votes

Figure 3. Determining the hash table bins that are to be notified when two arbitrary image points are selected as a basis.
Similarity transformation is allowed.

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 19974
[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]



Algorithm 18.3: Geometric hashing: voting on identity and point labels

For all groups of three image points T'([) ==
For every other image point p
Compute the p's from p and T'(T)
(Obtain the table entrv at these values
it there is one, it will label the three points in T'(T)
with the name of the object
and the names of these particular points.
Cluster these labels:
if there are enough labels, backproject and verify
end
end
end

50




Indexing with invariants

* Generalize to heterogeneous geometric
features

* Groups of features with 1dentity
information invariant to pose — invariant
bearing groups

51



Projective invariants

* Projective invariant for coplanar points

* Perspective projection of coplanar points
1s a plane perspective transform:

p=MP — p=AP, with 3x3 A

* determinant ratio of 5 point tuples 1s
invariant

det([p,.pjpk ]ﬁetqpiplpm ])
det([pipjpl ]ﬁetqpipkpm ])

52



det((p.p,p \et(p.pip,])  detur.ar,ap, \et(4p.ap.aP,])
det((p.p,p Wet(p.pip,])  det(4aP,ap ap, \et(4mP 4P, ])
~det(4 [pPP, |Wet(4 [PRR,])
-~ det(4 [PPP |)et(4 [PRP,])
 (det(4 ¥ )aet([ PP, Het([RRP,])
- (det(4 ¥ )det([pPR Het(PPP,])
~det([pPR et((PPP,])
~det([pP.P ]het((PRP, ])

53



Tangent invariance

 Incidence 1s preserved despite transformation

M-curve construction

* Transform four points above to unit square:
measurements 1n this canonical frame will be
invariant to pose. 54



For each type 1 of invariant-bearing group
For each image group (G of type T

Determine the walues V' of the invariants of &

For each model feature group M of type I whose invariants
have the wvalues |

Determine the transfermation that takes M to &
Hender the model using this transformation

Compare the result with the image, and accept if
similar
end
end
end

55
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Verification?

« Edge score
— are there 1image edges near predicted object edges?
— very unreliable; in texture, answer is usually yes

e Oriented edge score

— are there image edges near predicted object edges with the right
orientation?

— better, but still hard to do well (see next slide)
« Texture largely 1gnored [Forsythe]

— e.g. does the spanner have the same texture as the wood?

57
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Algorithm Sensitivity

* Geometric Hashing

— A relatively sparse hash table 1s critical for good
performance

— Method 1s not robust for cluttered scenes (full hash
table) or noisy data (uncertainty in hash values)

* Generalized Hough Transform
— Does not scale well to multi-object complex scenes

— Also suffers from matching uncertainty with noisy

data

Grimson and Huttenlocher, 1990
59

[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]



Comparison to template matching

* Costs of template matching

— 250,000 locations x 30 orientations x 4 scales = 30,000,000
evaluations

— Does not easily handle partial occlusion and other variation
without large increase in template numbers

— Viola & Jones cascade must start again for each qualitatively
different template
* Costs of local feature approach
— 3000 evaluations (reduction by factor of 10,000)

— Features are more invariant to illumination, 3D rotation, and object
variation

— Use of many small subtemplates increases robustness to partial
occlusion and other variations

60
[Lowe]



Today: “Model-based Vision”

Hypothesize and test
Interpretation Trees
Alignment

Pose Clustering
Invariances
Geometric Hashing

Tuesday: Project previews!
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