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Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 12: (Face) Detection

— Template matching
— Backprop

— SVM

— Boosting



Face Detection Example

- Interactive Agents

- Security Systems

- Video Compression

- Image Database Analysis

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Why Face Detection 1s Difficult?

Pose: Variation due to the relative camera-face pose (frontal, 45 degree,
profile, upside down), and some facial features such as an eye or the nose
may become partially or wholly occluded.

Presence or absence of structural components: Facial features such as
beards, mustaches, and glasses may or may not be present, and there is a
great deal of variability amongst these components including shape, color,
and size.

Facial expression: The appearance of faces are directly affected by a
person's facial expression.

Occlusion: Faces may be partially occluded by other objects. In an image
with a group of people, some faces may partially occlude other faces.

Image orientation: Face images directly vary for different rotations about
the camera's optical axis.

Imaging conditions: When the image is formed, factors such as lighting
(spectra, source distribution and intensity) and camera characteristics
(sensor response, lenses) affect the appearance of a face.




Face Detection Methods

Approach

Representative Works

Knowledge-hased

Feature invariant
— Facial Features
— Texture
— Skin Color
— Multiple Features
Template matching
— Predefined face templates
— Deformable Templates
Appearance-based method
— Eigenface
— Distribution=based
— Neural Netwark
— Support Vector Machine (SVM)
— Naive Bayes Classifier
— Hidden Markov Model (HMM)
— Information=-Theoretical Approach

Multiresolution rule-based method [170]

Grouping of edges [87] [178]

Space Gray-Level Dependence matrix (SGLD) of face pattern [32]
Mixture of Gaussian [172] [98]

Integration of skin color, size and shape [79]

Shape template [28]
Active Shape Model (ASM) [86]

Eigenvector decomposition and clustering [163]

Gaussian distribution and multilayer perceptron [154]
Ensemble of neural networks and arbitration schemes [128]
SVM with polynomial kernel [107]

Joint statistics of local appearance and position [140]
Hipher order statistics with HMM [123]

Kullback relative information [89] [24]

M.H. Yang, D. Kriegman, N. Ahuja, Detecting faces in images, a
survey”, PAMI vol.24,no0.1, January, 2002. 4



Detecting Human Faces in Color Images




Template Matching




Structured templates
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Multi-scale search

 Search at multiple scales (and pose)

Input image pyramid |

* Multiple templates

« Single template, multiple sca

* Image Pyramid
— decimate 1mage by constant fa

— efficient search




The Classical Face Detection Process

jJyJu JUJUBALs

Smallest
Scale

50,000 Locations/Sgales

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Learning approach

e [earn Classifier Parameters

* Benefits:
— no human domain experience necessary

— parameters can be derived from large data sets,
and thus be more reliable

— opportunity to improve performance by
correcting mistakes and including 1n training set

10



Too many templates...

Image templates (simplest view-based method — straw man)

= keep an image of every object from different viewing directions,
lighting conditions, etc.

= nearest neighbor cross-correlation matching with images in model
database (or robust matching for clutter & occlusion)

Obvious problems:

= storage and computation costs become unreasonable as the number of
objects increases

" may require very large ensemble of ‘training’ images

11
Fleet & Szeliksi



Subspace Methods

How can we find more efficient representations for the ensemble of
views, and more efficient methods for matching?

= Jdea: images are not random... especially images of the same
object that have similar appearance

A

E.g., let images be represented as points
in a high-dimensional space (e.g., one
dimension per pixel)

Fleet & Szeliksi
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[Linear Dimension Reduction

Given that differences are structured, we can use ‘basis images’ to
transform 1mages into other images in the same space.

Fleet & Szeliksi
13



[Linear Dimension Reduction

What linear transformations of the images can be
used to define a lower-dimensional subspace that
captures most of the structure in the image
ensemble?

Fleet & Szeliksi
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Observation

U

Approximation x, Error

Want the M bases that minimize the mean squared error over

the training data
2

N
° . An_f\.}n
min £, = E Hx X
n=l1
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Intuition

A
&

If I give you the mean and one vector
to represent the data, what vector
would you choose?

Why?

16



Intuition

M D
X ~Eziui+ Eb]u]
i=1 j=M+1

Projecting onto U, captures the majority of
the variance and hence projecting onto 1t
minimizes the error



Principal Component Analysis

e Sample mean and covariance:
,—C:iign c:Li(x"—f)(V—fc)T
N n=1 N_l n=1
« Let the eigenvectors and eigenvalues of C be €, and Mk
fork<D (e, Ce, =Ae, with 24, 2---24,)

e In matrix form: C E=FE L, where L =diag(4,,...,4,)
and £ =|e,,...e,]

« Because C is symmetric positive-definite, we know £ T =F'

Fleet & Szeliski
18



Principal Component Analysis

 Eigenvectors are the principal directions, and the eigenvalues
represent the variance of the data along each principal direction

#* A 1s the marginal variance along the principal direction e,

X, Iy 21@1

\

Fleet & Szeliski
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Principal Component Analysis

» The first principal direction €1 is the direction along
which the variance of the data 1s maximal, 1.e. 1t
maximizes

elcg =  gle=1

* The second principal direction maximizes the variance
of the data in the orthogonal complement of the first
eigenvector.

* ctcC.

Fleet & Szeliski
20



Principal Component Analysis

« PCA Approximate Basis: If A\ ~0 for k> M for some

M<< D, then we can approximate the data using only M of
the principal directions (basis vectors):

~If B= [él,...,éM] then for all points

"=Ba"+Xx

where CIZ _ ()_Cn —)_C)Té

Fleet & Szeliksi
21



PCA

— Over all rank M bases, B minimizes the MSE of

approximation

D
2%

j=M+1

*Choosing subspace dimension M:

— look at decay of the eigenvalues as a
function of M

— Larger M means lower expected error in
the subspace data approximation

eigenvalues >‘j

D

Fleet & Szeliski
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Computing using SVD

Let X =[x"---x"]

1 &
Compute the mean column vector: X = — Z x'
i=1

Subtract the mean from each column.

A=X-x=[(X"-X)(x" = X)]

Singular Value Decomposition allows us to write 4 as:

A=UzV"

23



SVD and PCA

A=UzV"
h - / 5, 0 0 0]
Orthonormal columns 0 o, 0 0
O 0 . 0
0 0 0 o,

Diagonal matrix of singular
values

24



SVD and PCA

Note:

C=Laar
D

=iU2VT(U2VT)T
D

In other words

2
O

Cii, = —1ii,
D
1.e. the singular vectors of 4

are the eigenvectors of the
covariance matrix C.

25



SVD and PCA

* So the columns of U are the eigenvectors
* And the eigenvalues are just

2
O
3=k

26



The benefit of eigenfaces over nearest neighbor

‘)71 _)72 ‘2: ()71 _)72)T(J71 _372)

image differences

eigenyalues

basis functions—

:‘(U)“cl’(_ Ux, )T (U)—él _Wz)
= (¥"UT -FU" \UR, - U, )

_=T= =T= =T= |, =T=

(xl — xz Xxl — xz

= X, — X, ‘ 27

eigenvalue differences



Subspace Face Detector

 PCA-based Density Estimation p(x)
Maximum-likelihood face detection based on DIFS + DFFS

I
. Eigenvalue spectrum
'DFFS '
| F i F
DIFS _ :
F L
1 M N

28
Moghaddam & Pentland, “Probabilistic Visual Learning for Object Detection,” ICCV’95.



Subspace Face Detector

e Multiscale Face and Facial Feature Detection & Rectification

— we] Multiscale g Feature
Head Search Search

(o)) )~

Normalized Eigenfaces

i 29
Moghaddam & Pentland, “Probablhstlc Visual Learning for Object Detection,” ICCV’95.



Sung and Poggio

* Density learning approach
« Mixture of Gaussians for face and not-face

* One of the first applications of learning for
face detection with large training sets.
— Kah-Kay Sung and Tomaso Poggio, Example-
Based Learning for View-based Human Face

Detection, IEEE Trans. PAMI 20(1), January
1998

— MIT AI TR 1572, 1996

30



Face detector architecture

Teat m
Pattern
Pre-process Aanomncal
ar Peaize Face Model

$ 4

"Difference” measurements

3
Face/lJor-Face Classifier

(multi-layer perceptron)

[ Sung and Poggio ]



Distribution-Based Face Detector

» Learn face and nonface models from examples [Sung and Poggio 95]

* Cluster and project the examples to a lower dimensional space using
Gaussian distributions and PCA

» Detect faces using distance metric to face and nonface clusters

¥3  FaceSample X3 Approxmaton with
4  Distrbution 4 Gaussian clusters

—
m
w
-
15

Test Pattern

Frontal Face Pattem
samples to approximate
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Distribution-Based Face Detector

» Learn face and nonface models from examples [Sung and Poggio 95]

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern

33



Neural Network-Based Face Detector

* Explicit generative model was too slow...

* Train a set of multilayer perceptrons and arbitrate
a decision among all outputs [Rowley et al. 98]
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The basic algorithm used for face detection

Input unoge pyrommd  Bxtocted window  Correct hghting  Histogrwn equalizotion Receptive fields .
(20 by 20 pixels! Hdden nmts
[ aad : ' .
- _:-:mgi
: =
_ﬁéi_ Netsork ' g \
WOLE a Output
Inpmt [:j alas
- o Ej Ej Q [:j g a g A
| [:] [ﬂ —==,a5a
; 1 ;7 ﬂ ﬂ [:j =
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. % S
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. I / ny
- y
Preprocessing Meural network

From: http://www.1ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/



Oval mask for ignoring
background pixels:

Original window:

Best fit linesr function:

Lighting corrected window:
{linear function subiracted)

Histogram equalized window:

The steps in preprocessing a window. First, a linear function is fit to the intensity values in the window,

and then subtracted out, correcting for some extreme lighting conditions. Then, histogram equalization is
applied, to correct for different camera gains and to improve contrast. For each of these steps, the mapping
1s computed based on pixels inside the oval mask, while the mapping is applied to the entire window.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/ 36



The basic algorithm used for face detection

Input unoge pyrommd  Bxtocted window  Correct hghting  Histogrwn equalizotion Receptive fields .
(20 by 20 pixels! Hdden nmts
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From: http://www.1ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/



Example face images, randomly mirrored,
rotated, translated, and scaled by small
amounts (photos are of the three authors).

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/ 38



During training, the partially-trained system is applied to images of scenery which do not
contain faces (like the one on the left). Any regions in the image detected as faces (which

are expanded and shown on the right) are errors, which can be added into the set of
negative training examples.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/

W
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Images with all the above threshold detections indicated by boxes.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/ 40
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The framework used for merging multiple detections from a single network: A) The detections
are recorded in an image pyramid. B) The detections are "“spread out" and a threshold is
applied. C) The centroids in scale and position are computed, and the regions contributing to
each centroid are collapsed to single points. In the example shown, this leaves only two
detections in the output pyramid. D) The final step is to check the proposed face locations for
overlaps, and E) to remove overlapping detections if they exist. In this example, removing the
overlapping detection eliminates what would otherwise be a false positive.

41
From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/



Network 1's detections (in an image pyramicl) Metwork 2's detections (in an image pyramic)

S~

AND

Falkse detect

Result of AND (false detections eliminated)

From:
http://www.1us.cs.cmu.e
du/IUS/har2/har/www/C
MU-CS-95-158R/

ANDing together the outputs from two networks over different positions and
scales can improve detection accuracy.



ROC (receiver operating
characteristic) curve

e
-
-

O

Percent correct detection

0 Percent false detections 100
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ROC (receiver operating
characteristic) curve

e
-
-

Percent correct detection

0 Percent false detections 100

Realistic examples

44



ROC (receiver operating
characteristic) curve

e

Percent correct detection

0 Percent false detections 100

1deal
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Fraction of Faces Detected

ROC Curve for Test Sets A, B, and C

L ' T ] | |

0.85 |

0.85 |

D-B — .lll

0.75 ' el —
1e-0F 1e-06 1e-06 0.0001

False Detections per Windows Examined
From: http://www.1ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/
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http://www.1us.cs.cmu.edu/demos/facedemo.html

CMU's Face Detector Demo

This is the front page for an interactive WWW demonstration of a face detector developed here at CMU. A detailed
description of the system is available. The face detector can handle pictures of people (roughly) facing the
camera in an (almost) vertical orientation. The faces can be anywhere inside the image, and range
1n size from at least 20 pixels hight to covering the whole image.

Since the system does not run in real time, this demonstration is organized as follows. First, you can submit an image to be
processed by the system. Your image may be located anywhere on the WWW. After your image is processed, you will be
informed via an e-mail message.

After your image is processed, you may view it in the gallery (gallery with inlined images). There, you can see your image,
with green outlines around each location that the system thinks contains a face. You can also look at the results of the system
on images supplied by other people.

Henry A. Rowley (har@cs.cmu.edu)
Shumeet Baluja (baluja@cs.cmu.edu)
Takeo Kanade (tk@cs.cmu.edu)
47



1f1m

48



[y

K: 1/1/0 MASTEN AZIINCING
am  dJohn eoltrane

.
ELUE TH

=




B: 2020 Bkl
e

pich perhick racelieellon.®

SRS A TN MLt T R R

T

DREAMING

[T

widlp b b venkos v It a0l
b e

50



Example CMU face detector results

input

All images from: http://www.1us.cs.cmu.edu/demos/facedemo.hitml



output
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Network 1 Face at Same Scale MNetwaork 2

SNy -

<A CWONCY

elam L

=0 20

Error rates (vertical axis) on a small test resulting from adding noise to various portions of the input image
(horizontal plane), for two networks. Network 1 has two copies of the hidden units shown in Figure 1 (a
total of 58 hidden units and 2905 connections), while Network 2 has three copies (a total of 78 hidden
units and 4357 connections).

The networks rely most heavily on the eyes, then on the nose, and then on the mouth (Figure 9).
Anecdotally, we have seen this behavior on several real test images. Even in cases in which only one eye
is visible, detection of a face 1s possible, though less reliable, than when the entire face is visible. The
system is less sensitive to the occlusion of features such as the nose or mouth.

73
From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/



Support vector machines (SVM’s)

* The 3 good 1deas of SVM'’s

74



Good 1dea #1: Classity rather than
model probability distributions.

* Advantages:

— Focuses the computational resources on the task at
hand.

* Disadvantages:
— Don’t know how probable the classification 1s

— Lose the probabilistic model for each object class;
can’t draw samples from each object class.

75



Good 1dea #2: Wide margin
classification

* For better generalization, you want to use
the weakest function you can.

— Remember polynomial fitting.
* There are fewer ways a wide-margin

hyperplane classifier can split the data than
an ordinary hyperplane classifier.

76



Too weak

1.0 T

0.5

0.0 :
0.0 0.5 N 1.0

Figure 1.6. An example of a set of 11 data points obtained by sampling the
function h(z), defined by (1.4), at equal intervals of z and adding random noise.
The dashed curve shows the function h(x), while the solid curve shows the
rather poor approximation obtained with a linear polynomial, corresponding
to M =1in (1.2).

Bishop, neural networks for pattern recognition, 1995

77



Just right

1.0 .

0.5

0.0 *
0.0 iR e WD

Figure 1.7. This shows the same data set as in Figure 1.6, but this time fitted by

a cubic (M = 3) polynomial, showing the significantly improved approximation
to h(z) achieved by this more flexible function.

Bishop, neural networks for pattern recognition, 1995
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Too strong

0.0
0.0

Figure 1.8. The result of fitting the same data set as in Figure 1.6 using a 10th-
order (M = 10) polynomial. This gives a perfect fit to the training data, but
at the expense of a function which has large oscillations, and which therefore
gives a poorer representation of the generator function h(z) than did the cubic
polynomial of Figure 1.7.

Bishop, neural networks for pattern recognition, 1995
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Figure 1.5 A binary classification toy problem: separate balls from diamonds. The optimal
hyperplane (1.23) is shown as a solid line. The problem being separable, there exists a weight
vector w and a threshold b such that yi({w,x;) +b) > 0 (i = 1,...,m). Rescaling w and
b such that the point(s) closest to the hyperplane satisfy | (w,x)} + b| = 1, we obtain a
canonical form (w,b) of the hyperplane, satisfying v;({w,x;) + b) > 1. Note that in this
case, the margin (the distance of the closest point to the hyperplane) equals 1/|[w]||. This
can be seen by considering two points x;,X; on opposite sides of the margin, that is,
(w,x1) +b=1,{w,x) + b = -1, and projecting them onto the hyperplane normal vector
w/|[w]l.

Learning with Kerr{e”ls, !cholkopf and Smola, 2002

Finding the wide-margin separating hyperplane: a quadratic

programming problem, involving inner products of data vectors

ov



Good 1dea #3: The kernel trick
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Non-separable by a hyperplane 1n 2-d
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Separable by a hyperplane 1n 3-d

83



Embedding

% input space A feature space
0 *
*
LIVEYTATYTTY
QO O G
O
Q
- -

Figure 1.6 The idea of SVMs: map the training data into a higher-dimensional feature
space via @, and construct a separating hyperplane with maximum margin there. This
yields a nonlinear decision boundary in input space. By the use of a kernel function (1.2), it

is possible to compute the separating hyperplane without explicitly carrying out the map
into the feature space.

84
Learning with Kernels, Scholkopf and Smola, 2002



The 1dea

* There are many embeddings were the dot product
in the high dimensional space 1s just the kernel
function applied to the dot product in the low-
dimensional space.

* For example:
— K(x,x") = (<x,x’>+ 1)d
* Then you “forget” about the high dimensional

embedding, and just play with different kernel
functions.

85



Example kernel functions

Polynomials
Gaussians

Sigmoids

Radial basis functions
Etc...

86



Figure 1.7 Example of an SV classifier found using a radial basis function kernel k(x,x") =
exp(—||x — x'||?) (here, the input space is X = [—1,1]?). Circles and disks are two classes of
training examples; the middle line is the decision surface; the outer lines precisely meet the
constraint (1.25). Note that the SVs found by the algorithm (marked by extra circles) are not
centers of clusters, but examples which are critical for the given classification task. Gray
values code |3, y;ek(x, x;) + b|, the modulus of the argument of the decision function
(1.35). The top and the bottom lines indicate places where it takes the value 1 (from [471]).

Learning with Kernels, Scholkopf and Smola, 2002



Discriminative approaches:
e.g., Support Vector Machines

NON-FACES

88



Key Properties of Face Detection

* Each image contains 10 - 50 thousand
locs/scales

* Faces are rare 0 - 50 per image

— 1000 times as many non-faces as faces
« Extremely small # of false positives: 10

* Complex operation on each window (e.g.,
SVM, NN) ==> very slow detector!

89



Key Properties of Face Detection

 In practice, many ad-hoc prefilter
approaches for speed (flesh color, etc)

* Viola-Jones: develop principled approach to
fast detection
— start with large library of local features
— Integral image for efficient computation
— adaboost to find optimal combination

— cascade architecture for fast detection

90



Huge “Library” of Filters

—

iR

_

|

-

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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Constructing Classifiers

* Feature set 1s very large and rich
* Perceptron yields a sufficiently powerful classifier

C(x)= 9(2 a.h(x)+ bj

6,000,000 Features & 10,000 Examples
— 60,000,000,000 feature values!

Classical feature selection is infeasible
— Wrapper methods
— Exponential Gradient (Winnow - Roth, et al.)

92
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Image Features

“Rectangle filters”
Similar to Haar wavelets
Differences between sums

of pixels in adjacent
rectangles

hx) — { 1 if £(x)> 0,

-1 otherwise

160,000x100 =16,000,000
Unique Features

93

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Integral Image

e Define the Integral Image
I'(x,y)=>_I(x',y")

* Any rectangular sum can be
computed in constant time:

D=1+4-(2+3)
=A+(A+B+C+D)—(A+C+A+B)

=D

» Rectangle features can be computed
as differences between rectangles




Boosting

A weak learner 1s a classifier with accuracy
only slightly better than chance.

Boosting: combine a number of simple
classifiers so that the ensemble 1s arbitrarily
accurate.

Allows the use of simple (fast) classifiers
without sacrificing accuracy.

95



96



>
X1

Select a subset of the data from D without replacement.

97



>
X1

Imagine we have a simple linear classifier, C,.

It need only perform better than chance.

98



Chose a new set D2 that 1s “most informative”.

X1

99



Xy 4
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>
Flip a coin: *

Heads: sample from D and present them to C, until it
fails, then add that sample to D,
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Flip a coin: o
Tails: sample from D and present them to C, until 1t

classifies correctly, then add that sample to D,

101



Train a new classtifier C,.

102



Repeat this now using both classifiers in a cascade.
Train a new classifier on data where the other two disagree.
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X1

Repeat this now using both classifiers in a cascade.
Train a new classifier on data where the other two disagree.
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Repeat this now using both classifiers in a cascade.
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Adaboost

Same basic 1dea but give each data element a
weight that determines its probability of being

selected.

low probability of being selected
Focuses resources on the difficu

If the element 1s accurately classified then 1t has a

| again.
t data.

Classification based on the weig

hted sum of the

output of the component classifiers. Weight of
cach classifier 1s related to its training error.
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Initial uniform weight
AdaB O O St on training examples

(Freund & Shapire ’95)

f(X) =0 Zatht ()C) weak classifier 1 /

—

-
—
—-—
_—
——

Incorrect classifications

o, = 0.51o g error, re-weighted more heavily
1 —error,
weak classifier 2 \
; Wti_le_yiatht (x;)
Wt l ylatht (‘xl )
D We
I weak classifier 3

Final classifier is weighted
combination of weak classifiers

Viola and Jones, Robust object detection using a boosted cascade of simple features, CV




AdaBoost for Efficient Feature
Selection

* Image Features = Weak Classifiers

* For each round of boosting:
— Evaluate each rectangle filter on each example
— Sort examples by filter values

— Select best threshold for each filter (min error)
 Sorted list can be quickly scanned for the optimal threshold

— Select best filter/threshold combination

— Weight on this feature 1s a simple function of error rate
— Reweight examples

— (There are many tricks to make this more efficient.)

108
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Building a Classifier from Features

Use a single rectangle feature as weak learner

A weak learner consists of a feature f,, a threshold 0,,
and a parity p, = {-1,1}:

h _ 1 if p f(x) <p, 6,
(X) = 0 otherwise

Picking a weak learner amounts to finding the rectangle
feature with lowest weighted error

109
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Final Classifier 1s a Perceptron

The classifier learned by AdaBoost is a perceptron:

T T
1 1f X o, h(x)>0.52 a,
h(X) — { t=1 t=1

0 otherwise

h(x) = 1 if p, ft(X) <p 9,
0 otherwise

Each feature f(x) can be represented as a list of coordinates
and a Welght (Xla Yis Wl)a (X29 Yo W2)a <o

To apply the classifier to larger image sub-windows,

we simply scale up each feature.
110

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

RO cunee for 200 featuns claszsifier

1 T T T T T T T T T
. . . Ugg .
Not quite competitive...
0.6
084
1)
W ogz
g
2
L | P —
=
B
.E . e S P -
P L Ut U SO U -SSP USRS SR _
UB_‘I_ ................................................................................................... —
UE .................................................................................................. —
0.e 1 1 1 1 1 1 1 1 1
Q 0.2 04 Q.G 0.8 1 1.2 14 16 1.8 =
ks pozitive rate x 0™

ROC curve for 200 feature classifiet11
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Trading Speed for Accuracy

 (iven a nested set of classifier
hypothesis classes ;

% False Pos

\

% Detection

50

* Computational Risk Minimization

IMAGE
SUB-WINDOW

112

NON-FACE

NON-FACE NON-FACE
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Cascaded Classifier
é%g%mDOW_, —501 ﬂ 5 FACE

LF lF lF

NON-FACE NON-FACE NON-FACE

A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

o A 5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)
— using data from previous stage.

e A 20 feature classifier achieve 100% detection
rate with 10% false positive rate (2% cumulative),,

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Experiment: Simple Cascaded Classifier

Rz cunves comparing cascaded clazsifier to monalithic clazsifier
1 T T T T P E——
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025 EEE e TR e e s S _
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: : : — — X0 featume cla==ifier
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BEa positive 1ate w10
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A Real-time Face Detection System

faces

Training non-faces: 350 million sub-
windows from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10,

25, 25, 50, 50, 50, 75, 100, ..., 200, ...

Final classifier contains 6061 features.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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Accuracy of Face Detector

Performance on MIT+CMU test set containing 130 images with
507 faces and about 75 million sub-windows.

ROC cunve for face detector with step 2ize =1.0

0.85

08

o
A

correct detection rate
[
i)

075

o.r

0,65 I I 1 I I I 1 I I
u} 20 40 5ld] &0 100 12 140 160 180 =00
false positrres
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Comparison to Other Systems

False Detections

Detector

10

31

50

65

78

95

110

167

Viola-Jones

76.1

88.4

91.4

92.0

92.1

92.9

93.1

93.9

Viola-Jones

(voting)

81.1

89.7

92.1

93.1

93.1

93.2

93.7

93.7

Rowley-Baluja-
Kanade

83.2

86.0

89.2

90.1

Schneiderman-
Kanade

94.4

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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Speed of Face Detector

Speed is proportional to the average number of features
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium Ill, a 384x288 pixel image takes
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.
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Output of Face Detector on Test Images

’?’D"‘,‘ paln makes you beaudiful
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More Examples
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Viola/Jones

Three contributions with broad applicability
— Cascaded classifier yields rapid classification

— AdaBoost as an extremely efficient feature
selector

— Rectangle Features + Integral Image can be
used for rapid image analysis

121
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Goal: Detect Pedestrians.

Viola, Jones and Snow, ICCV’03
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Training Data

Some positive
training examples.

rl{f!.i.-nl y
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AEREL DR
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Viola, Jones and Snow, ICCV’03 & i ) '15 LA




Simple Features

24x24 windows applied at

= multiple scales.
45,396 possible features in

each window.

D E

Examples of simple linear filters.

Many many different possible filters of this type.

Viola, Jones and Snow, ICCV’03
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Using Motion Information

A ARRIRE

Frame Framea 2

Viola, Jones and Snow, ICCV’03
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Pedestrian Filters

LIEH

filter 1

filter 2

filter 3

filter 4

filter 5

Viola, Jones and Snow, ICCV’03
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Viola, Jones and Snow, ICCV’03
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Viola, Jones and Snow, ICCV’03
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