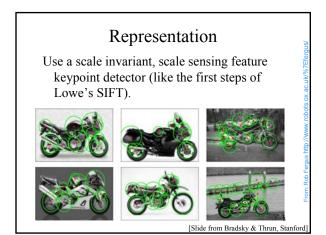
## 6.891 Computer Vision and Applications Prof. Trevor. Darrell Lecture 14: - Unsupervised Category Learning - Gestalt Principles - Segmentation by Clustering - K-Means - Graph cuts - Graph cuts - Hough transform - Hough transform - Fitting Readings: F&P Ch. 14, 15.1-15.2

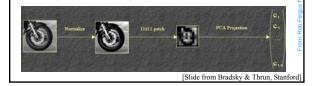
# (Un)Supervised Learning

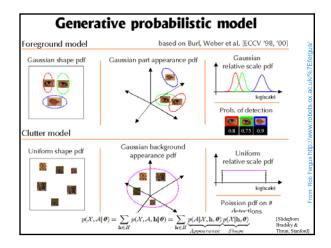
- Methods in last two lectures presume:
  - Segmentation
  - Labeling
  - Alignment
- What can we do with unsupervised (weakly supervised) data?
- Clustering / Generative Model Approach...<sup>2</sup>

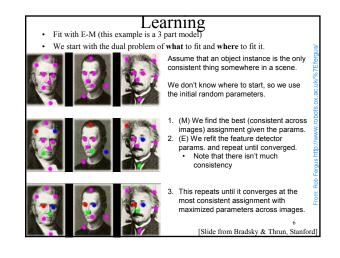


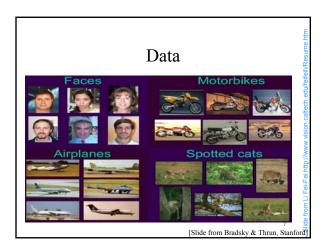
# Features for Category Learning

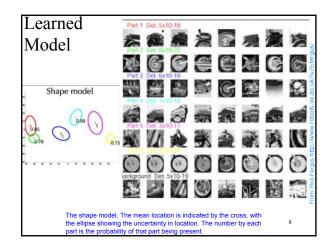
A direct appearance model is taken around each located key. This is then normalized by it's detected scale to an 11x11 window. PCA further reduces these features.

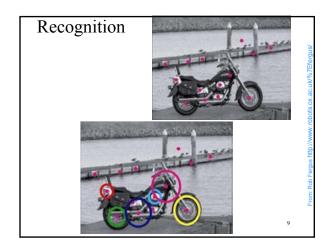




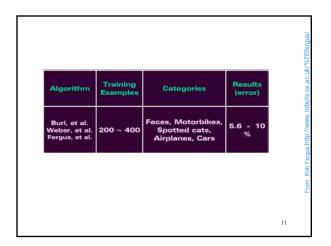












# Segmentation and Line Fitting Gestalt grouping Background subtraction K-Means

- Graph cuts
- Hough transform
- Iterative fitting

(Next time: Probabilistic segmentation)

# Segmentation and Grouping

- Motivation: vision is often simple inference, but for segmentation
- Obtain a compact representation from an image/motion sequence/set of tokens
- Should support application
- Broad theory is absent at present
- Grouping (or clustering)
   collect together tokens that "belong together"
- Fitting

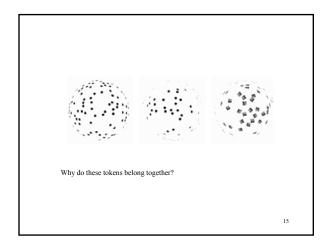
   associate a model with
  - tokens - issues
  - issues
     which model?
    - which token goes to which element?
    - how many elements in the model?

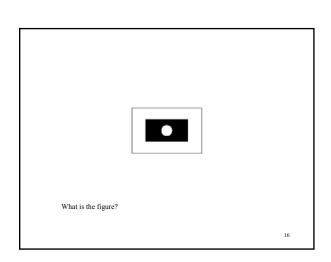
13

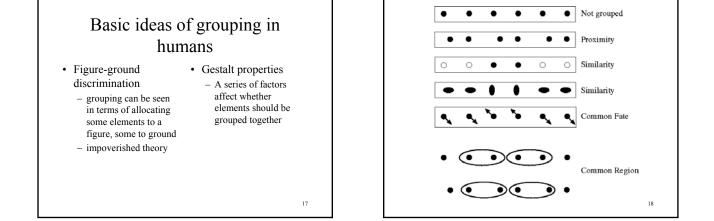
# General ideas

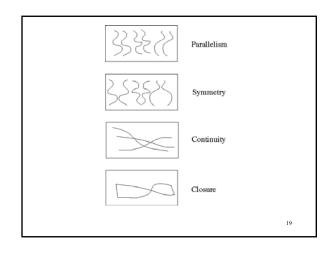
- Tokens
  - whatever we need to group (pixels, points, surface elements, etc., etc.)
- Top down
   segmentation
  - tokens belong together because they lie on the same object
- Bottom up segmentation – tokens belong together
  - because they are locally coherent
- These two are not mutually exclusive

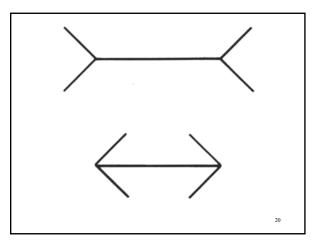
14

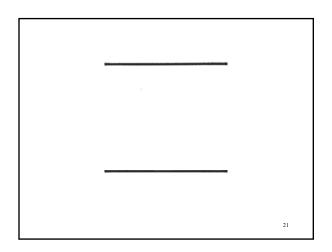


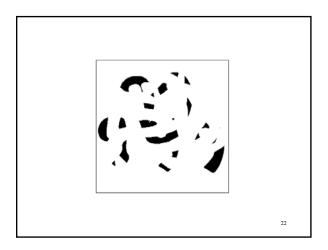


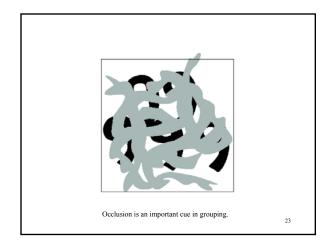


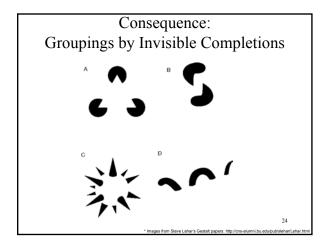




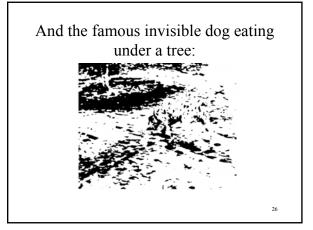










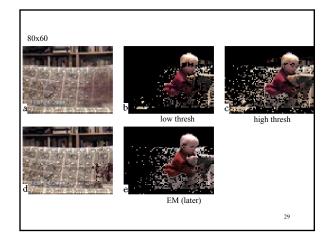


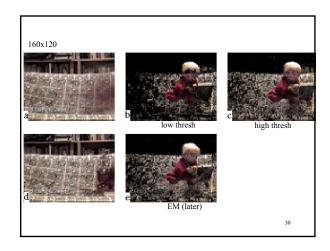
# Technique: Background Subtraction

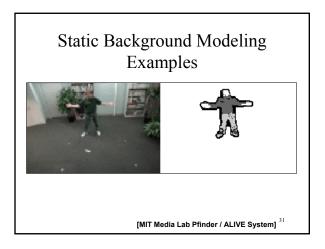
- If we know what the background looks like, it is easy to identify "interesting bits"
- Applications
  - Person in an office
  - Tracking cars on a road
  - surveillance
- Approach:

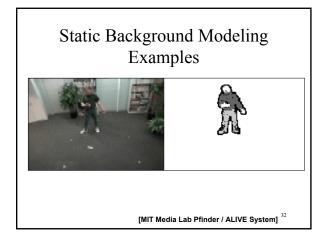
   use a moving average to estimate background image
  - subtract from current frame
  - large absolute values are interesting pixels
    - trick: use morphological operations to clean up pixels

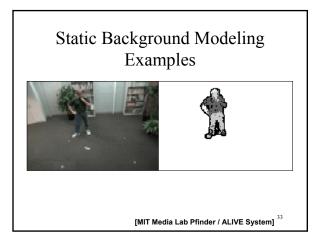


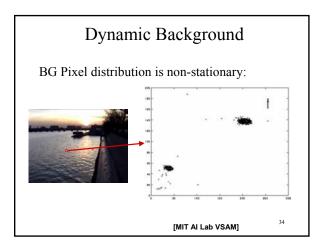




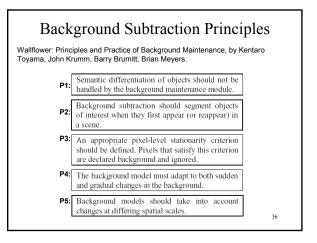


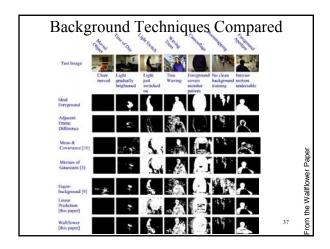


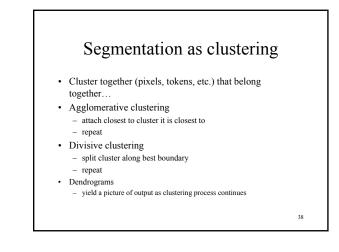


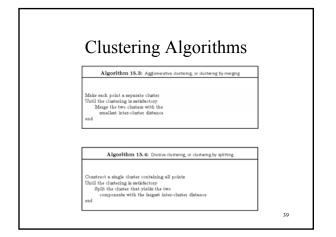


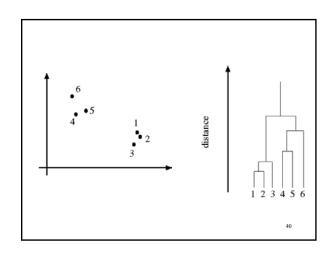
# <section-header><section-header><section-header><text><text><text><image><image>

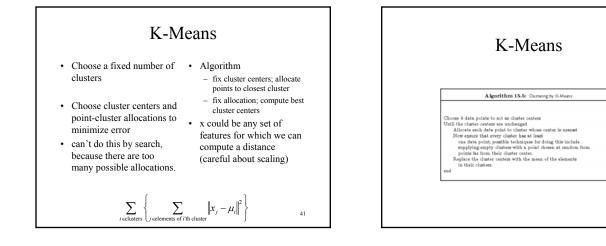


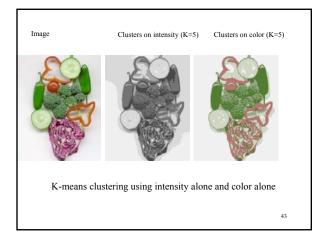


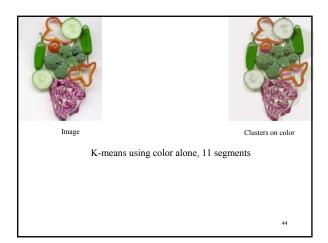


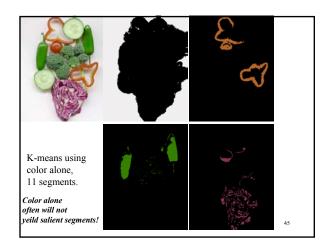


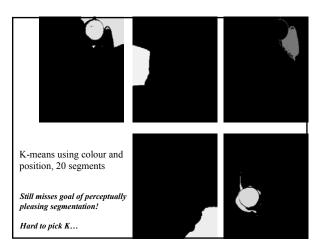


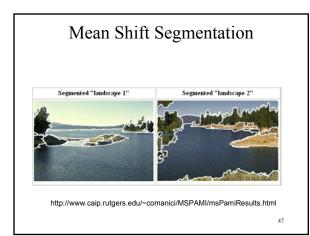


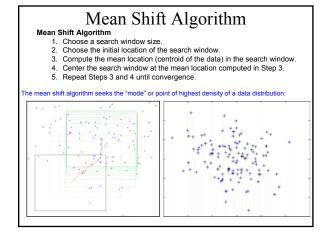


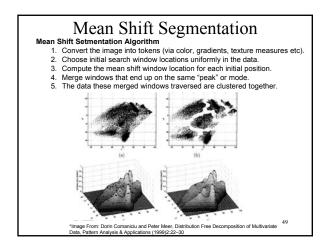


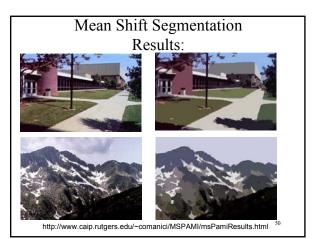




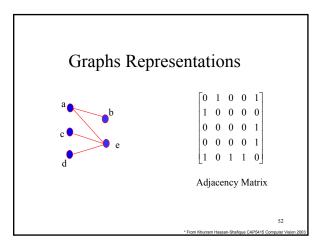


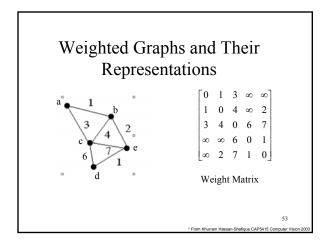


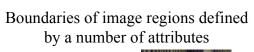




<section-header><section-header><text><text><text><text><text>



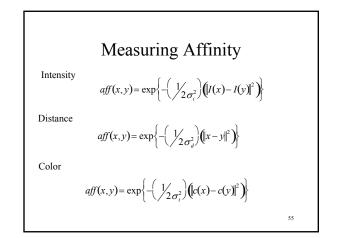




- Brightness/color
- Texture
- Motion
- Stereoscopic depth
- Familiar configuration



Malik



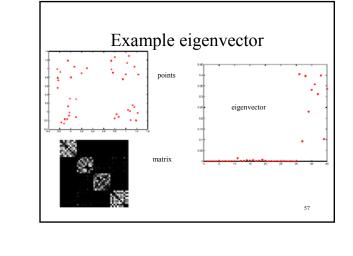
# Eigenvectors and affinity clusters

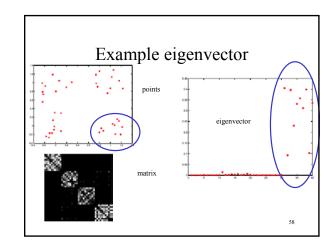
- Simplest idea: we want a vector a giving the association between each element and a cluster
- We want elements within this cluster to, on the whole, have strong affinity with one another
- We could maximize  $a^T A a$
- · But need the constraint

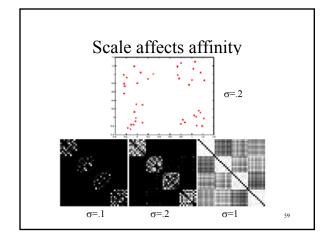
 $a^T a = 1$ 

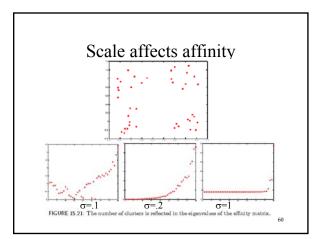
• This is an eigenvalue problem - choose the eigenvector of A with largest eigenvalue

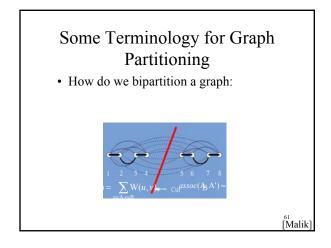
56

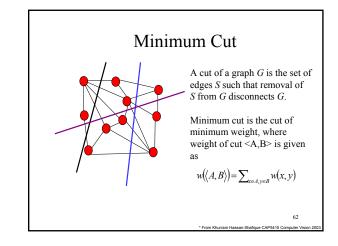


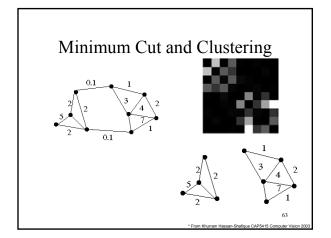


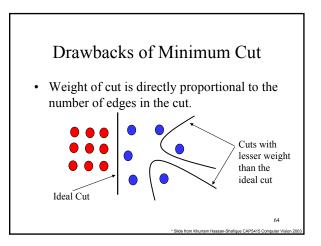


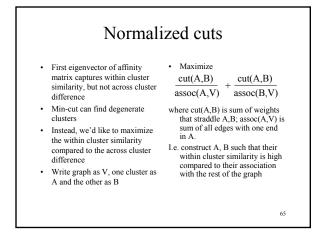






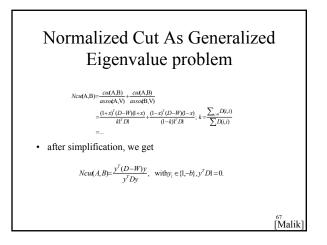


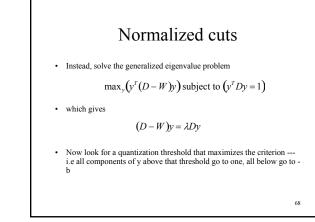


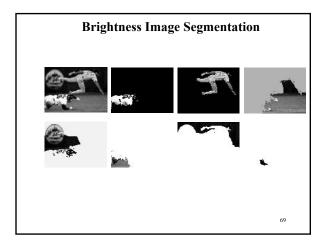


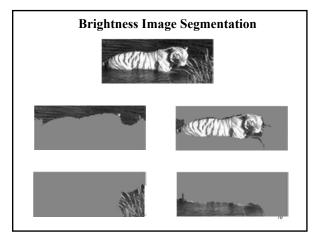
# Solving the Normalized Cut problem

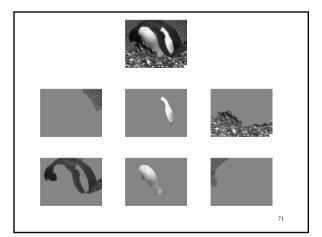
- Exact discrete solution to Ncut is NP-complete even on regular grid,
   – [Papadimitriou'97]
- Drawing on spectral graph theory, good approximation can be obtained by solving a generalized eigenvalue problem.

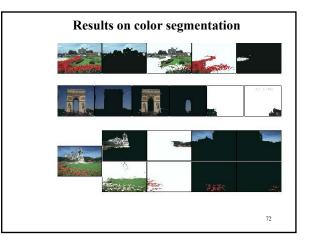


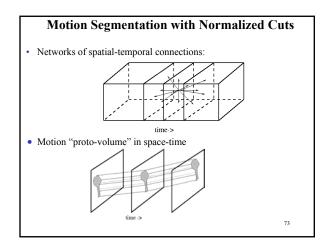


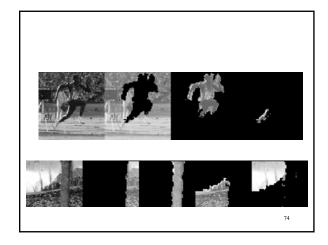










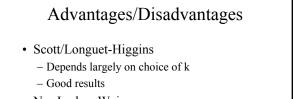


| Comparison of Methods     |                                                         |                                                                                                                           |
|---------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Authors                   | Matrix used                                             | Procedure/Eigenvectors used                                                                                               |
| Perona/ Freeman           | Affinity A                                              | 1 <sup>st</sup> x: $Ax = \lambda x$<br>Recursive procedure                                                                |
| Shi/Malik                 | D-A with D a<br>degree matrix<br>$D(i,i) = \sum A(i,j)$ | $2^{nd}$ smallest generalized<br>eigenvector $(D-A)x = \lambda Dx$<br>Also recursive                                      |
| Scott/<br>Longuet-Higgins | Affinity A,<br>User inputs k                            | Finds k eigenvectors of A, forms<br>V. Normalizes rows of V. Forms<br>Q = VV'. Segments by Q.<br>Q(i,j)=1 -> same cluster |
| Ng, Jordan, Weiss         | Affinity A,<br>User inputs k                            | Normalizes A. Finds k<br>eigenvectors, forms X.<br>Normalizes X, clusters rows                                            |

# Advantages/Disadvantages Perona/Freeman

- For block diagonal affinity matrices, the first eigenvector finds points in the "dominant"cluster; not very consistent
- Shi/Malik
  - 2<sup>nd</sup> generalized eigenvector minimizes affinity between groups by affinity within each group; no guarantee, constraints

76 Nugent' Stanberry UW STAT 593



- Ng, Jordan, Weiss
  - Again depends on choice of k
  - Claim: effectively handles clusters whose overlap or connectedness varies across clusters

77

Nugent' Stanberry UW STAT

. Affinity Matrix Shi/Mali O matri Affinity Matrix Shi/Malik Scott/Lon.Higg Perona/Free 1<sup>st</sup> eigenv 2<sup>nd</sup> gen. eige Q matrix , ٢ Affinity Matrix Scott/Lon.Higg O Alus IW STAT 593

# Segmentation and Line Fitting

- · Gestalt grouping
- · Background subtraction
- K-Means
- Graph cuts
- Hough transform
- Iterative fitting

# Fitting

- Choose a parametric object/some objects to represent a set of tokens
- Most interesting case is
   when criterion is not local
  - can't tell whether a set of points lies on a line by looking only at each point and the next.
- · Three main questions:
  - what object represents this set of tokens best?
  - which of several objects gets which token?
  - how many objects are there?
  - (you could read line for object here, or circle, or ellipse or...)

80

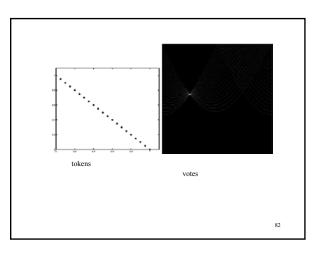
# Fitting and the Hough Transform

- Purports to answer all three questions
  - in practice, answer isn't usually all that much help
- · We do for lines only
- A line is the set of points (x, y) such that  $(\sin \theta)x + (\cos \theta)y + d = 0$
- Different choices of θ, d>0 give different lines
  For any (x, y) there is a one
  - For any (x, y) there is a one parameter family of lines through this point, given by

79

 $(\sin \theta)x + (\cos \theta)y + d = 0$ Each point gets to vote for each line in the family; if there is a line that has lots of votes, that should be the line passing through the points

81



# Mechanics of the Hough transform

•

- Construct an array representing  $\theta$ , d
- For each point, render the curve (θ, d) into this array, adding one at each cell
- Difficulties
  - how big should the cells be? (too big, and we cannot distinguish between quite different lines; too small, and noise causes lines to be missed)
- How many lines?
   count the peaks in the Hough array
- Who belongs to which line?

tag the votes

• Hardly ever satisfactory in practice, because problems with noise and cell size defeat it

83

