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Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 15: Fitting and Segmentation

Readings:  F&P Ch 15.3-15.5,16
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• Supervised->Unsupervised Category Learning 
needs segmentation 

• K-Means
• Mean Shift
• Graph cuts
• Hough transform

Last time: “Segmentation and Clustering (Ch. 14)”
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[Slide from 
Bradsky & 
Thrun, Stanford]
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Learned
Model
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The shape model. The mean location is indicated by the cross, with 
the ellipse showing the uncertainty in location. The number by each 
part is the probability of that part being present. 
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Mean Shift Algorithm
Mean Shift Algorithm

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:

8

Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image

V: image pixels

E: connections between 
pairs of nearby pixels

region       
 same  the tobelong       
j& iy that probabilit :ijW
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Eigenvectors and affinity clusters

• Simplest idea:  we want a 
vector a giving the association 
between each element and a 
cluster

• We want elements within this 
cluster to, on the whole, have 
strong affinity with one another

• We could maximize  

• But need the constraint 

• Shi/Malik, Scott/Longuet-
Higgens, Ng/Jordan/Weiss, etc.

• This is an eigenvalue problem -
choose the eigenvector of A 
with largest eigenvalue

aT Aa aTa = 1
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tokens votes

Hough transform
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• Robust estimation
• EM
• Model Selection
• RANSAC

(Maybe “Segmentation I” and “Segmentation II” 
would be a better way to split these two lectures!)

Today “Fitting and 
Segmentation (Ch. 15)”
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Robustness

• Squared error can be a source of bias in the 
presence of noise points
– One fix is EM  - we’ll do this shortly
– Another is an M-estimator

• Square nearby, threshold far away

– A third is RANSAC
• Search for good points
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Robust Statistics

• Recover the best fit to the majority of the data.
• Detect and reject outliers.
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Estimating the mean

0 2 4 6

Gaussian distribution
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Estimating the Mean

∏
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The mean maximizes this likelihood:

The negative log gives (with sigma=1):
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“least squares” estimate
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Estimating the mean

0 2 4 6
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Estimating the mean

0 2 4 6+∆

What happens if we change just one measurement?

N
∆

+= µµ '

With a single “bad” data point I can move the mean 
arbitrarily far.
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Influence

Breakdown point

* percentage of outliers required to make the solution 
arbitrarily bad.

Least squares:

* influence of an outlier is linear (∆/N)

* breakdown point is 0% -- not robust!

0 2 4 6+∆

What about the median?
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What’s Wrong?
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Outliers (large residuals) have too much influence.

2)( xx =ρ xx 2)( =ψ
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Approach

Want to give less influence to points beyond 
some value.

Influence is proportional to the derivative of the ρ function.
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Approach
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with something that gives less influence to outliers.
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Approach
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Robust error function Scale parameter

No closed form solutions!

- Iteratively Reweighted Least Squares
- Gradient Descent

27

L1 Norm

||)( xx =ρ )(sign)( xx =ψ
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Redescending Function

Tukey’s biweight. Beyond a point, the influence 
begins to decrease.

Beyond where the second 
derivative is zero – outlier points
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Robust EstimationRobust Estimation

Geman-McClure function works well.
Twice differentiable, redescending.
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(d/dr of norm):

30
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Scale is critical!

Popular choice:

Robust scale
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Too small

33

Too large

34

Just right

35

Example: Motion

Assumption: Within a finite image region, there is only a 
single motion present.

Violated by: motion discontinuities, shadows, transparency, 
specular reflections…

Violations of brightness constancy result in large residuals: 36

Estimating FlowEstimating Flow

),I);(I);(I()( σρ tux
R

vuE ++= ∑
∈

axaxa
x

Minimize:

Parameterized models provide strong constraints:

* Hundred, or thousands, of constraints.
* Handful (e.g. six) unknowns.

Can be very accurate (when the model is good)!
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Deterministic Annealing

Start with a “quadratic” optimization problem and 
gradually reduce outliers.
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Continuation method

GNC: Graduated Non-
Convexity

39

Fragmented Occlusion

40

Results

41

Results

42

Multiple Motions, again

X

Find the dominant motion while rejecting outliers.

Black & Anandan; Black & Jepson
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Robust estimation models only a single 
process explicitly

Assumption:

Constraints that don’t fit the dominant motion 
are treated as “outliers” (noise).

Problem?

););(()(
,
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Robust norm:

They aren’t noise!
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Alternative View

* There are two things going on simultaneously.
* We don’t know which constraint lines correspond to which 

motion.
* If we knew this we could estimate the multiple motions.

- a type of “segmentation” problem
* If we knew the segmentation then estimating the motion 

would be easy.
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Estimate parameters from segmented data.

Consider segmentation labels to be missing data.

EM General framework

46

Missing variable problems

A missing data problem is a statistical problem 
where some data is missing

There are two natural contexts in which missing 
data are important:

• terms in a data vector are missing for some 
instances and present for other (perhaps 
someone responding to a survey was 
embarrassed by a question)

• an inference problem can be made very much 
simpler by rewriting it using some variables 
whose values are unknown.
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Missing variable problems

A missing data problem is a statistical problem 
where some data is missing

There are two natural contexts in which missing 
data are important:

• terms in a data vector are missing for some 
instances and present for other (perhaps 
someone responding to a survey was 
embarrassed by a question)

• an inference problem can be made very much 
simpler by rewriting it using some variables 
whose values are unknown.
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Missing variable problems

In many vision problems, if some variables were 
known the maximum likelihood inference problem 
would be easy
– fitting; if we knew which line each token came from, it 

would be easy to determine line parameters
– segmentation; if we knew the segment each pixel came 

from, it would be easy to determine the segment 
parameters

– fundamental matrix estimation; if we knew which 
feature corresponded to which, it would be easy to 
determine the fundamental matrix

– etc.
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Strategy

For each of our examples, if we knew the 
missing data we could estimate the 
parameters effectively.

If we knew the parameters, the missing data 
would follow. 

This suggests an iterative algorithm:

1. obtain some estimate of the missing data, using a 
guess at the parameters;

2. now form a maximum likelihood estimate of the 
free parameters using the estimate of the missing 
data. 
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Motion Segmentation

“What goes with what?”

The constraints at these pixels all “go together.”
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Smoothness in layers

52

Layered Representation

[Adelson]

segmentation
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EM in Pictures

Given images at times t and t+1 
containing two motions.

I(x,y,t)

I(x,y,t+1)

54

EM in Pictures

Assume we know the 
segmentation of pixels 
into “layers”

I(x,y,t)

I(x,y,t+1)
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EM in Pictures

I(x,y,t)

I(x,y,t+1)

),(1 yxw

),(2 yxw

Then estimating the motion of each “layer” is easy.

);,( 11 au yx

);,( 22 au yx
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EM in Equations

I(x,y,t)

I(x,y,t+1)

),(1 yxw );,( 11 au yx
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EM in Equations

I(x,y,t)

I(x,y,t+1)

2

,
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EM in Pictures

Ok.  So where do we get the weights?

59

EM in Pictures

The weights represent the probability that the 
constraint “belongs” to a particular layer.

60

EM in Pictures

Assume we know the 
motion of the layers but 
not the ownership 
probabilities of the 
pixels (weights).
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EM in Pictures

Also assume we have a 
likelihood at each pixel:

)/))((
2
1exp(

2
1)|)1(),(( 22 σ

σπ t
T IItItIp +∇−≈+ aua

Assume we know the 
motion of the layers but 
not the ownership 
probabilities of the 
pixels (weights).
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EM in Pictures

)/)(
2
1exp(

2
1)0|)1(),),((( 22

1 σ
σπ tItItIWp −≈+a

Given the flow, warp the 
first image towards the 
second.

Look at the residual error
(It) (since the flow is now 
zero).

match
Don’t match
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EM in Pictures
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Given the flow, warp the 
first image towards the 
second.

Look at the residual error
(It) (since the flow is now 
zero).

Don’t match
match
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EM in Pictures

Two “explanations” for 
each pixel.

Two likelihoods:
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EM in Pictures

Compute total likelihood 
and normalize:
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Motion segmentation Example

• Model image pair (or video sequence) as consisting of 
regions of parametric motion
– affine motion is popular

• iterate E/M…
– determine which pixels belong to which region
– estimate parameters
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Three frames from the MPEG “flower garden” sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 
Transactions on Image Processing, 1994, c 1994, IEEE
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Grey level shows region no. with highest probability

Segments and motion fields associated with them
Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 
Transactions on Image Processing, 1994, c 1994, IEEE
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If we use multiple frames to estimate the appearance
of a segment, we can fill in occlusions; so we can
re-render the sequence with some segments removed.

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 
Transactions on Image Processing, 1994, c 1994, IEEE
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Lines

• Simple case: we have one 
line, and n points

• Some come from the line, 
some from “noise”

• This is a mixture model:

• We wish to determine
– line parameters
– p(comes from line) 

P point | line and noise params( )= P point | line( )P comes from line( )+

P point | noise( )P comes from noise( )
= P point | line( )λ + P point | noise( )(1 − λ)

• e.g.,
– allocate each point to a line with a weight, which is the probability 

of the point given the line
– refit lines to the weighted set of points
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Line fitting review 

• In case of single line and normal i.i.d. errors, 
maximum likelihood estimation reduces to least-
squares:

• The line parameters (a,b) are solutions to the 
system: 
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The E Step

• Compute residuals:

• Compute soft assignments:
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The M Step
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Weighted least squares system is solved for (a1,b1) 
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75

The expected values of the deltas at the maximum
(notice the one value close to zero).
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Closeup of the fit

77

Issues with EM

• Local maxima
– can be a serious nuisance in some problems
– no guarantee that we have reached the “right” 

maximum

• Starting
– k means to cluster the points is often a good idea

78

Local maximum
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which is an excellent fit to some points

80

and the deltas for this maximum

81

Choosing parameters

• What about the noise parameter, and the sigma for 
the line?
– several methods 

• from first principles knowledge of the problem (seldom really 
possible)

• play around with a few examples and choose (usually quite 
effective, as precise choice doesn’t matter much)

– notice that if kn is large, this says that points very 
seldom come from noise, however far from the line 
they lie

• usually biases the fit, by pushing outliers into the line
• rule of thumb; its better to fit to the better fitting points, within 

reason; if this is hard to do, then the model could be a problem
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Estimating the number of models

• In weighted scenario, additional models will not 
necessarily reduce the total error.

• The optimal number of models is a function of the 
σ parameter – how well we expect the model to fit 
the data.

• Algorithm: start with many models. redundant 
models will collapse.
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Fitting 2 lines to data points

• Input:
– Data points that where generated 

by 2 lines 
with Gaussian noise.

• Output:
– The parameters of

the 2 lines.
– The assignment of 

each point to its line. 

ri

(xi,yi)

y=a1x+b1+σv y=a2x+b2+σv
v~N(0,1) 84

The E Step

• Compute residuals assuming known lines:

• Compute soft assignments:
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The M Step

• In the weighted case we find
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Weighted least squares system is solved twice for
(a1,b1) and (a2,b2). 
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Illustrations

Illustration Illustration

l=log(likelihood)

89

Color segmentation Example

Parameters include mixing weights and 
means/covars:

yielding

with

90

EM for Mixture models

If log-likelihood is linear in missing variables we can 
replace missing variables with expectations. E.g.,

1. (E-step) estimate complete data (e.g, zj’s) using 
previous parameters

2. (M-step) maximize complete log-likelihood 
using estimated complete data

mixture model complete data log-likelihood
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Color segmentation with EM

92

Color segmentation with EM

Initialize

93

Color segmentation

• At each pixel in an image, we compute a d-
dimensional feature vector x, which 
encapsulates position, colour and texture 
information.

• Pixel is generated by one of G segments, each 
Gaussian, chosen with probability π:
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Color segmentation with EM

Initialize

E

95

Color segmentation with EM

Initialize

E
M

96

E-step

Estimate support maps:
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M-step
Update mean’s, covar’s, and mixing coef.’s using 

support map:

98

99

Segmentation with EM

100

Model Selection

• We wish to choose a 
model to fit to data
– e.g. is it a line or a circle?
– e.g is this a perspective or 

orthographic camera?
– e.g. is there an aeroplane

there or is it noise?

• Issue
– In general, models with 

more parameters will fit a 
dataset better, but are 
poorer at prediction

– This means we can’t simply 
look at the negative log-
likelihood (or fitting error)

101

Top is not necessarily a better
fit than bottom
(actually, almost always worse)

102
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We can discount the fitting error with some term in the number
of parameters in the model.

104

Discounts

• AIC (an information 
criterion)
– choose model with smallest 

value of 

– p is the number of 
parameters

• BIC (Bayes information 
criterion)
– choose model with smallest 

value of

– N is the number of data 
points

• Minimum description 
length
– same criterion as BIC, but 

derived in a completely 
different way

−2L D;θ*( )+ p log N−2L D;θ*( )+ 2 p
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Cross-validation

• Split data set into two 
pieces, fit to one, and 
compute negative log-
likelihood on the other

• Average over multiple 
different splits

• Choose the model with the 
smallest value of this 
average

• The difference in averages 
for two different models is 
an estimate of the 
difference in KL 
divergence of the models 
from the source of the data
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What if more than half the points are noise?

Extreme segmentation

107

• Iterate:
– Sample
– Fit 
– Test

• Keep best estimate; refit on inliers

RANSAC

108

RANSAC

• Choose a small subset 
uniformly at random

• Fit to that
• Anything that is close to 

result is signal; all  others 
are noise

• Refit
• Do this many times and 

choose the best

• Issues
– How many times?

• Often enough that we are 
likely to have a good line

– How big a subset?
• Smallest possible

– What does close mean?
• Depends on the problem

– What is a good line?
• One where the number of 

nearby points is so big it is 
unlikely to be all outliers
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• Fundamental Matricies
– estimate F from 7 points
– test agreement with all other points

• Direct motion
– estimate affine (or rigid motion) from small match
– see what other parts of image are consistent

• …

RANSAC applications

111

• Robust estimation
• EM
• Model Selection
• RANSAC

[Slides from Micheal Black and F&P]

Fitting and Probabilistic
Segmentation


