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Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 16: Tracking
— Density propagation
— Linear Dynamic models / Kalman filter
Data association
— Multiple models
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Tracking Applications

* Motion capture

» Recognition from motion
* Surveillance
 Targeting

Things to consider in tracking

What are the

* Real world dynamics

+ Approximate / assumed model

* Observation / measurement process

Density propogation

* Tracking == Inference over time

* Much simplification is possible with linear
dynamics and Gaussian probability models

Outline

* Recursive filters

« State abstraction

* Density propagation

* Linear Dynamic models / Kalman filter
 Data association

* Multiple models




Tracking and Recursive estimation

+ Real-time / interactive imperative.
» Task: At each time point, re-compute estimate of
position or pose.
— At time n, fit model to data using time 0...n
— At time n+1, fit model to data using time 0...n+1

* Repeat batch fit every time?

Recursive estimation

» Decompose estimation problem
— part that depends on new observation
— part that can be computed from previous history

* E.g., running average:
a=aa,+(l-0)y,

* Linear Gaussian models: Kalman Filter
« First, general framework...

Tracking

* Very general model:
— We assume there are moving objects, which have an underlying
state X
— There are measurements Y, some of which are functions of this
state
— There is a clock
« at each tick, the state changes
« at each tick, we get a new observation
» Examples
— object is ball, state is 3D position+velocity, measurements are
stereo pairs

— object is person, state is body configuration, measurements are
frames, clock is in camera (30 fps)
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Three main issues in tracking
» Prediction: we have seen y..... Yia what state does this set of mea-
surements predict for the i'th frame? to solve this problem, we need to obtain
a representation of P(X| Yo = v, ..., Yioo=w_,)
* Data association: Some of the measurements obtained from the i-th frame

may tell us about the object's state
Y, ,) to identify these measurements.

ically, we use P( XYoo = vy, . ... Y,

Correction: now that we have y, the relevant measurements — we need
to compute a representation of P(X|Y 0 = g, ..., Yi=uwu).

Simplifying Assumptions

« Only the immediate past matters: formally, we require

PIX| Xy, ... X)) = PIXi[ X))

Thiz assumption hugely simplifies the design of algorithms, as we shall see;
furthermore, it isn't terribly restrictive if we're clever about interpreting X;

as we shall show in the next section.

Measurements depend only on the current state: we assume that ¥,
is conditionally independent of all other measurements given X;. This means
that

PY., Y. . Yi|Xi) = P(Yi|X)P(Y;,.... Y| Xs)

Again, this isn't a particularly restrictive or controversial assumption, but it
yields important simplifications.

Tracking as induction

» Assume data association is done
— we’ll talk about this later; a dangerous assumption

* Do correction for the 0’th frame

* Assume we have corrected estimate for i’th frame
— show we can do prediction for i+1, correction for i+1




Base case

Firstly, we assume that we have P( X,

Plyy| Xo)P(Xyp)

P(Xo|lYo=yy) = Plyg)
0/

x Jrj('.i»"[] XIJ.]!”{XM}

Induction step

Prediction
Prediction involves representing
PUX [t ttiy)
given
P(Xiilge - owicy)

Our independence assumptions make it possible to write

PIX |y - wim) [r'ux..,\'. Mg i )X,

Induction step

Correction
Correction involves obtaining a representation of
PR 1 T y
given
PiX ety
Our independence assumptions make it possible to write
. J
PIX .ol u, Yi
W)
W Wi JPUX G W Wi VP (Y- W)
Plage o)
Plyg.. ... 4
Pl | X )P(X gy, ) e Yia]
Plyg,. ... .l

Pl | X )P (X g oo y)
TPy | X )P(Xiug....v JdX;

Linear dynamic models
* A linear dynamic model has the form

X, = N(Dl,le;zd,}
y, = N(Mlxﬁzm,)

* This is much, much more general than it looks, and extremely
powerful

. Al
Examples %" @iz,

. . Y, =NMx;Z,
* Drifting points ( )
— assume that the new position of the point is the old one,
plus noise

D=Id
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Constant velocity X =NO,x.:2, )

» We have = N(Mixi;z'"’]

u,=u,_ +Av,_ +¢

Vi=viatg

— (the Greek letters denote noise terms)
 Stack (u, v) into a single state vector

(o V) ose

i-1
— which is the form we had above




. _ 5 )
Constant acceleration ™ N, X%, )

* We have = N(M'x';z""]
w,=u,_ +Atv,_  +¢
v, =V, +Ata,, +g,
a,=a,_ +¢&
— (the Greek letters denote noise terms)
* Stack (u, v) into a single state vector

(W) (1 A 0)(u)

R W e

— which is the form we had above !

Periodic motion x=NO,x.:2, )
Y. = N(M‘x‘;Zm’]
Assume we have a point, moving on a line with
a periodic movement defined with a
differential eq:
d*p
dt?

can be defined as

du__( 0 1 _e
(]'f_ g ”)u—._u

with state defined as stacked position and
velocity u=(p, v) P

1t velocity .Lposition
position time
mcasuré:mc:kl,po‘sitio‘n
Constant
Velocity
Model
time
velocity . <t position
position time 1
Constant
Acceleration
Model N
T : x,=N[D, x, 3,
Periodic motion e Y.
v, =NMx;:Z, )

du 0 1 _c
i —( 1 0 )u—;u

Take discrete approximation....(e.g., forward
Euler integration with At stepsize.)

: _\.rd"
Ui = Ui—1 + at

iy + AtSu;_,

1 At
:( ~At 1 )""’

Higher order models

* Independence assumption
Py, ®io1) = Plxi|®i-1)

* Velocity and/or acceleration augmented position
» Constant velocity model equivalent to

Fipipy,.. ., Pi—y) = N(pi—y + (Pi—y = Pi-a) Xa,)

— velocity == Pi-1 = Pi-2
— acceleration == (Pi—y — Pi—2) — (Pi—2 — Pi_a)
— could also use P;—, etc.




The Kalman Filter

» Key ideas:
— Linear models interact uniquely well with Gaussian
noise - make the prior Gaussian, everything else
Gaussian and the calculations are easy

— Gaussians are really easy to represent --- once you
know the mean and covariance, you’re done

The Kalman Filter

N

Time Update Measurement Update
{“Predict™) {“Correct™)

N
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[figure from hitp://www.cs.un.edu/~welch/kalman/kalmanintro.htmi]

The Kalman Filter

AN

Time Update Measurement Update
{“Predict™) {“Correct™)

=

Recall the three main issues in tracking

Prediction: we have seen y...., U what state does this set of mea-
surements predict for the i'th frame? to solve this problem, we need to obtain

a representation of P(X;|Yo = yq...., Yio=u_,)

Data association: Some of the measurements obtained from the é-th frame
may tell us about the object’s state. Typically, we use P(X| Yo = ¥4, . .., )
Y, ,) to identify these measurements.

Correction: now that we have y, the relevant measurements — we need
to compute a representation of P(X;|Y o =wy, ..., Yi = w;).

(Ignore data association for now)
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The Kalman Filter in 1D
* Dynamic Model
x ~ N{dizi_1,05)
» Notation
i ~ Nlmyz,,
mean of P(X;|yo. ..., y—1) as X, < Predicted mean
mean of (X |yo, .. .. yil as T < Corrected mean
the standard deviation of P(X; |y, ... 1) as o]
of P(X, |y, ..., ¥i) as o}
28

Prediction for 1D Kalman filter

» The new state is obtained by
— multiplying old state by known constant
— adding zero-mean noise

* Therefore, predicted mean for new state is
— constant times mean for old state

* Old variance is normal random variable
— variance is multiplied by square of constant
— and variance of noise is added.

X, =dX,, (07 ) =04, + (dio”))*
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The Kalman Filter
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Correction for 1D Kalman filter
Notice:
— if measurement noise is small,
we rely mainly on the measurement,
— if it’s large, mainly on the
prediction
— o does not depend on y 33
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The *-5 give T, +-s give T, vertical bars are 3 standard deviation bars
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Smoothing

* Idea
— We don’t have the best estimate of state - what about
the future?
— Run two filters, one moving forward, the other
backward in time.
— Now combine state estimates

* The crucial point here is that we can obtain a smoothed
estimate by viewing the backward filter’s prediction as yet
another measurement for the forward filter
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n-D

Generalization to n-D is straightforward but more complex.

n-D

Generalization to n-D is straightforward but more complex.

Mewmurezea Update
("*Comrect”}

44
n-D Prediction

Generalization to n-D is straightforward but more complex.

.\h‘.v-l_l_l(\:‘l'.)dn!_\__'v'lllv
Prediction:
* Multiply estimate at prior time with forward model:
i!_:; = -”;'E,".J

» Propagate covariance through model and add new noise:

Y7 =X4, + Diel D %
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n-D Correction
Generalization to n-D is straightforward but more complex.
Tiese Update
Predict™}
Correction:
» Update a priori estimate with measurement to form a
posteriori
47

n-D correction

Find linear filter on innovations

Qfl_.i E; + K :'yl — M;E; ]

i

which minimizes a posteriori error covariance:

b=+ =)

K is the Kalman Gain matrix. A solution is

Ki =37 MF [METMT + B0,




Kalman Gain Matrix

et =z + K[y, — Mz, |

~— T, v ]
M+ B,

As measurement becomes more reliable, K weights residual
more heavily,

lim K, =M""

z,—0

As prior covariance approaches 0, measurements are ignored:

lim K, =0

X =0 2

Diynamic Model:

Update Equations: Correction

Ki= Y7 MT [ME;MT +

2-D constant velocity example from Kevin Murphy’s Matlab toolbox
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[figure from hp://www i mitedu
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox

* MSE of filtered estimate is 4.9; of smoothed estimate. 3.2.

« Not only is the smoothed estimate better, but we know that it is better,
as illustrated by the smaller uncertainty ellipses

« Note how the smoothed ellipses are larger at the ends, because these
points have seen less data.

*+ Also, note how rapidly the filtered ellipses reach their steady-state
(“Ricatti”) values.

Data Association

In real world y; have clutter as well as data...

E.g., match radar returns to set of aircraft
trajectories.

Data Association

Approaches:

* Nearest neighbours

— choose the measurement with highest probability given
predicted state

— popular, but can lead to catastrophe
* Probabilistic Data Association

— combine measurements, weighting by probability given
predicted state
— gate using predicted state
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[figure from hitp://swwwv.aimit.edu/~murphyk/Software/Kalman/kalman himi]




Abrupt changes
What if environment is sometimes unpredictable?
Test several models of assumed dynamics, use the

Do people move with constant velocity?
best.
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Multiple model filters

Test several models of assumed dynamics

[figure from Welsh and Bishop 20001]

MM estimate

Two models: Position (P), Position+Velocity (PV)
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[figure from Welsh and Bishop 2001]
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[figure from Welsh and Bishop 2001]
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[figure from Welsh and Bishop 2001]

Resources

» Kalman filter homepage
http://www.cs.unc.edu/~welch/kalman/

» Kevin Murphy’s Matlab toolbox:

http://www.ai.mit.edu/~murphyk/Software/Kalman/k
alman.html




(KF) Distribution propogation

67
[Isard 1998]

Distribution propogation

68
[Isard 1998]

EKF

Linearize system at each time point to form an
Extended Kalman Filter (EKF)

— Compute Jacobian matrix

Tlgra;y

whose (I,m)’th value is  @f;  evaluated at -
& m 7

— use this for forward model at each step in KF

Useful in many engineering applications, but not as
successful in computer vision....

Representing non-linear Distributions

Representing non-linear Distributions

Unimodal parametric models fail to capture real-
world densities. ..

P

Representing non-linear Distributions

Mixture models are appealing, but very hard to
propagate analytically!

e

[ but see Cham and Rehg’s MHT approach]




Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:

Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:

Outline

* Recursive filters

» State abstraction

* Density propagation

+ Linear Dynamic models / Kalman filter
 Data association

* Multiple models

» Next time:
— Sampling densities
— Particle filtering
[Figures from F&P except as noted]




