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6.891

Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 16: Tracking
– Density propagation
– Linear Dynamic models / Kalman filter 
– Data association
– Multiple models

Readings: F&P Ch 17
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Syllabus
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• Motion capture
• Recognition from motion
• Surveillance
• Targeting

Tracking Applications
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What are the
• Real world dynamics
• Approximate / assumed model
• Observation / measurement process

Things to consider in tracking
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• Tracking == Inference over time
• Much simplification is possible with linear 

dynamics and Gaussian probability models

Density propogation
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• Recursive filters
• State abstraction
• Density propagation
• Linear Dynamic models / Kalman filter 
• Data association
• Multiple models

Outline
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• Real-time / interactive imperative.
• Task: At each time point, re-compute estimate of 

position or pose.
– At time n, fit model to data using time 0…n
– At time n+1, fit model to data using time 0…n+1

• Repeat batch fit every time?

Tracking and Recursive estimation
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• Decompose estimation problem
– part that depends on new observation
– part that can be computed from previous history

• E.g., running average:
at = α at-1 + (1-α) yt

• Linear Gaussian models: Kalman Filter
• First, general framework…

Recursive estimation
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Tracking

• Very general model:  
– We assume there are moving objects, which have an underlying 

state X
– There are measurements Y, some of which are functions of this 

state
– There is a clock

• at each tick, the state changes
• at each tick, we get a new observation

• Examples
– object is ball, state is 3D position+velocity, measurements are 

stereo pairs
– object is person, state is body configuration, measurements are 

frames, clock is in camera (30 fps)
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Three main issues in tracking
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Simplifying Assumptions
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Tracking as induction

• Assume data association is done
– we’ll talk about this later; a dangerous assumption

• Do correction for the 0’th frame
• Assume we have corrected estimate for i’th frame

– show we can do prediction for i+1, correction for i+1
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Base case
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Induction step

given
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Induction step

given

16

Linear dynamic models

• A linear dynamic model has the form

• This is much, much more general than it looks, and extremely 
powerful

yi = N Mixi ;Σmi( )

xi = N Di−1xi−1;Σdi( )

17

Examples

• Drifting points
– assume that the new position of the point is the old one, 

plus noise
D = Id

yi = N Mixi ;Σmi( )

xi = N Di−1xi−1;Σdi( )

cic.nist.gov/lipman/sciviz/images/random3.gif 
http://www.grunch.net/synergetics/images/random
3.jpg
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Constant velocity           

• We have

– (the Greek letters denote noise terms)
• Stack (u, v) into a single state vector

– which is the form we had above

ui = ui−1 + ∆tvi−1 + ε i

vi = vi−1 + ς i

u
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xi = N Di−1xi−1;Σdi( )



4

19

position

position

Constant
Velocity
Model

velocity

time

measurement,position

time 20

Constant acceleration

• We have

– (the Greek letters denote noise terms)
• Stack (u, v) into a single state vector

– which is the form we had above

ui = ui−1 + ∆tvi−1 + ε i

vi = vi−1 + ∆tai−1 +ς i

ai = ai−1 + ξi

u
v
a
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yi = N Mixi ;Σmi( )

xi = N Di−1xi−1;Σdi( )

21

time

position

position

velocity

Constant
Acceleration
Model
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Assume we have a point, moving on a line with 
a periodic movement defined with a 
differential eq: 

can be defined as 

with state defined as stacked position and 
velocity u=(p, v)

Periodic motion
yi = N Mixi ;Σmi( )

xi = N Di−1xi−1;Σdi( )
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Take discrete approximation….(e.g., forward 

Euler integration with ∆t stepsize.)

Periodic motion
yi = N Mixi ;Σmi( )

xi = N Di−1xi−1;Σdi( )
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• Independence assumption

• Velocity and/or acceleration augmented position
• Constant velocity model equivalent to

– velocity ==
– acceleration ==
– could also use         , etc. 

Higher order models
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The Kalman Filter

• Key ideas: 
– Linear models interact uniquely well with Gaussian 

noise - make the prior Gaussian, everything else 
Gaussian and the calculations are easy

– Gaussians are really easy to represent --- once you 
know the mean and covariance, you’re done
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Recall the three main issues in tracking

(Ignore data association for now)
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The Kalman Filter

[figure from http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html]
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The Kalman Filter in 1D

• Dynamic Model

• Notation

Predicted mean

Corrected mean
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The Kalman Filter
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Prediction for 1D Kalman filter

• The new state is obtained by
– multiplying old state by known constant
– adding zero-mean noise

• Therefore, predicted mean for new state is
– constant times mean for old state

• Old variance is normal random variable
– variance is multiplied by square of constant
– and variance of noise is added.
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The Kalman Filter

33

Correction for 1D Kalman filter

Notice:
– if measurement noise is small, 
we rely mainly on the measurement,
– if it’s large, mainly on the 
prediction
– σ does not depend on y 34
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position

position

Constant
Velocity
Model

velocity

time

36

position and
measurement

time
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37 38The o-s give state, x-s measurement.

39The o-s give state, x-s measurement. 40

Smoothing

• Idea
– We don’t have the best estimate of state - what about 

the future?
– Run two filters, one moving forward, the other 

backward in time.
– Now combine state estimates

• The crucial point here is that we can obtain a smoothed 
estimate by viewing the backward filter’s prediction as yet 
another measurement for the forward filter

41 42
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n-D

Generalization to n-D is straightforward but more complex.
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n-D

Generalization to n-D is straightforward but more complex.
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n-D Prediction

Generalization to n-D is straightforward but more complex.

Prediction:
• Multiply estimate at prior time with forward model:

• Propagate covariance through model and add new noise:

47

n-D Correction

Generalization to n-D is straightforward but more complex.

Correction:
• Update a priori estimate with measurement to form a 

posteriori
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n-D correction

Find linear filter on innovations 

which minimizes a posteriori error covariance:

K is the Kalman Gain matrix.  A solution is

( ) ( )
 −− ++ xxxxE

T
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As measurement becomes more reliable, K weights residual 
more heavily, 

As prior covariance approaches 0, measurements are ignored:

Kalman Gain Matrix

1

0
lim −

→Σ
= MKi

m

0lim
0

=
→Σ−

iK
i 50
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[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]

2-D constant velocity example from Kevin Murphy’s Matlab toolbox
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox
• MSE of filtered estimate is 4.9; of smoothed estimate. 3.2. 
• Not only is the smoothed estimate better, but we know that it is better, 

as illustrated by the smaller uncertainty ellipses
• Note how the smoothed ellipses are larger at the ends, because these 

points have seen less data. 
• Also, note how rapidly the filtered ellipses reach their steady-state 

(“Ricatti”) values. 
[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]
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Data Association

In real world yi have clutter as well as data…

E.g., match radar returns to set of aircraft 
trajectories.
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Data Association

Approaches:
• Nearest neighbours

– choose the measurement with highest probability given 
predicted state

– popular, but can lead to catastrophe

• Probabilistic Data Association
– combine measurements, weighting by probability given 

predicted state
– gate using predicted state
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57 58

59 60

What if environment is sometimes unpredictable?

Do people move with constant velocity?

Test several models of assumed dynamics, use the 
best.

Abrupt changes
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Test several models of assumed dynamics

Multiple model filters

[figure from Welsh and Bishop 2001] 62

Two models: Position (P), Position+Velocity (PV)

MM estimate

[figure from Welsh and Bishop 2001]
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P likelihood

[figure from Welsh and Bishop 2001] 64

No lag

[figure from Welsh and Bishop 2001]
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Smooth when still

[figure from Welsh and Bishop 2001] 66

• Kalman filter homepage
http://www.cs.unc.edu/~welch/kalman/

• Kevin Murphy’s Matlab toolbox:
http://www.ai.mit.edu/~murphyk/Software/Kalman/k

alman.html

Resources
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(KF) Distribution propogation

[Isard 1998]
68

Distribution propogation

[Isard 1998]
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EKF

Linearize system at each time point to form an 
Extended Kalman Filter (EKF)
– Compute Jacobian matrix 

whose (l,m)’th value is evaluated at 

– use this for forward model at each step in KF

Useful in many engineering applications, but not as 
successful in computer vision….
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Representing non-linear Distributions
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Representing non-linear Distributions

Unimodal parametric models fail to capture real-
world densities…
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Representing non-linear Distributions

Mixture models are appealing, but very hard to 
propagate analytically!

[ but see Cham and Rehg’s MHT approach]
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Representing Distributions using 
Weighted Samples

Rather than a parametric form, use a set of samples 
to represent a density:
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Representing Distributions using 
Weighted Samples

Rather than a parametric form, use a set of samples 
to represent a density:
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• Recursive filters
• State abstraction
• Density propagation
• Linear Dynamic models / Kalman filter 
• Data association
• Multiple models

• Next time:
– Sampling densities
– Particle filtering

[Figures from F&P except as noted]

Outline


