6.891

Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 16: Tracking

- Density propagation
- Linear Dynamic models / Kalman filter
- Data associationMultiple models
- .

Readings: F&P Ch 17

		Syllab		
15	4/1	Face Detection and Recognition II		Project proposal du
16	4/6	Segmentation and Clustering	Req: FP 14, 15.1-15.2	
17	4/8	Segmentation and Fitting	Req: FP 15-3-15-5, 16	PS3 out (4/7)
18	4/13	Tracking I	Reg: FP 17	
19	4/15	Medical Imaging		
20	4/20			PS3 due, PS4 out
21	4/22	Darrell ILP Event Talk - Kresge		
22	4/27	Image-Based Rendering		
23	4/29	Example-based Parameter Estimation		PS4 due
24	5/4	Articulated Tracking and Shape Inference		EX2 out
25	5/	Project Presentations 11-2pm	>	EX2 due
26	5/11	Project weekno class		
27	5/13	Projects week no class	\langle	Project final report d (extension to 5/16 o request)

Tracking Applications

- Motion capture
- Recognition from motion
- Surveillance
- Targeting

Things to consider in tracking

What are the

- · Real world dynamics
- · Approximate / assumed model
- Observation / measurement process

Density propogation

3

- Tracking == Inference over time
- Much simplification is possible with linear dynamics and Gaussian probability models

Outline

- Recursive filters
- State abstraction
- · Density propagation
- Linear Dynamic models / Kalman filter
- Data association
- · Multiple models

Tracking and Recursive estimation

- · Real-time / interactive imperative.
- Task: At each time point, re-compute estimate of position or pose.
 - At time n, fit model to data using time $0 \dots n$
 - At time n+1, fit model to data using time 0...n+1
- · Repeat batch fit every time?

Recursive estimation

- Decompose estimation problem
 - part that depends on new observation
 - part that can be computed from previous history
- E.g., running average:

 $a_t = \alpha a_{t-1} + (1-\alpha) y_t$

- · Linear Gaussian models: Kalman Filter
- First, general framework ...

Tracking

- · Very general model:
 - We assume there are moving objects, which have an underlying state X
 - There are measurements Y, some of which are functions of this state
 - There is a clock
 - at each tick, the state changes at each tick, we get a new observation
 - at each tick, we get a new
- Examples
 - object is ball, state is 3D position+velocity, measurements are stereo pairs
 - object is person, state is body configuration, measurements are frames, clock is in camera (30 fps)

Three main issues in tracking

- **Prediction:** we have seen y_0, \ldots, y_{i-1} what state does this set of measurements predict for the *i*'th frame? to solve this problem, we need to obtain a representation of $P(X_i|Y_0 = y_0, \ldots, Y_{i-1} = y_{i-1})$.
- **Data association:** Some of the measurements obtained from the *i*-th frame may tell us about the object's state. Typically, we use $P(\mathbf{X}_i | \mathbf{Y}_0 = \mathbf{y}_0, \dots, \mathbf{Y}_{i-1} = \mathbf{y}_{i-1})$ to identify these measurements.
- **Correction:** now that we have \boldsymbol{y}_i the relevant measurements we need to compute a representation of $P(\boldsymbol{X}_i | \boldsymbol{Y}_0 = \boldsymbol{y}_0, \dots, \boldsymbol{Y}_i = \boldsymbol{y}_i)$.

10

Simplifying Assumptions

• Only the immediate past matters: formally, we require

 $P(X_i|X_1,...,X_{i-1}) = P(X_i|X_{i-1})$

This assumption hugely simplifies the design of algorithms, as we shall see; furthermore, it isn't terribly restrictive if we're clever about interpreting X_i as we shall show in the next section.

Measurements depend only on the current state: we assume that Y_i is conditionally independent of all other measurements given X_i. This means that

 $P(\mathbf{Y}_i, \mathbf{Y}_j, \dots, \mathbf{Y}_k | \mathbf{X}_i) = P(\mathbf{Y}_i | \mathbf{X}_i) P(\mathbf{Y}_j, \dots, \mathbf{Y}_k | \mathbf{X}_i)$

Again, this isn't a particularly restrictive or controversial assumption, but it yields important simplifications.

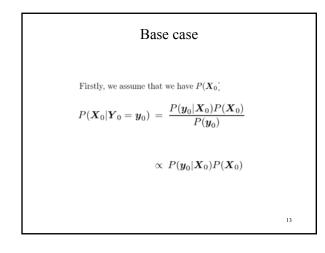
11

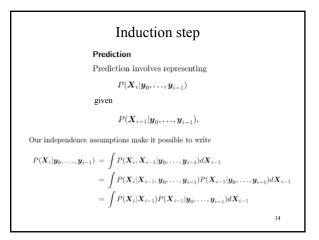
9

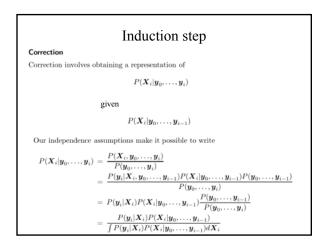
Tracking as induction

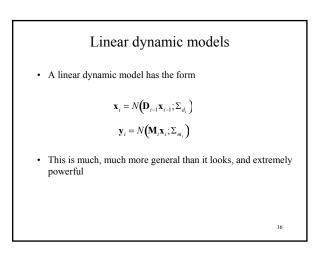
- Assume data association is done

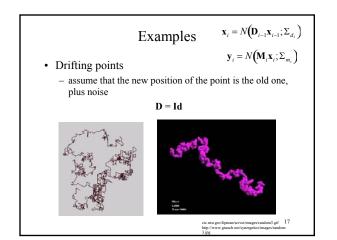
 we'll talk about this later; a dangerous assumption
- Do correction for the 0'th frame
- Assume we have corrected estimate for i'th frame
 show we can do prediction for i+1, correction for i+1

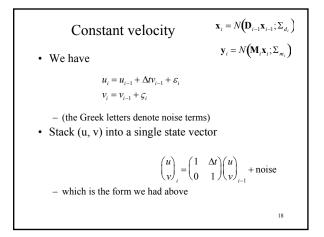


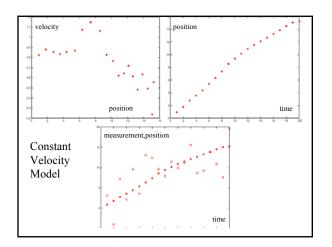


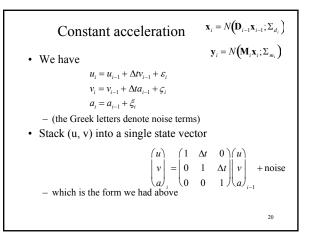


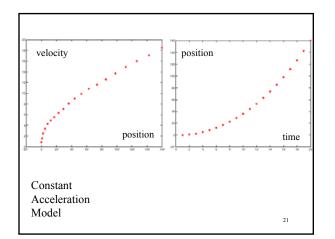


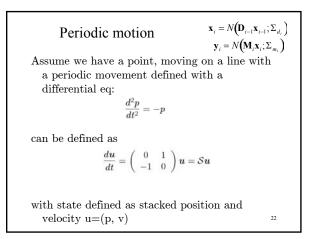












Periodic motion

$$\mathbf{x}_{i} = N(\mathbf{D}_{i-1}\mathbf{x}_{i-1}; \Sigma_{d_{i}})$$

$$\mathbf{y}_{i} = N(\mathbf{M}_{i}\mathbf{x}_{i}; \Sigma_{m_{i}})$$

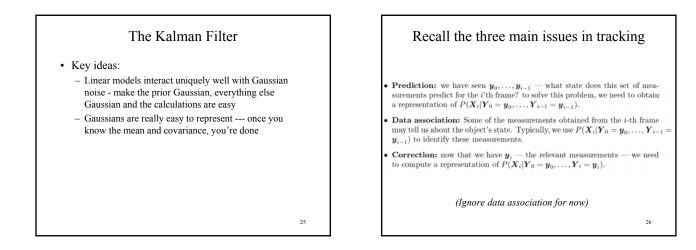
$$\frac{du}{dt} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{u} = S\mathbf{u}$$
Take discrete approximation....(e.g., forward Euler integration with Δt stepsize.)

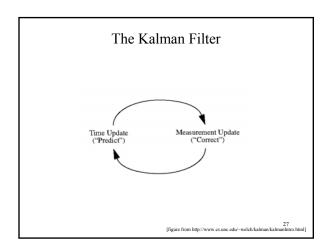
$$\mathbf{u}_{i} = \mathbf{u}_{i-1} + \Delta t \frac{du}{dt}$$

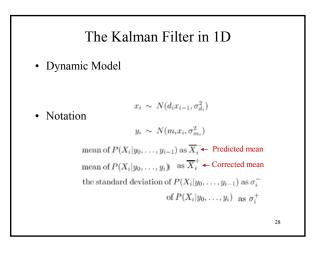
$$= \mathbf{u}_{i-1} + \Delta t S\mathbf{u}_{i-1}$$

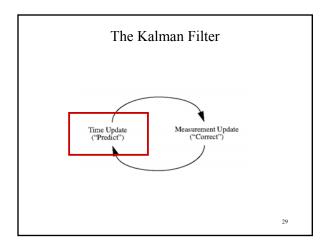
$$= \begin{pmatrix} 1 & \Delta t \\ -\Delta t & 1 \end{pmatrix} \mathbf{u}_{i-1}$$

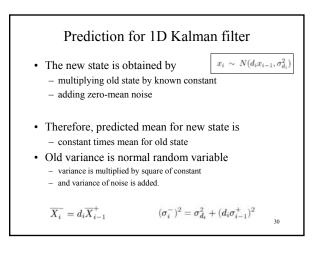
Higher order models
Independence assumption
$P(x_i x_1,\ldots,x_{i-1})=P(x_i x_{i-1})$
Velocity and/or acceleration augmented positionConstant velocity model equivalent to
$P(p_i p_1,,p_{i-1}) = N(p_{i-1} + (p_{i-1} - p_{i-2}), \Sigma_{d_i})$
- velocity == $p_{i-1} - p_{i-2}$
$- \text{ acceleration} = (p_{i-1} - p_{i-2}) - (p_{i-2} - p_{i-3})$
- could also use p_{i-4} etc.
24

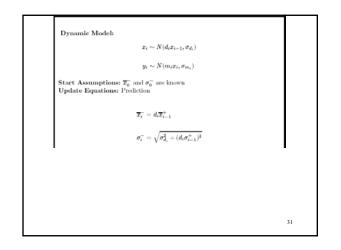


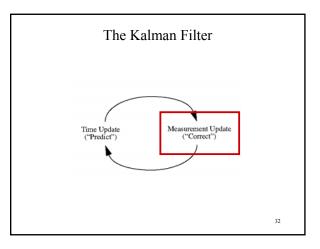


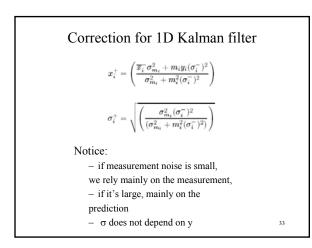


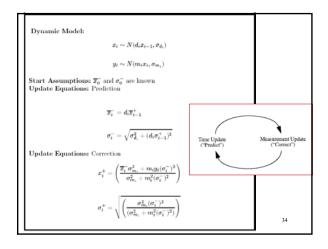


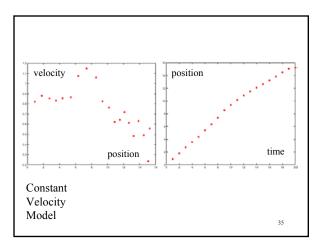


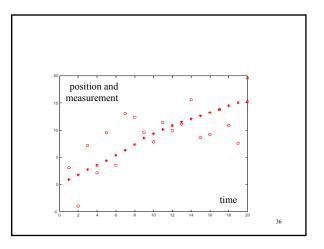


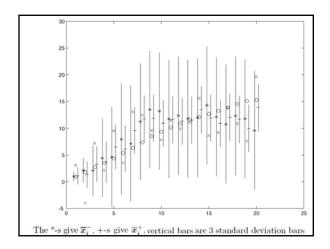


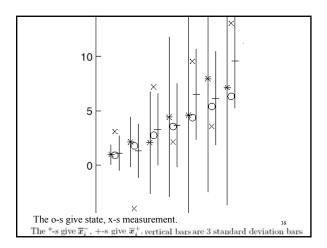


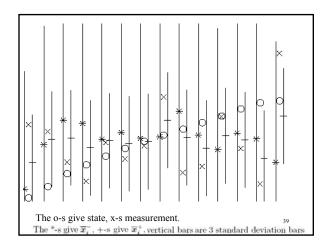


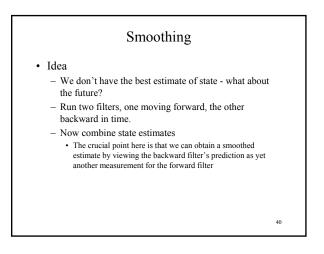


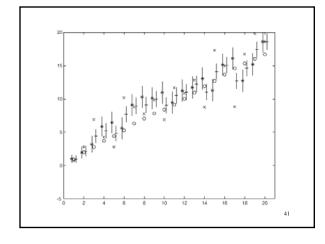


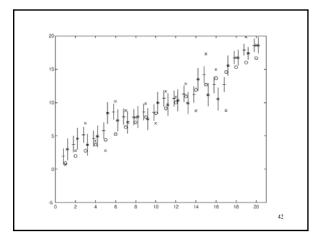


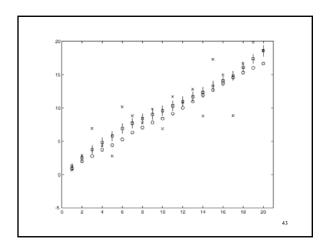


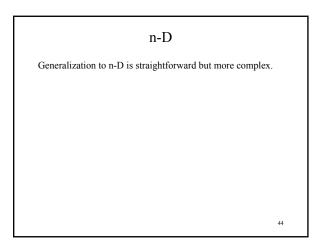


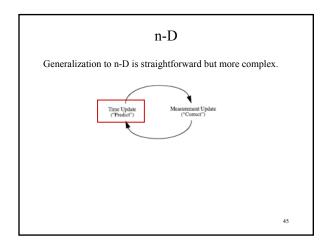


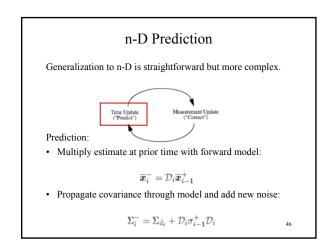


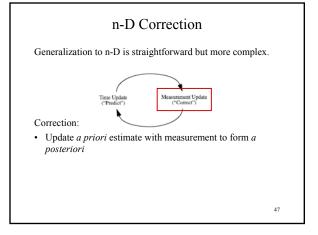


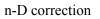












Find linear filter on innovations

$$\overline{oldsymbol{x}}_{i}^{+}=\overline{oldsymbol{x}}_{i}^{-}+\mathcal{K}_{i}\left[oldsymbol{y}_{i}-\mathcal{M}_{i}\overline{oldsymbol{x}}_{i}^{-}
ight]$$

which minimizes a posteriori error covariance:

$$E\left[\left(x-\overline{x^{*}}\right)^{T}\left(x-\overline{x^{*}}\right)\right]$$

K is the Kalman Gain matrix. A solution is

$$\mathcal{K}_{i} = \Sigma_{i}^{-} \mathcal{M}_{i}^{T} \left[\mathcal{M}_{i} \Sigma_{i}^{-} \mathcal{M}_{i}^{T} + \Sigma_{m_{i}} \right]^{-1}$$

48

Kalman Gain Matrix

$$\overline{x}_i^+ = \overline{x}_i^- + \mathcal{K}_i [y_i - \mathcal{M}_i \overline{x}_i^-]$$
 $\mathcal{K}_i = \Sigma_i^- \mathcal{M}_i^T [\mathcal{M}_i \Sigma_i^- \mathcal{M}_i^T + \Sigma_{m_i}]^{-1}$

 As measurement becomes more reliable, K weights residual more heavily,

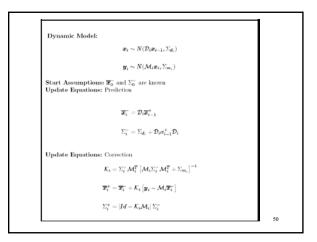
 $\lim_{\Sigma_m \to 0} K_i = M^{-1}$

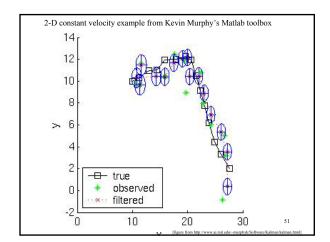
As prior covariance approaches 0, measurements are ignored:

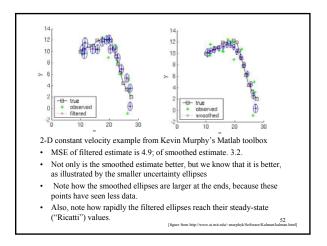
more

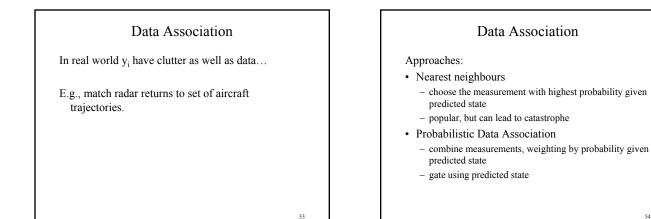
$$\lim_{\Sigma_i^- \to 0} K_i = 0$$

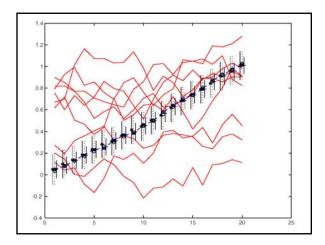
49

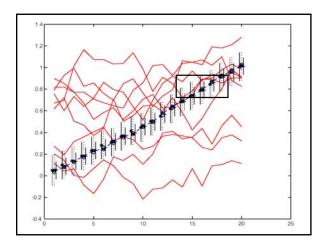


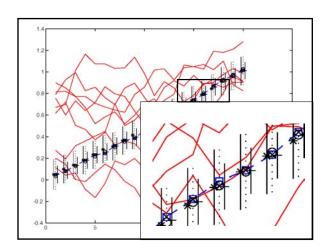


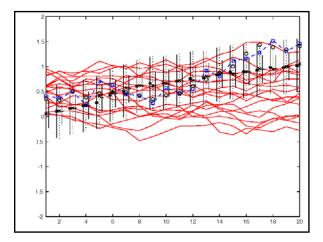


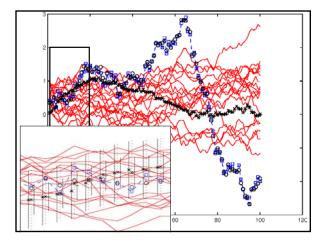










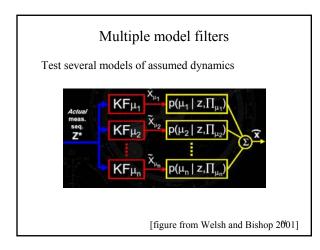


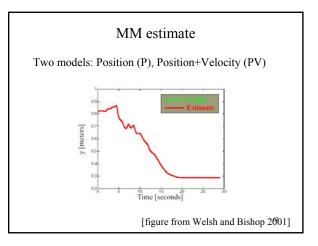
Abrupt changes

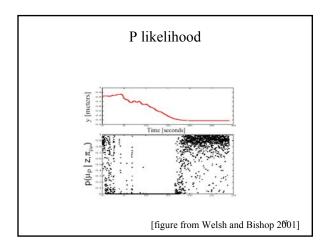
What if environment is sometimes unpredictable?

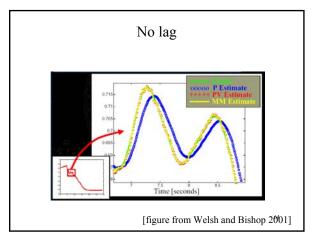
Do people move with constant velocity?

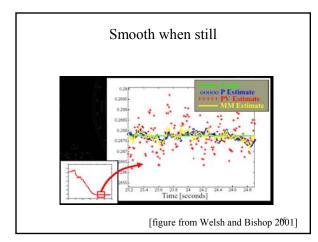
Test several models of assumed dynamics, use the best.

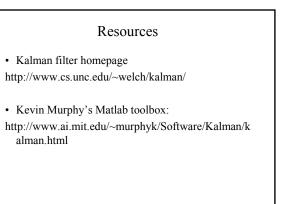


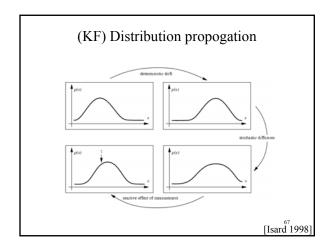


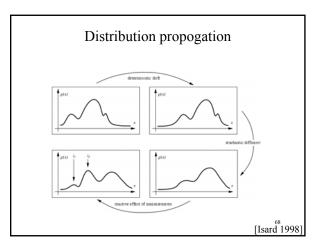












EKF

Linearize system at each time point to form an Extended Kalman Filter (EKF)

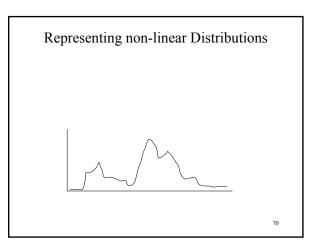
- Compute Jacobian matrix

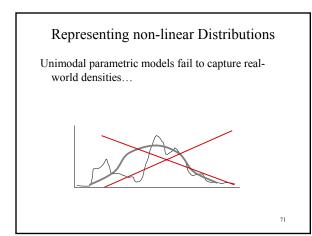
 $\mathcal{J}(\boldsymbol{g}; \boldsymbol{x}_j)$

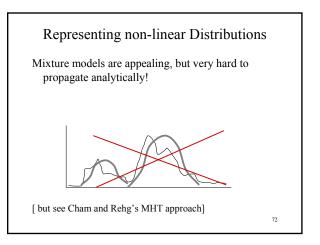
whose (l,m)'th value is $\frac{\partial f_l}{\partial x_m}$ evaluated at x_j

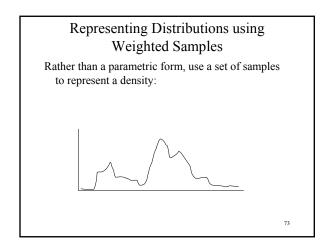
- use this for forward model at each step in KF

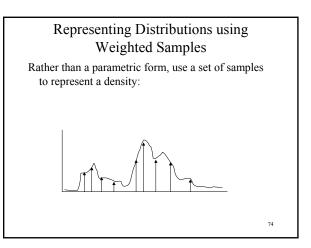
Useful in many engineering applications, but not as successful in computer vision....











Outline

- Recursive filters
- State abstraction
- Density propagation
- Linear Dynamic models / Kalman filter
- Data association
- Multiple models
- Next time:
 - Sampling densities
 - Particle filtering
 - [Figures from F&P except as noted]