Example-Based Computer Vision 6.891

Greg Shakhnarovich

April 27, 2004

Today

- Example-based paradigm in vision
 - NN classification and regression
- algorithms for similarity search
 - kd-trees and Best Bin First seacch
 - Locality-Sensitive Hashing
- Locally-Weighted Regression

Model-based vision

- Image I is produced by a parametric process $I = F(\theta)$.
 - θ : object class, pose, illumination, activity, etc.
- Given I, recover the relevant subset of θ .
- Typical paradigm: "Generate and test"

Model-based vision

Advantages

- Often an interpretable model
- Relatively compact representation

Disadvantages

- May be computationally costly
- Susceptible to local minima
- It is very difficult to come up with a manageable model for a complex phenomenon

Example-based vision

- Large set of labeled examples $\langle \mathbf{x}_1, \theta_1 \rangle, \dots, \langle \mathbf{x}_N, \theta_N \rangle$
- Distance measure $d(\mathbf{x}_a, \mathbf{x}_b)$

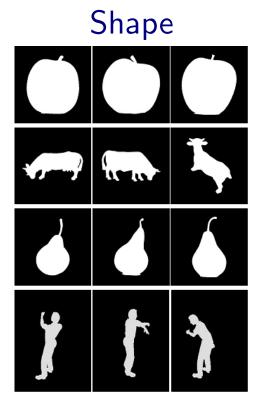
Example-based vision

- Large set of labeled examples $\langle \mathbf{x}_1, \theta_1 \rangle, \dots, \langle \mathbf{x}_N, \theta_N \rangle$
- Distance measure $d(\mathbf{x}_a, \mathbf{x}_b)$
- Approach: infer the unknown θ from the example(s) closest (most similar) to the query x₀ w.r.t. d.

Example-based vision

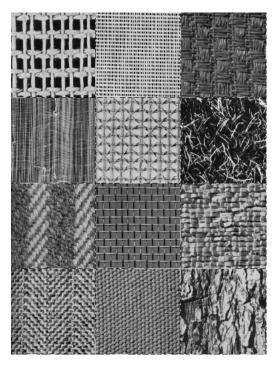
- Large set of labeled examples $\langle \mathbf{x}_1, \theta_1 \rangle, \ldots, \langle \mathbf{x}_N, \theta_N \rangle$
- Distance measure $d(\mathbf{x}_a, \mathbf{x}_b)$
- Approach: infer the unknown θ from the example(s) closest (most similar) to the query x₀ w.r.t. d.
- Intuition: similar images are likely to belong to the same class, or have the same parameters (class, pose etc.)
- Notion of "similarity" is problem-dependent, and critical to the success of an approach.

Examples: recognition



Multi-cue

Texture



Examples: estimation

Orientation

[Nyogi & Freeman '96]

Articulated pose

[Shakhnarovich et al '03]

Probabilistic approach to recognition

- C classes, with *prior* probabilities P_1, \ldots, P_C .
- Data from class c have distribution $p(\mathbf{x}|c) \equiv p_c(\mathbf{x})$.
- Risk of a classifier $h(\mathbf{x}) \rightarrow \{1, \dots, C\}$:

$$R = E_{p(\mathbf{x},c)} \left[L\left(h(\mathbf{x}),c\right) \right],$$

where L is the loss function, e.g. 0/1 loss

$$L(c_1, c_2) = \begin{cases} 0, & \text{if } c_1 = c_2, \\ 1 & \text{otherwise} \end{cases}$$

Recognition: optimal classifier

- Suppose we know p_c, P_c for all classes.
- Under 0/1 loss, the risk is minimized if

$$f^*(\mathbf{x}) = \operatorname*{argmax}_c p_c(\mathbf{x}) P_c.$$

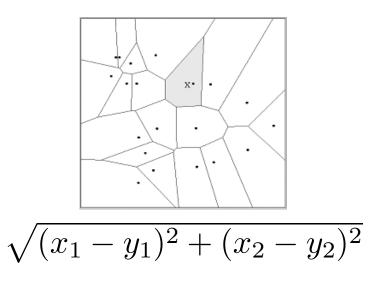
- This minimal risk R^* is called *Bayes risk* (of the problem).
- See [Duda, Hart & Stork (2nd edition)]

Nearest neighbors classification

- NN classifier: find $i = \operatorname{argmin}_{j} d(\mathbf{x}_{0}, \mathbf{x}_{j})$.
- Theory [Cover & Hart '67]:
 - Binary classification: $\lim_{N\to\infty} R_N \leq 2R^*(1-R^*)$.
 - C-class problem: $\lim_{N\to\infty} R_N = R^* \left(2 \frac{C}{C-1} R^* \right)$
 - Arbitrarily slow rate of convergence to the asymptotic rate [Cover '68]
- Practice: often on par with the best classifier even with data sets of modest size.

Nearest Neighbor boundary

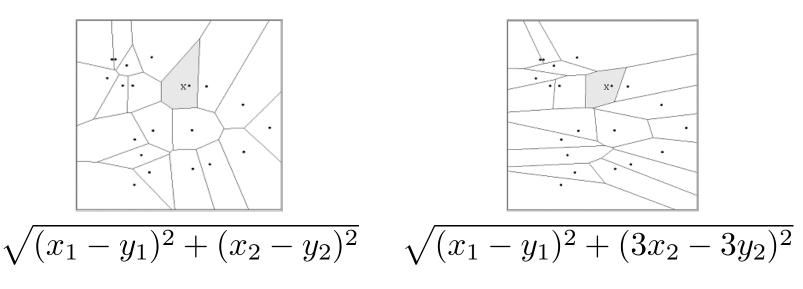
• NN decision boundaries set a Voronoi tasselation:



• The distance defines the NN and thus the decision boundaries.

Nearest Neighbor boundary

• NN decision boundaries set a *Voronoi tasselation*:



• The distance defines the NN and thus the decision boundaries.

Example: object categorization

• ETH data set: 8 categories \times 10 objects \times 41 viewpoints

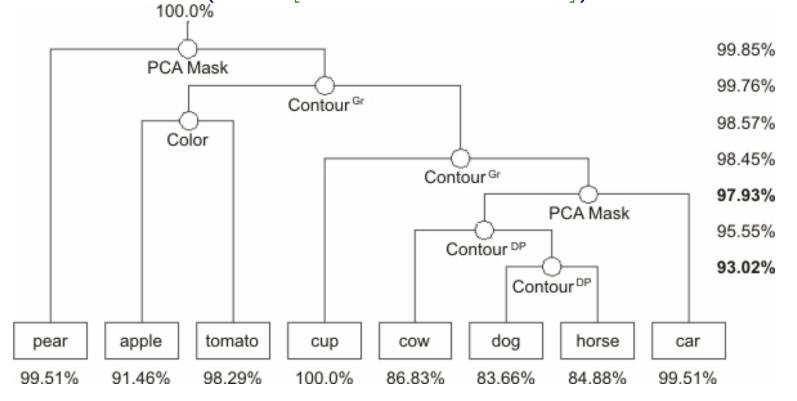
[Leibe & Schiele '03]

Example: object categorization

- The data set: 8 categories \times 10 objects \times 41 viewpoints
- Cues:
 - Color histograms
 - Texture (histograms of derivatives at multiple scales)
 - Shape global descriptor (binary mask)
 - Shape local descriptor (shape context)

Example: object categorization

- Best NN in a single modality: shape (contour) 86.4%
- Decision tree (from [Leibe & Schiele '03]):

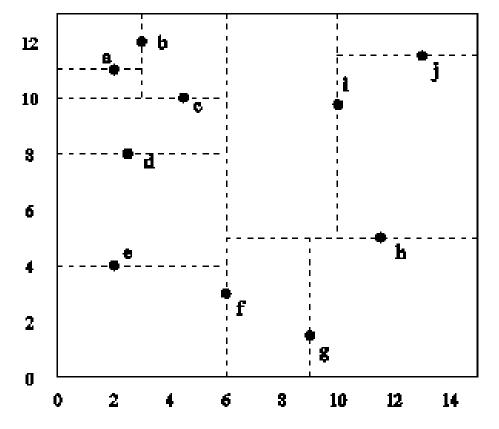


NN: search

- Brute force search for NN: O(dN) (need to compare to all examples).
 - Becomes impractical for large high-dimensional data sets.
- In 1D, 2D tricks exist that allow very efficient search.
- In higher dimension, clever indexing of the data can help...

kd-trees: preprocessing

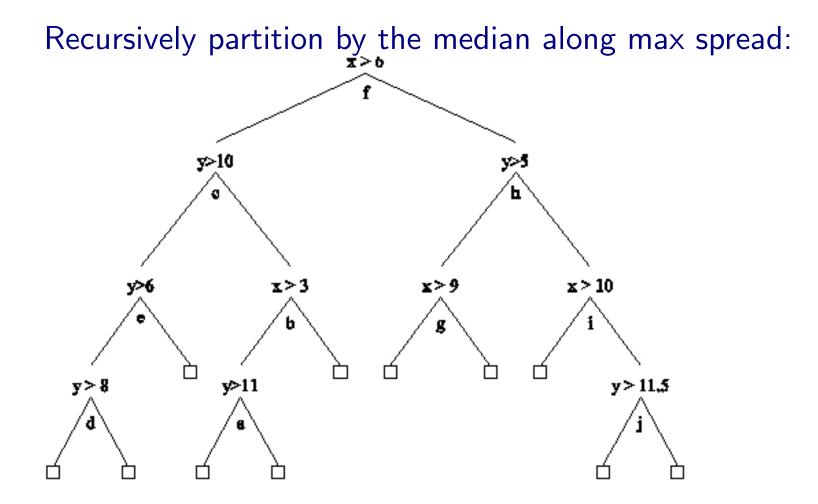
Recursively partition by the median along max spread.

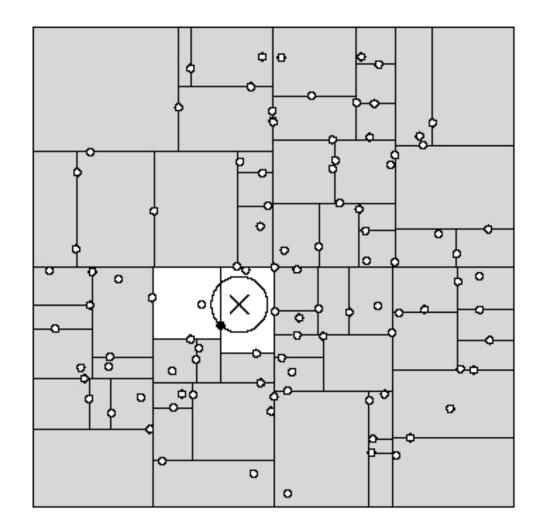


kd-trees: preprocessing

Recursively partition by the median along max spread

kd-trees: preprocessing





- Find the leaf containing the query point
 - This may rule out much of the data set, since a NN must not be farther than this leaf!

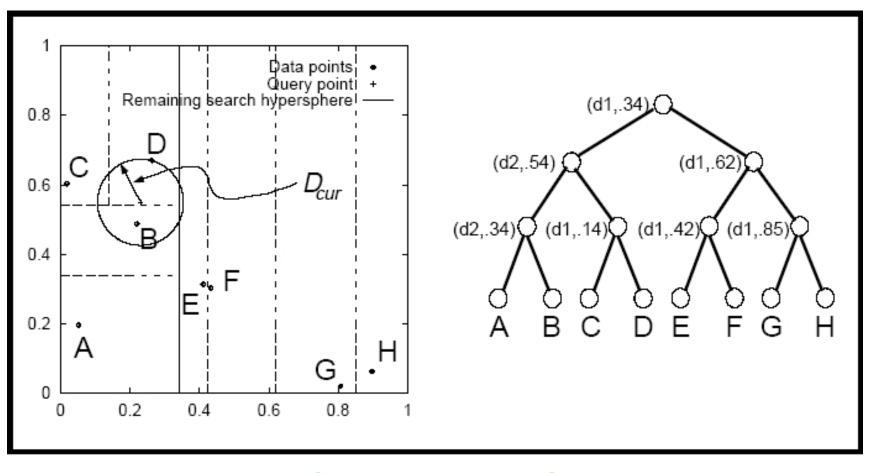
- Find the leaf containing the query point
 - This may rule out much of the data set, since a NN must not be farther than this leaf!
- Back up, and explore the nodes which *may* contain the query.

- Find the leaf containing the query point
 - This may rule out much of the data set, since a NN must not be farther than this leaf!
- Back up, and explore the nodes which *may* contain the query.
- Very efficient in low dimensions; expected search time $O(\log N)$ (but exponential in d!).
- When d > 20, often achieves worst case almost linear.

BBF: Best Bin First

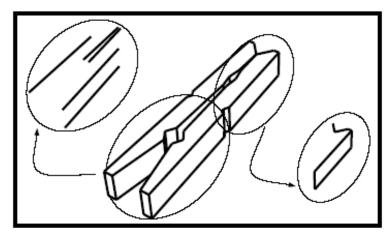
- An approximation of NN search [Beis & Lowe '99].
- *kd*-tree: search bins closest *in the tree structure*
- BBF: search bins closest in space (i.e. distance from query to the bin boundary).
- Approximation: only search *m* candidates, settle for the best among them.
 - Note: must compare to *restricted* search with "standard" kdtree.

BBF: Best Bin First



[Beis & Lowe '99]

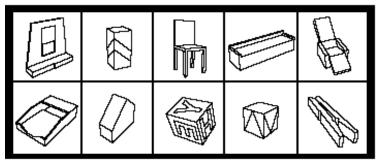
• Extract geometric features (3- and 4-segment groups);

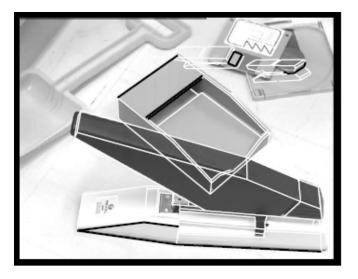


- Index the data set, find k NN for each feature;
- Use *k*-NN density estimator to rank hypothesis probabilities;
- Verify hypotheses

• Database: random viewpoints of

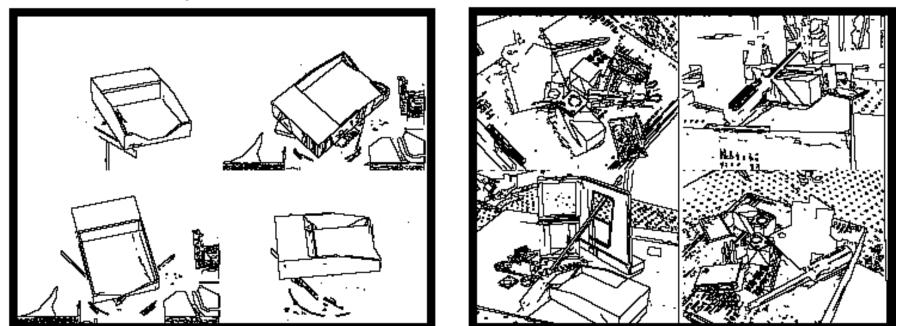
• Database: random viewpoints of





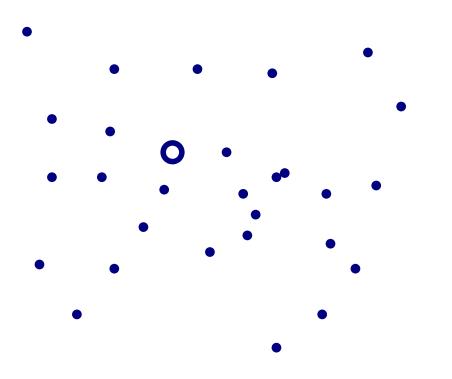
"Easy": 99.5%

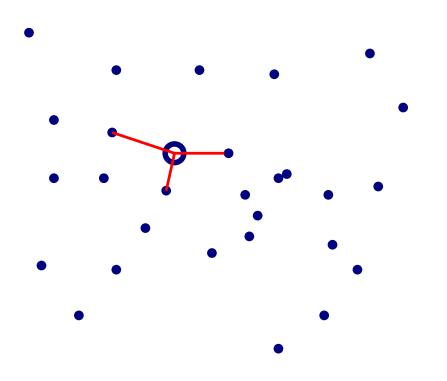
"Difficult": 50%



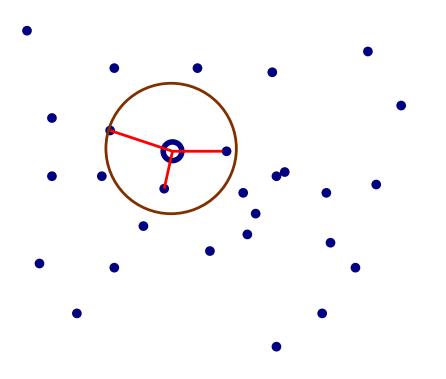
Search in very high dimensions

- BBF provides an answer for dimensions up to 20.
- What happens when d=100? 1,000?
- May relax the search objective and resort to randomization...



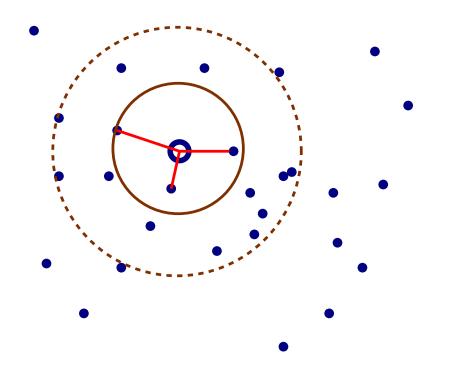


k nearest neighbors



k nearest neighbors

r-neighbors: within radius r from \mathbf{x}_0



k nearest neighbors

r-neighbors: within radius r from \mathbf{x}_0

 $(\epsilon,r)\text{-neighbors:}$ within radius $(1+\epsilon)r$

- [Gionis et al '99, Indyk&Motwani '98]
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 :

- [Gionis et al '99, Indyk&Motwani '98]
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 :
 - Query time $O\left(dn^{1/(1+\epsilon)}\right)$

- [Gionis et al '99, Indyk&Motwani '98]
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 :
 - Query time $O\left(dn^{1/(1+\epsilon)}\right)$
 - Storage $O\left(dn + n^{1+1/(1+\epsilon)}\right)$

- [Gionis et al '99, Indyk&Motwani '98]
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 :
 - Query time $O\left(dn^{1/(1+\epsilon)}\right)$
 - Storage $O\left(dn + n^{1+1/(1+\epsilon)}\right)$
- Practical meaning, with 10^6 examples $\times 10000$ features, for $\epsilon = 1$:

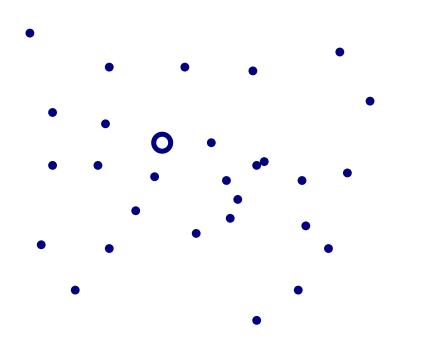
- [Gionis et al '99, Indyk&Motwani '98]
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 :
 - Query time $O\left(dn^{1/(1+\epsilon)}\right)$
 - Storage $O\left(dn + n^{1+1/(1+\epsilon)}\right)$
- Practical meaning, with 10^6 examples $\times 10000$ features, for $\epsilon = 1$:
 - Assume each feature is a float $(4 \times 10^{10} \text{ data bytes})$.

- [Gionis et al '99, Indyk&Motwani '98]
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 :
 - Query time $O\left(dn^{1/(1+\epsilon)}\right)$
 - Storage $O\left(dn + n^{1+1/(1+\epsilon)}\right)$
- Practical meaning, with 10^6 examples $\times 10000$ features, for $\epsilon = 1$:
 - Assume each feature is a float (4×10^{10} data bytes).
 - The algorithm requires 4.1×10^{10} bytes storage,
 - Query requires about $O(10^7)$ byte operations,
 - Compared to $O(10^{10})$ for exhaustive search.

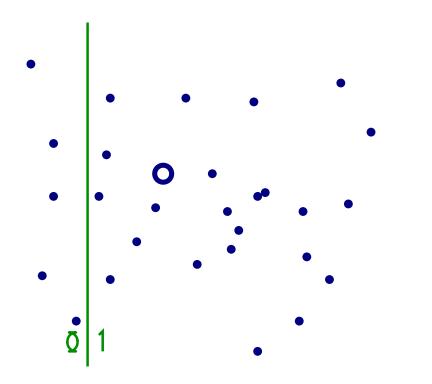
• Preprocessing: index the data by l hash tables

- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points

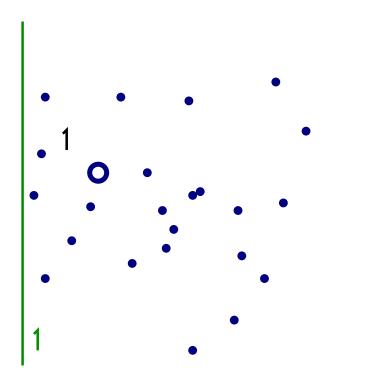
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



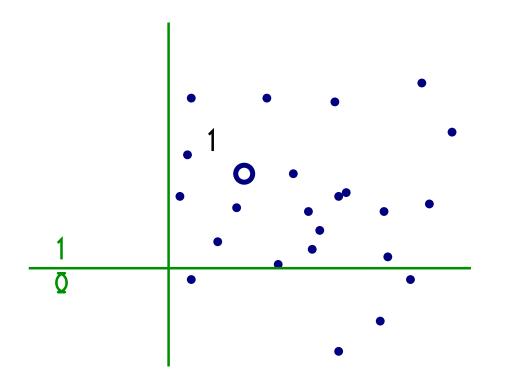
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



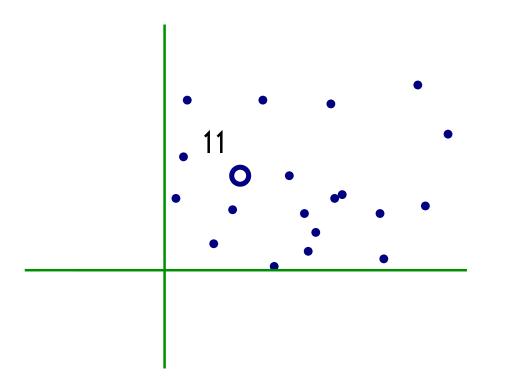
- Preprocessing: index the data by *l* hash tables
- Hash functions are unlikely to separate close points



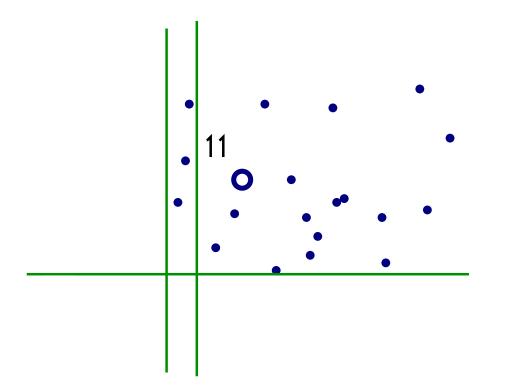
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



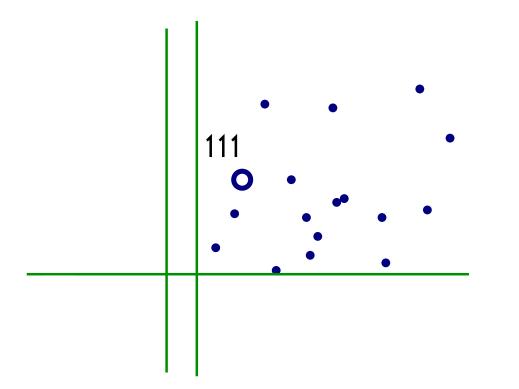
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



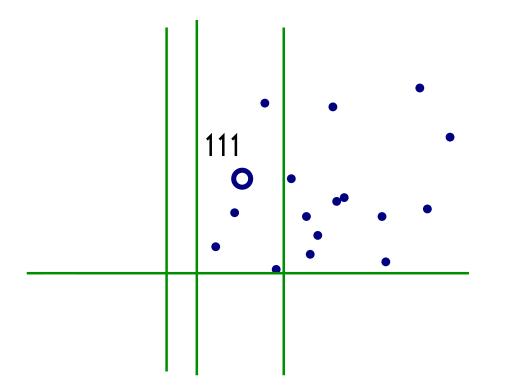
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



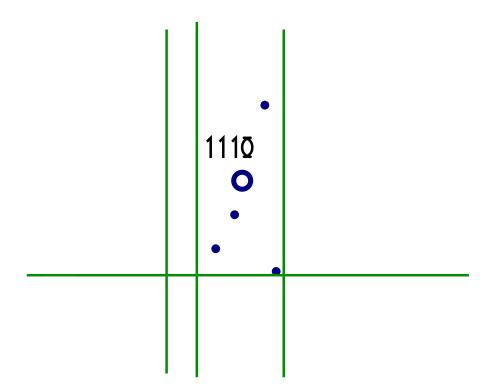
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



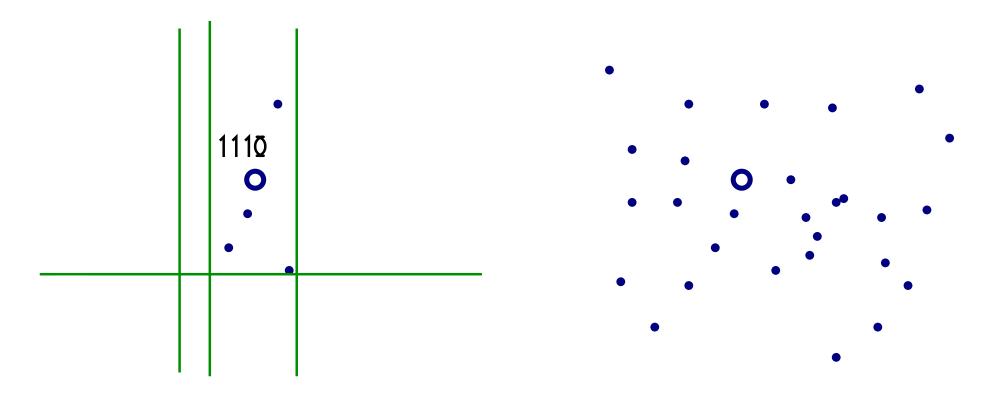
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points

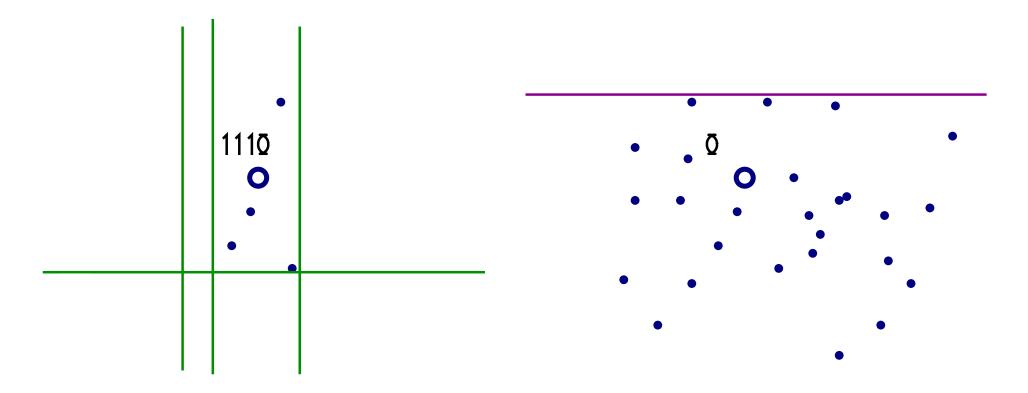


- Preprocessing: index the data by *l* hash tables
- Hash functions are unlikely to separate close points

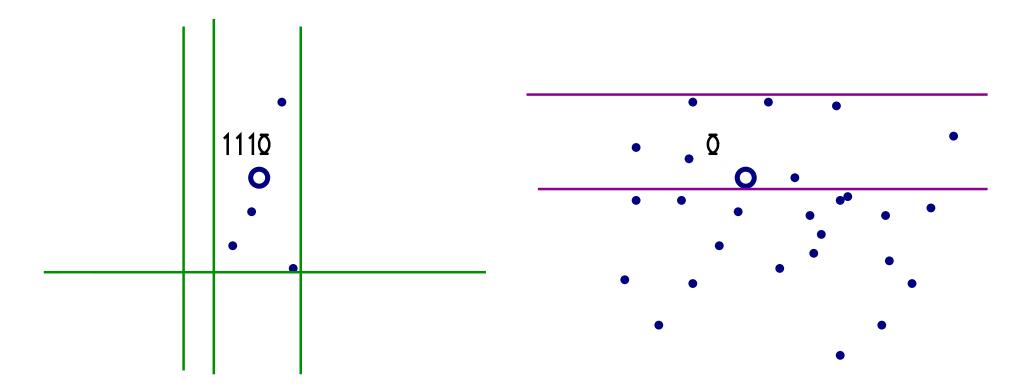


- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points

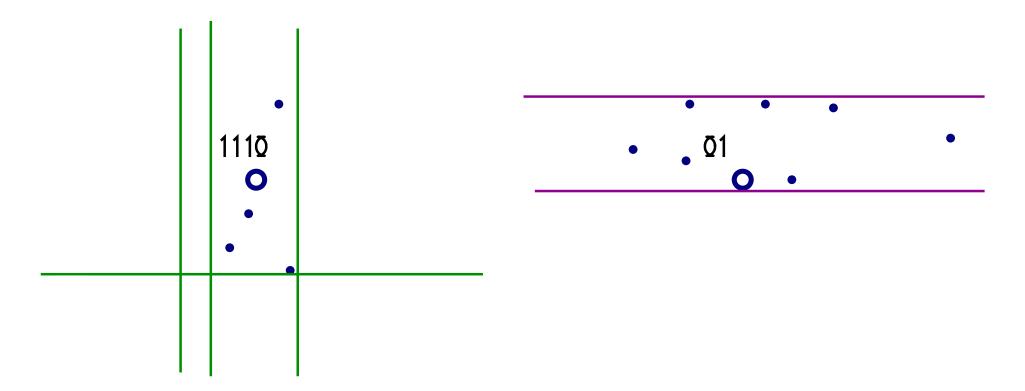
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



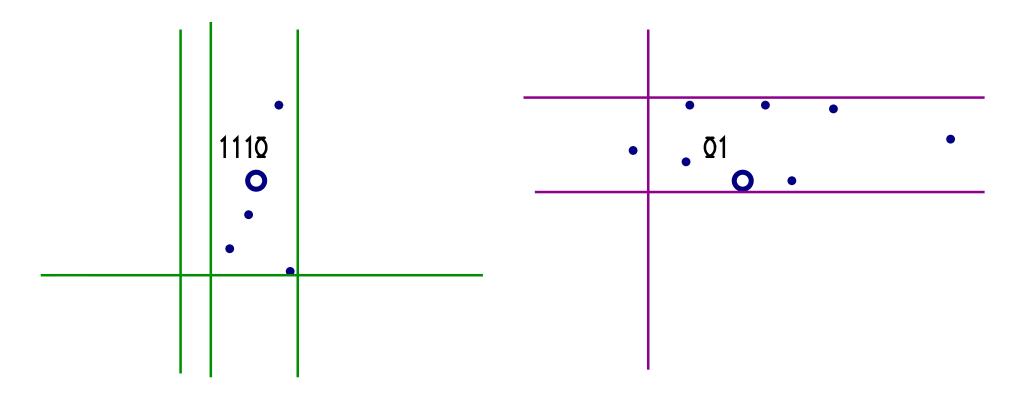
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



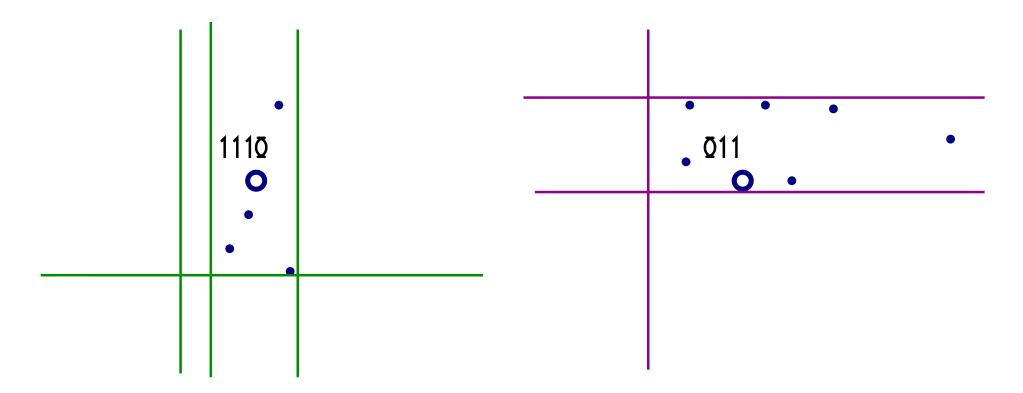
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



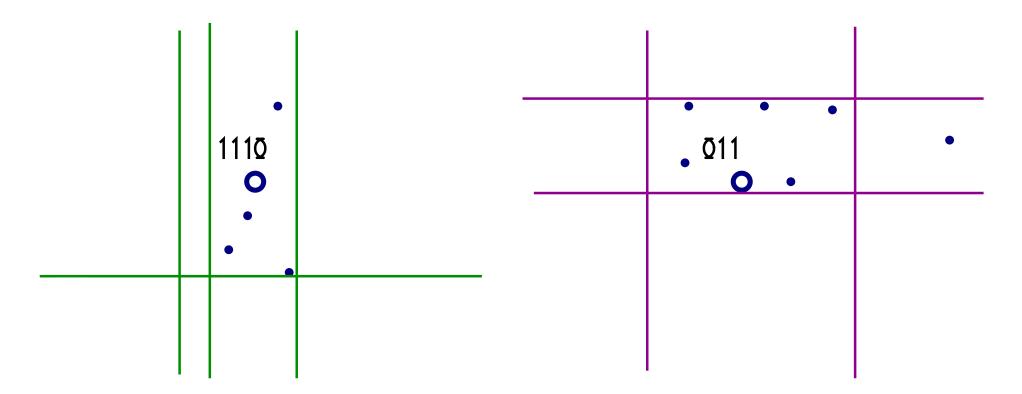
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



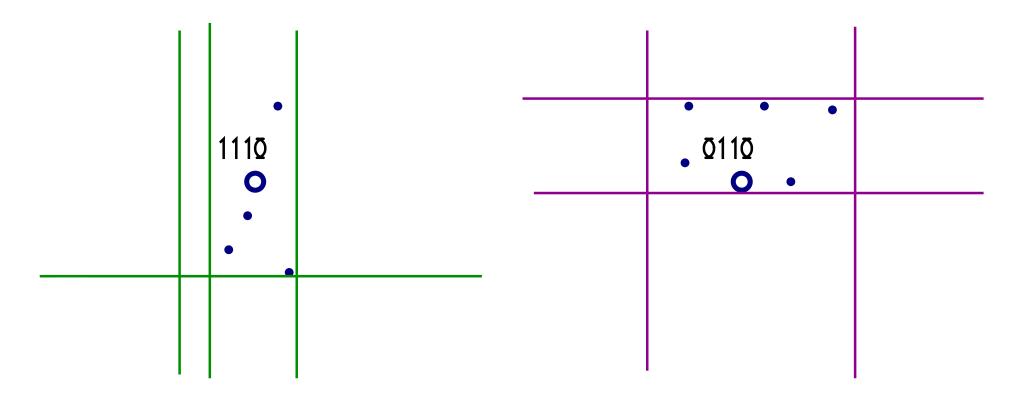
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



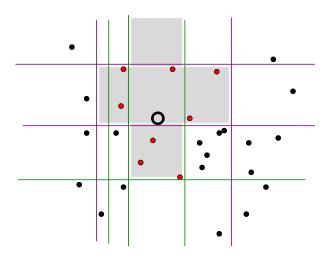
- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



- Preprocessing: index the data by l hash tables
- Hash functions are unlikely to separate close points



• Exhaustively search the union of the matching buckets.



- More bits per key = smaller buckets, less to search.
- More hash tables = more to search but unlikely to miss neighbors.

 \bullet Let ${\mathcal H}$ be a family of bit-valued hash functions

$$h: \mathcal{X} \rightarrow \{-1, +1\}$$

• Let ${\mathcal H}$ be a family of bit-valued hash functions

$$h: \mathcal{X} \to \{-1, +1\}$$

• This is a (r, R, p_1, p_2) -sensitive hash family, if for a random $h \in \mathcal{H}$

• Let \mathcal{H} be a family of bit-valued hash functions

$$h: \mathcal{X} \to \{-1, +1\}$$

This is a (r, R, p₁, p₂)-sensitive hash family, if for a random h ∈ H
- if d(x₀, x) < r then Pr (h(x₀) = h(x)) ≥ p₁

• Let \mathcal{H} be a family of bit-valued hash functions

$$h: \mathcal{X} \to \{-1, +1\}$$

This is a (r, R, p₁, p₂)-sensitive hash family, if for a random h ∈ H
- if d(x₀, x) < r then Pr (h(x₀) = h(x)) ≥ p₁, Probability of "good" collision

• Let \mathcal{H} be a family of bit-valued hash functions

$$h: \mathcal{X} \to \{-1, +1\}$$

• This is a (r, R, p_1, p_2) -sensitive hash family, if for a random $h \in \mathcal{H}$ - if $d(\mathbf{x}_0, \mathbf{x}) < r$ then $\Pr(h(\mathbf{x}_0) = h(\mathbf{x})) \ge p_1$ - if $d(\mathbf{x}_0, \mathbf{x}) \ge R$ then $\Pr(h(\mathbf{x}_0) = h(\mathbf{x})) \le p_2$.

• Let \mathcal{H} be a family of bit-valued hash functions

$$h: \mathcal{X} \to \{-1, +1\}$$

- This is a (r, R, p_1, p_2) -sensitive hash family, if for a random $h \in \mathcal{H}$ - if $d(\mathbf{x}_0, \mathbf{x}) < r$ then $\Pr(h(\mathbf{x}_0) = h(\mathbf{x})) \ge p_1$ - if $d(\mathbf{x}_0, \mathbf{x}) \ge R$ then $\Pr(h(\mathbf{x}_0) = h(\mathbf{x})) \le p_2$.
 - Probability of "bad" collision

• Let \mathcal{H} be a family of bit-valued hash functions

$$h: \mathcal{X} \to \{-1, +1\}$$

- This is a (r, R, p_1, p_2) -sensitive hash family, if for a random $h \in \mathcal{H}$ - if $d(\mathbf{x}_0, \mathbf{x}) < r$ then $\Pr(h(\mathbf{x}_0) = h(\mathbf{x})) \ge p_1$ - if $d(\mathbf{x}_0, \mathbf{x}) \ge R$ then $\Pr(h(\mathbf{x}_0) = h(\mathbf{x})) \le p_2$.
- Useful if $p_1 > p_2$, r < R.

• Let \mathcal{H} be a family of bit-valued hash functions

$$h: \mathcal{X} \to \{-1, +1\}$$

- This is a (r, R, p_1, p_2) -sensitive hash family, if for a random $h \in \mathcal{H}$ - if $d(\mathbf{x}_0, \mathbf{x}) < r$ then $\Pr(h(\mathbf{x}_0) = h(\mathbf{x})) \ge p_1$ - if $d(\mathbf{x}_0, \mathbf{x}) \ge R$ then $\Pr(h(\mathbf{x}_0) = h(\mathbf{x})) \le p_2$.
- Useful if $p_1 > p_2$, r < R.
- For $\mathcal{X} = \mathbb{R}^n$ and $d \equiv L_1$: axis-parallel decision stumps are locality-sensitive.

LSH: review of the algorithm

- Choose a locality-sensitive family \mathcal{H} of hash functions.
- Build *l* indepedent hash tables:
 - Construct a k-bit hash function $g(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_k(\mathbf{x}))$ with randomly selected $h_j \in \mathcal{H}$.
 - Store each example \mathbf{x}_i in the bucket $g(\mathbf{x}_j)$.
- On query x₀: exhaustively search the union of g₁(x₀),..., g_l(x₀) for (ε, r)-neighbors of x₀.

- l hash tables with k-bit hash functions.
- Hash function family: probability of "good" collision $\geq p_1$, "bad" collision $\leq p_2$.

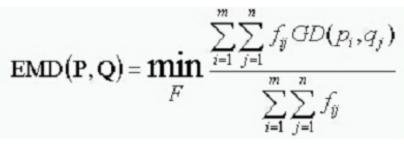
- l hash tables with k-bit hash functions.
- Hash function family: probability of "good" collision $\geq p_1$, "bad" collision $\leq p_2$.
- Probability of collision in *one* table: at least p_1^k for similar points, at most p_2^k for dissimilar ones.

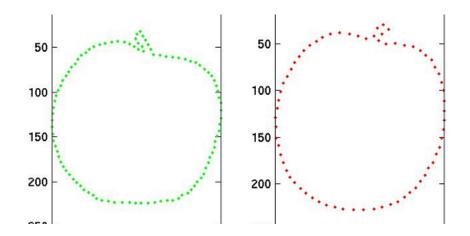
- l hash tables with k-bit hash functions.
- Hash function family: probability of "good" collision $\geq p_1$, "bad" collision $\leq p_2$.
- Probability of collision in *one* table: at least p_1^k for similar points, at most p_2^k for dissimilar ones.
- The probability of finding at least one similar point $\geq 1 (1 p_1^k)^l$
- The expected number of points to search $\leq lNp_2^k$

- l hash tables with k-bit hash functions.
- Hash function family: probability of "good" collision $\geq p_1$, "bad" collision $\leq p_2$.
- Probability of collision in *one* table: at least p_1^k for similar points, at most p_2^k for dissimilar ones.
- The probability of finding at least one similar point $\geq 1 (1 p_1^k)^l$
- The expected number of points to search $\leq lNp_2^k$
- Parameters k, l can be set based on p_1, p_2 .

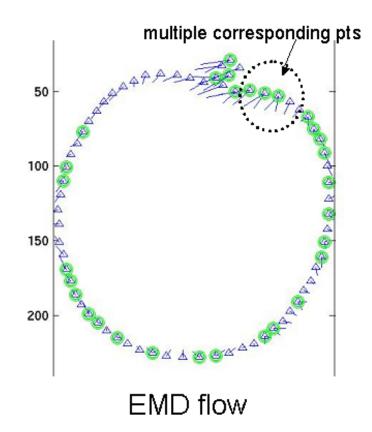
NN in non-Euclidean spaces

- The distance may not be a norm.
- *Embedding* into a norm (possibly with *distortion*).
- Example: Earth-Mover's Distance $EMD(P,Q) = \min_{F} \frac{\overline{i=1} \ \overline{j=1}}{R}$

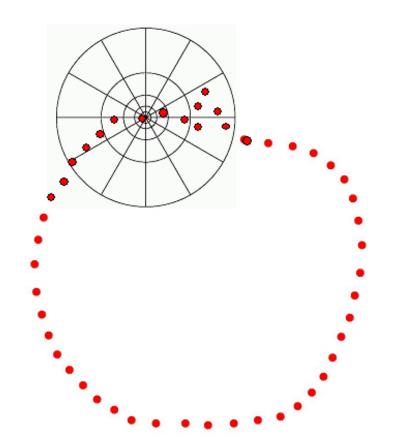




EMD



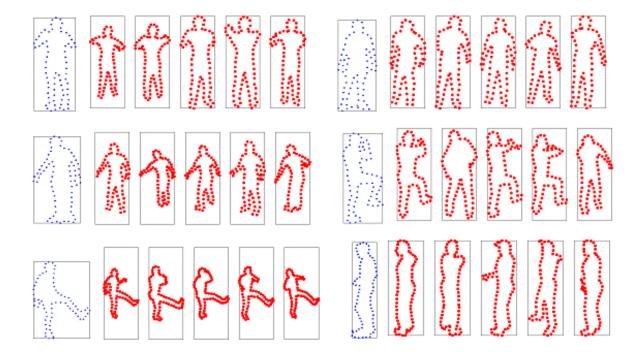
Shape contexts [Belongie et al]



A *local shape descriptor*: histogram in each contour point describes the shape (other contour points) in the vicinity.

Shape retrieval with LSH

[Grauman & Darrell '04]: tests on body silhouettes (PCA on shape contexts $\rightarrow \text{EMD} \rightarrow \text{embedding in } L_1$)



Shape retrieval with LSH

[Grauman & Darrell '04]: tests on hand-written digits.

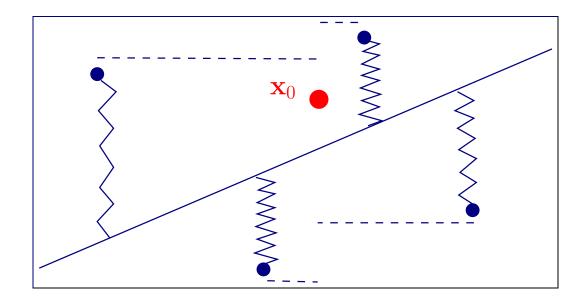
Query	NN	(EMD)	NN (L_1)	LSH
7		777	77777	77777
2	= $=$	222	22222	22222
/		1 1 1	1 1 1 1 1	
0		000	00000	0 0 0 0 0
4	= $=$	444	4444	<i>ЧЧЧЧ</i>
1	1 1	1 1 1	1 1 1 1 1	1 1 1 1 1
4	4 4	444	4 4 4 4	44474
٩	٩٩	9 9 7	29299	9 4 4 9 5
5	55	5 5 6	96665	56226
9	99	9999	99997	97797
D	00	0 0 O	00000	00000
6	66	666	66006	6 le 0 6 0
9	9 4	7 9 9	9 4 9 9 9	999999
0	0 0	000	00000	00000

Example-based estimation (regression)

- Labels $\theta = f(\mathbf{x})$
- Simple k-NN method: $\hat{f}(\mathbf{x}_0) = \frac{1}{k} \sum_{\mathbf{x}_j \in \text{NN of } \mathbf{x}_0} f(\mathbf{x}_j)$
- Problem: if neighborhood is sparse relative to f,
- Possible remedy: pay more attention to the examples closer to \mathbf{x}_0 .

LWR - intuition

• Excellent introduction in [Atkeson, Moore, Schaal].



• The relative strengths of the springs depend on the kernel.

LWR

• Fit the model $\theta = g(\mathbf{x}; \beta)$ to observations within a small neighborhood of the query point \mathbf{x}_0 :

$$\beta^*(\mathbf{x}_0) = \underset{\beta}{\operatorname{argmin}} \sum_i L\left(g(\mathbf{x}_i;\beta),\theta_i\right) K\left(d(\mathbf{x}_i,\mathbf{x}_0)\right)$$

LWR

• Fit the model $\theta = g(\mathbf{x}; \beta)$ to observations within a small neighborhood of the query point \mathbf{x}_0 :

$$\beta^*(\mathbf{x}_0) = \underset{\beta}{\operatorname{argmin}} \sum_i L\left(g(\mathbf{x}_i;\beta),\theta_i\right) K\left(d(\mathbf{x}_i,\mathbf{x}_0)\right) \quad \text{where}$$

-L is the *loss* function,

LWR

• Fit the model $\theta = g(\mathbf{x}; \beta)$ to observations within a small neighborhood of the query point \mathbf{x}_0 :

$$\beta^*(\mathbf{x}_0) = \operatorname*{argmin}_{\beta} \sum_i L\left(g(\mathbf{x}_i;\beta),\theta_i\right) K\left(d(\mathbf{x}_i,\mathbf{x}_0)\right) \quad \text{where}$$

- -L is the *loss* function,
- K is the *kernel*, which determines the weight falloff with increasing distance from \mathbf{x}_0 .

• Introduced by [Cleveland].

- Introduced by [Cleveland].
- Iterative process:

- Introduced by [Cleveland].
- Iterative process:

(1) Set the weights according to $K(\mathbf{x}_0, \mathbf{x}_i)$.

- Introduced by [Cleveland].
- Iterative process:

(1) Set the weights according to K(x₀, x_i).
(2) Run weighted least squares.

- Introduced by [Cleveland].
- Iterative process:
- (1) Set the weights according to $K(\mathbf{x}_0, \mathbf{x}_i)$.
- (2) Run weighted least squares.
- (3) Estimate the residuals in θ

- Introduced by [Cleveland].
- Iterative process:
- (1) Set the weights according to $K(\mathbf{x}_0, \mathbf{x}_i)$.
- (2) Run weighted least squares.
- (3) Estimate the residuals in θ
- (4) Reweight according to residuals and go back to (2)

- Introduced by [Cleveland].
- Iterative process:
- (1) Set the weights according to $K(\mathbf{x}_0, \mathbf{x}_i)$.
- (2) Run weighted least squares.
- (3) Estimate the residuals in θ
- (4) Reweight according to residuals and go back to (2)
- Takes care of outliers.

Back to pose estimation

- LWR provides means of example-based regression.
- LSH allows rapid search for similar examples.
- Problem: similarity in the parameter space does not have to be consistent with similarity in feature space.
 - Need to derive useful similarity measure, and to modify the LSH apparatus as necessary.

Filters and hash functions

• Consider simple family of *binary* hash functions:

$$h_{\phi,T}(\mathbf{x}) = \begin{cases} +1 & \text{if } \phi(\mathbf{x}) \ge T, \\ -1 & \text{otherwise} \end{cases}$$

for given filter ϕ and threshold T.

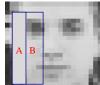
Filters and hash functions

• Consider simple family of *binary* hash functions:

$$h_{\phi,T}(\mathbf{x}) = \begin{cases} +1 & \text{if } \phi(\mathbf{x}) \ge T, \\ -1 & \text{otherwise} \end{cases}$$

for given filter ϕ and threshold T. Examples:

– Box filters [Viola&Jones]



$$\phi(\mathbf{x}) = \sum_A - \sum_B.$$

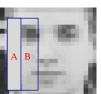
Filters and hash functions

• Consider simple family of *binary* hash functions:

$$h_{\phi,T}(\mathbf{x}) = \begin{cases} +1 & \text{if } \phi(\mathbf{x}) \ge T, \\ -1 & \text{otherwise} \end{cases}$$

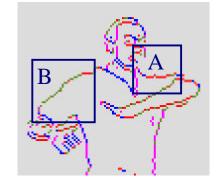
for given filter ϕ and threshold T. Examples:

– Box filters [Viola&Jones]



$$\phi(\mathbf{x}) = \sum_{A} - \sum_{B}.$$

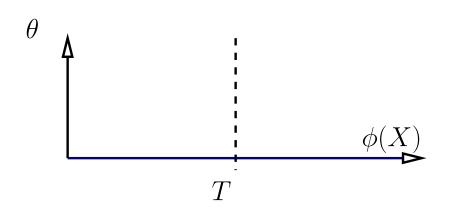
Edge direction histograms



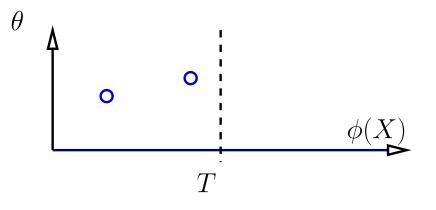
 $\phi(\mathbf{x}) = \sum_{A} horiz.$

• $h_{\phi,T}$ applied on a paired examples will either:

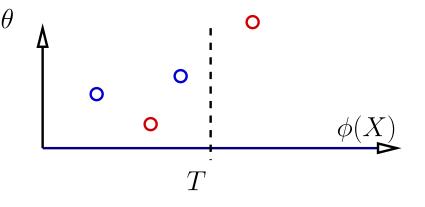
• $h_{\phi,T}$ applied on a paired examples will either:



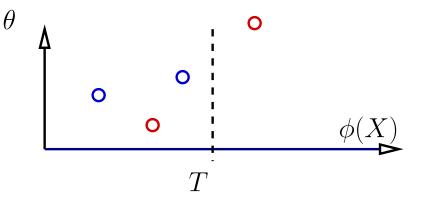
- $h_{\phi,T}$ applied on a paired examples will either:
 - Place both in the same bin

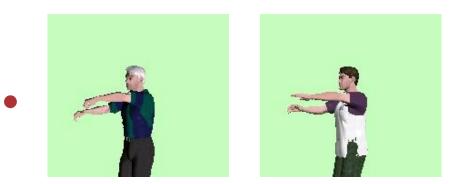


- $h_{\phi,T}$ applied on a paired examples will either:
 - Place both in the same bin ,or
 - Separate between them.



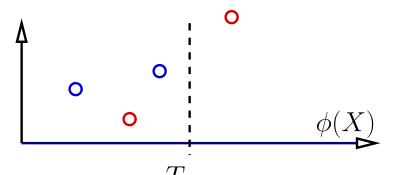
- $h_{\phi,T}$ applied on a paired examples will either:
 - Place both in the same bin ,or
 - Separate between them.

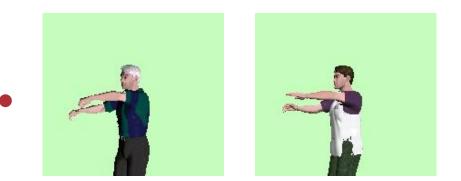


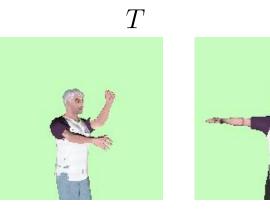


 θ

- $h_{\phi,T}$ applied on a paired examples will either:
 - Place both in the same bin ,or
 - Separate between them.







•
$$h \equiv h_{\phi,T}(\mathbf{x}) = \begin{cases} +1 & \text{if } \phi(\mathbf{x}) \ge T, \\ -1 & \text{otherwise.} \end{cases}$$

• Let $(\mathbf{x}_i, \mathbf{x}_j)$ be a *paired example*.

•
$$h \equiv h_{\phi,T}(\mathbf{x}) = \begin{cases} +1 & \text{if } \phi(\mathbf{x}) \ge T, \\ -1 & \text{otherwise.} \end{cases}$$

- Let $(\mathbf{x}_i, \mathbf{x}_j)$ be a *paired example*.
- We define the label of $(\mathbf{x}_i, \mathbf{x}_j)$:

$$y_{ij} = \begin{cases} +1 \text{ if } \theta_i \text{ and } \theta_j \text{ are } r\text{-similar, i.e. } d_\theta \left(\theta_i, \theta_j\right) < r, \\ -1 \text{ otherwise.} \end{cases}$$

i.e. a paired example is positive if the two components have similar (within r) parameters.

•
$$h(\mathbf{x}) = \begin{cases} +1 \text{ if } \phi(\mathbf{x}) \ge T, \\ -1 \text{ otherwise} \end{cases}$$
 $y_{ij} = \begin{cases} +1 \text{ if } d_{\theta}(\theta_i, \theta_j) < r, \\ -1 \text{ otherwise.} \end{cases}$

•
$$h(\mathbf{x}) = \begin{cases} +1 \text{ if } \phi(\mathbf{x}) \ge T, \\ -1 \text{ otherwise} \end{cases}$$
 $y_{ij} = \begin{cases} +1 \text{ if } d_{\theta}(\theta_i, \theta_j) < r, \\ -1 \text{ otherwise.} \end{cases}$

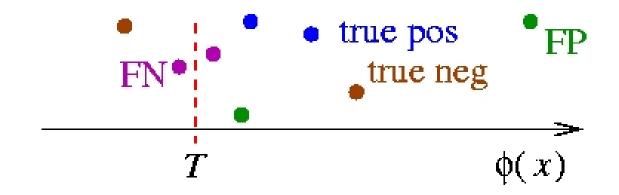
• We define the *paired* classifier associated with h by

$$\hat{y}_h(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} +1 & \text{if } h(\mathbf{x}_i) = h(\mathbf{x}_j), \\ -1 & \text{otherwise.} \end{cases}$$

•
$$h(\mathbf{x}) = \begin{cases} +1 \text{ if } \phi(\mathbf{x}) \ge T, \\ -1 \text{ otherwise} \end{cases}$$
 $y_{ij} = \begin{cases} +1 \text{ if } d_{\theta}(\theta_i, \theta_j) < r, \\ -1 \text{ otherwise.} \end{cases}$

• We define the *paired* classifier associated with h by

$$\hat{y}_h(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} +1 & \text{if } h(\mathbf{x}_i) = h(\mathbf{x}_j), \\ -1 & \text{otherwise.} \end{cases}$$



Hash functions and classification

•
$$h(\mathbf{x}) = \begin{cases} +1 & \text{if } \phi(\mathbf{x}) \ge T, \\ -1 & \text{otherwise} \end{cases}$$
 $y_{ij} = \begin{cases} +1 & \text{if } d_{\theta}(\theta_i, \theta_j) < r, \\ -1 & \text{otherwise.} \end{cases}$
 $\hat{y}_h(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} +1 & \text{if } h(\mathbf{x}_i) = h(\mathbf{x}_j), \\ -1 & \text{otherwise.} \end{cases}$

• Collision properties of h vs. accuracy of \hat{y}_h :

Hash functions and classification

•
$$h(\mathbf{x}) = \begin{cases} +1 & \text{if } \phi(\mathbf{x}) \ge T, \\ -1 & \text{otherwise} \end{cases}$$
 $y_{ij} = \begin{cases} +1 & \text{if } d_{\theta}(\theta_i, \theta_j) < r, \\ -1 & \text{otherwise.} \end{cases}$
 $\hat{y}_h(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} +1 & \text{if } h(\mathbf{x}_i) = h(\mathbf{x}_j), \\ -1 & \text{otherwise.} \end{cases}$

- Collision properties of h vs. accuracy of \hat{y}_h :
 - $-p_1(h)$ is the *true negative rate* of \hat{y}_h ,
 - $p_2(h)$ is the false positive rate of \hat{y}_h .

Hash functions and classification

•
$$h(\mathbf{x}) = \begin{cases} +1 \text{ if } \phi(\mathbf{x}) \ge T, \\ -1 \text{ otherwise} \end{cases}$$
 $y_{ij} = \begin{cases} +1 \text{ if } d_{\theta}(\theta_i, \theta_j) < r, \\ -1 \text{ otherwise.} \end{cases}$
 $\hat{y}_h(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} +1 \text{ if } h(\mathbf{x}_i) = h(\mathbf{x}_j), \\ -1 \text{ otherwise.} \end{cases}$

- Collision properties of h vs. accuracy of \hat{y}_h :
 - $p_1(h)$ is the *true negative rate* of \hat{y}_h ,
 - $p_2(h)$ is the false positive rate of \hat{y}_h .
- Optimizing w.r.t. p_1 and $1 p_2$ is a straightforward machine learning task.

Learning parameter-sensitive hash functions

Some practical aspects:

- Very unbalanced problem: few positive examples, very many very diverse negative examples.
- Only need to look at finite set of thresholds ${\cal T}$
 - One-pass algorithm (in the ICCV '03 paper)
- Need to balance the two objectives: increasing p_1 , decreasing p_2 .
 - Not tied together, in contrast to the common learning practice.

PSH

- Given: set of labeled examples $\{\langle \mathbf{x}, \theta \rangle\}$, set of filters $\{\phi\}$.
- Sample paired training set:
 - positive example = pair of images with similar θ ,
 - negative example = pair of images with far θ .
- Evaluate all $\phi(\mathbf{x})$, for each find optimal T.
- Select features with $p_1(h_{\phi,T}), p_2(h_{\phi,T})$ within target bounds.
- Proceed with LSH.

Articulated pose estimation

- 13 DOF (including torso rotation).
- Edge direction histograms: almost 12,000 features
- 500,000 syn thetic images (POSER)

Paired examples

POS

AND

NEG

Articulated pose: experiments

- Selected 213 features / hash functions, with $p_1 = .85, \quad p_2 = 0.52.$
- Used l = 80 hash tables, k = 19 bit hash functions.
- According to the theoretical analysis:
 - Probability of success: 0.985
 - Expected number of comparisons: 130

Results on real data

More results

Summary: NN in vision

- NN-based methods may be efficient for recognition and estimation in vision, when large data sets are available.
- Synthetically generated data may be useful in these scenarios.
- Using a single NN usually is not a good idea
- LWR, local density models usually are.

Summary: recipes

- Low dimension ($d \leq 10$), exact NN: use kd-trees
- Moderate dimension ($10 \ge d \le 20$), approximate NN: use BBF
- High dimension: use LSH for approximate NN
- Consider whether *r*-neighbors, rather then NN, are the goal.
- Use embeddings for fast similarity search in metric spaces
- Carefully choose the distance function!

References

- [1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. Artificial Intelligence Review, 11(1-5):11-73, 1997.
- J. S. Beis and D. G. Lowe. Indexing without invariants in 3D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(10):1000–1015, 1999.
- [3] Serge Belongie, Jitendra Malik, and Jan Puzicha. Matching shapes. In International Conference on Computer Vision, pages 454–463, Los Alamitos, CA, July 9–12 2001. IEEE Computer Society.
- [4] W. S. Cleveland. Robust locally weighted regression and smoothing scatter plots. *Journal of American Statistical Association*, 74(368):829–836, 1979.
- [5] W. S. Cleveland and S. J. Delvin. Locally weighted regression: an approach to regression analysis by local fitting. *Journal of American Statistical Association*, 83(403):596–610, 1988.
- [6] T. M. Cover. Rates of Convergence for Nearest Neighbor Procedures. In Proc. 1st Ann. Hawaii Conf. Systems Theory, pages 413–415, January 1968.
- [7] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. *IEEE Transactions on Information Theory*, 13:21–27, January 1967.
- [8] R. O. Duda, P. E. Hart, and D. G. Stork. *Pattern classification*. John Wiley & sons, New York, second edition, 2001.
- [9] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In *Proceedings of the 25th International Conference on Very Large Data Bases (VLDB '99)*, pages 518–529, San Francisco, September 1999. Morgan Kaufmann.
- [10] K. Grauman and T. Darrell. Fast Contour Matching Using Approximate Earth-Mover's Distance. In IEEE Conf. on Computer Vision and Pattern Recognition, Washington, DC, 2004. to appear.
- [11] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC-98), pages 604–613, New York, May 23–26 1998. ACM Press.
- [12] B. Leibe and B. Schiele. Analyzing contour and appearance based methods for object categorization. In *IEEE Conf. on Computer Vision and Pattern Recognition*, Madison, WI, 2003.
- [13] S. Niyogi and W. T. Freeman. Example-Based Head Tracking. Technical report, MERL, 1996.
- [14] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter sensitive hashing. In International Conference on Computer Vision, Nice, France, October 2003.