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Today

• Example-based paradigm in vision

– NN classification and regression

• algorithms for similarity search

– kd-trees and Best Bin First seacrh

– Locality-Sensitive Hashing

• Locally-Weighted Regression
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Model-based vision

• Image I is produced by a parametric process I = F (θ).

– θ: object class, pose, illumination, activity, etc.

• Given I, recover the relevant subset of θ.

• Typical paradigm: “Generate and test”

2



Model-based vision

• Advantages

– Often an interpretable model

– Relatively compact representation

• Disadvantages

– May be computationally costly

– Susceptible to local minima

– It is very difficult to come up with a manageable model for a

complex phenomenon
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Example-based vision

• Large set of labeled examples 〈x1, θ1〉, . . . , 〈xN , θN〉

• Distance measure d(xa,xb)

4



Example-based vision

• Large set of labeled examples 〈x1, θ1〉, . . . , 〈xN , θN〉

• Distance measure d(xa,xb)

• Approach: infer the unknown θ from the example(s) closest (most

similar) to the query x0 w.r.t. d.

4



Example-based vision

• Large set of labeled examples 〈x1, θ1〉, . . . , 〈xN , θN〉

• Distance measure d(xa,xb)

• Approach: infer the unknown θ from the example(s) closest (most

similar) to the query x0 w.r.t. d.

• Intuition: similar images are likely to belong to the same class, or

have the same parameters (class, pose etc.)

• Notion of “similarity” is problem-dependent, and critical to the

success of an approach.
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Examples: recognition

Shape Multi-cue Texture
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Examples: estimation

Orientation Articulated pose

[Nyogi & Freeman ’96] [Shakhnarovich et al ’03]
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Probabilistic approach to recognition

• C classes, with prior probabilities P1, . . . , PC.

• Data from class c have distribution p(x|c) ≡ pc(x).

• Risk of a classifier h(x)→ {1, . . . , C}:

R = Ep(x,c) [L (h(x), c)] ,

where L is the loss function, e.g. 0/1 loss

L(c1, c2) =

{
0, if c1 = c2,

1 otherwise
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Recognition: optimal classifier

• Suppose we know pc, Pc for all classes.

• Under 0/1 loss, the risk is minimized if

f∗(x) = argmax
c

pc(x)Pc.

• This minimal risk R∗ is called Bayes risk (of the problem).

• See [Duda, Hart & Stork (2nd edition)]
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Nearest neighbors classification

• NN classifier: find i = argminj d (x0,xj).

• Theory [Cover & Hart ’67]:

– Binary classification: limN→∞RN ≤ 2R∗(1−R∗).
– C-class problem: limN→∞RN = R∗

(
2− C

C−1R
∗
)

– Arbitrarily slow rate of convergence to the asymptotic rate

[Cover ’68]

• Practice: often on par with the best classifier even with data sets

of modest size.
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Nearest Neighbor boundary

• NN decision boundaries set a Voronoi tasselation:

√
(x1 − y1)2 + (x2 − y2)2

• The distance defines the NN and thus the decision boundaries.
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Nearest Neighbor boundary

• NN decision boundaries set a Voronoi tasselation:

√
(x1 − y1)2 + (x2 − y2)2

√
(x1 − y1)2 + (3x2 − 3y2)2

• The distance defines the NN and thus the decision boundaries.
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Example: object categorization

• ETH data set: 8 categories × 10 objects × 41 viewpoints

[Leibe & Schiele ’03]
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Example: object categorization

• The data set: 8 categories × 10 objects × 41 viewpoints

• Cues:

– Color histograms

– Texture (histograms of derivatives at multiple scales)

– Shape - global descriptor (binary mask)

– Shape - local descriptor (shape context)
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Example: object categorization

• Best NN in a single modality: shape (contour) 86.4%

• Decision tree (from [Leibe & Schiele ’03]):
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NN: search

• Brute force search for NN: O(dN) (need to compare to all

examples).

– Becomes impractical for large high-dimensional data sets.

• In 1D, 2D tricks exist that allow very efficient search.

• In higher dimension, clever indexing of the data can help...
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kd-trees: preprocessing

Recursively partition by the median along max spread.
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Recursively partition by the median along max spread:
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kd-trees: search
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kd-trees: search

• Find the leaf containing the query point

– This may rule out much of the data set, since a NN must not be

farther than this leaf!
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kd-trees: search

• Find the leaf containing the query point

– This may rule out much of the data set, since a NN must not be

farther than this leaf!

• Back up, and explore the nodes which may contain the query.

• Very efficient in low dimensions; expected search time O(logN)
(but exponential in d!).

• When d > 20, often achieves worst case – almost linear.

18



BBF: Best Bin First

• An approximation of NN search [Beis & Lowe ’99].

• kd-tree: search bins closest in the tree structure

• BBF: search bins closest in space (i.e. distance from query to the

bin boundary).

• Approximation: only search m candidates, settle for the best among

them.

– Note: must compare to restricted search with “standard” kd-

tree.
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BBF: Best Bin First

[Beis & Lowe ’99]
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Shape indexing with BBF

• Extract geometric features (3- and 4-segment groups);

• Index the data set, find k NN for each feature;

• Use k-NN density estimator to rank hypothesis probabilities;

• Verify hypotheses
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Shape indexing with BBF

• Database: random viewpoints of
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Shape indexing with BBF

• Database: random viewpoints of

22



Shape indexing with BBF

“Easy”: 99.5% “Difficult”: 50%
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Search in very high dimensions

• BBF provides an answer for dimensions up to 20.

• What happens when d=100? 1,000?

• May relax the search objective and resort to randomization...
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Approximate nearest neighbors
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Approximate nearest neighbors

k nearest neighbors
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Approximate nearest neighbors

k nearest neighbors

r-neighbors:

within radius r from x0
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Approximate nearest neighbors

k nearest neighbors

r-neighbors:

within radius r from x0

(ε, r)-neighbors:

within radius (1 + ε)r
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LSH: Fast search for (ε, r)-neighbors

• [Gionis et al ’99, Indyk&Motwani ’98]

• Algorithm for finding a (ε, r)-neighbor of x0:
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LSH: Fast search for (ε, r)-neighbors

• [Gionis et al ’99, Indyk&Motwani ’98]

• Algorithm for finding a (ε, r)-neighbor of x0:

– Query time O
(
dn1/(1+ε)

)
– Storage O

(
dn+ n1+1/(1+ε)

)
• Practical meaning, with 106 examples ×10000 features, for ε = 1:

– Assume each feature is a float (4× 1010 data bytes).

– The algorithm requires 4.1× 1010 bytes storage,

– Query requires about O(107) byte operations,

– Compared to O(1010) for exhaustive search.
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LSH: intuition

• Preprocessing: index the data by l hash tables
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LSH: intuition

• Exhaustively search the union of the matching buckets.

• More bits per key = smaller buckets, less to search.

• More hash tables = more to search but unlikely to miss neighbors.
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Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}
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Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}

• This is a (r,R, p1, p2)-sensitive hash family, if for a random h ∈ H
– if d(x0,x) < r then Pr (h(x0) = h(x)) ≥ p1

– if d(x0,x) ≥ R then Pr (h(x0) = h(x)) ≤ p2.

• Useful if p1 > p2, r < R.

• For X = R
n and d ≡ L1: axis-parallel decision stumps are locality-

sensitive.
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LSH: review of the algorithm

• Choose a locality-sensitive family H of hash functions.

• Build l indepedent hash tables:

– Construct a k-bit hash function g(x) = (h1(x), . . . , hk(x)) with

randomly selected hj ∈ H.

– Store each example xi in the bucket g(xj).

• On query x0: exhaustively search the union of g1(x0), . . . , gl(x0)
for (ε, r)-neighbors of x0.
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LSH: properties

• l hash tables with k-bit hash functions.

• Hash function family: probability of “good” collision ≥ p1, “bad”

collision ≤ p2.
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LSH: properties

• l hash tables with k-bit hash functions.

• Hash function family: probability of “good” collision ≥ p1, “bad”

collision ≤ p2.

• Probability of collision in one table: at least pk1 for similar points,

at most pk2 for dissimilar ones.

• The probability of finding at least one similar point ≥ 1− (1−pk1)l

• The expected number of points to search ≤ lNpk2

• Parameters k, l can be set based on p1, p2.
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NN in non-Euclidean spaces

• The distance may not be a norm.

• Embedding into a norm (possibly with distortion).

• Example: Earth-Mover’s Distance
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EMD
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Shape contexts [Belongie et al]

A local shape descriptor : histogram in each contour point describes

the shape (other contour points) in the vicinity.
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Shape retrieval with LSH

[Grauman & Darrell ’04]: tests on body silhouettes (PCA on shape

contexts → EMD → embedding in L1)
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Shape retrieval with LSH

[Grauman & Darrell ’04]: tests on hand-written digits.

Query NN (EMD) NN (L1) LSH
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Example-based estimation (regression)

• Labels θ = f(x)

• Simple k-NN method: f̂(x0) = 1
k

∑
xj∈ NN of x0

f(xj)

• Problem: if neighborhood is sparse relative to f ,

• Possible remedy: pay more attention to the examples closer to x0.
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LWR - intuition

• Excellent introduction in [Atkeson,Moore,Schaal].
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x0

• The relative strengths of the springs depend on the kernel.
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LWR

• Fit the model θ = g (x;β) to observations within a small

neighborhood of the query point x0:

β∗(x0) = argmin
β

∑
i

L (g(xi;β), θi)K (d(xi,x0))
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LWR

• Fit the model θ = g (x;β) to observations within a small

neighborhood of the query point x0:

β∗(x0) = argmin
β

∑
i

L (g(xi;β), θi)K (d(xi,x0)) where

– L is the loss function,

– K is the kernel, which determines the weight falloff with

increasing distance from x0.
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Robust LWR

• Introduced by [Cleveland].
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Robust LWR

• Introduced by [Cleveland].

• Iterative process:

(1) Set the weights according to K(x0,xi).

(2) Run weighted least squares.

(3) Estimate the residuals in θ

(4) Reweight according to residuals and go back to (2)

• Takes care of outliers.

40



Back to pose estimation

• LWR provides means of example-based regression.

• LSH allows rapid search for similar examples.

• Problem: similarity in the parameter space does not have to be

consistent with similarity in feature space.

– Need to derive useful similarity measure, and to modify the LSH

apparatus as necessary.
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Filters and hash functions

• Consider simple family of binary hash functions:

hφ,T (x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

for given filter φ and threshold T .
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Filters and hash functions

• Consider simple family of binary hash functions:

hφ,T (x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

for given filter φ and threshold T . Examples:

– Box filters [Viola&Jones] A B

φ(x) =
∑
A−

∑
B.

– Edge direction histograms
A

B φ(x) =
∑
A horiz.
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Hash functions and classification

• hφ,T applied on a paired examples will either:
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Hash functions and classification

• h ≡ hφ,T (x) =
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+1 if φ(x) ≥ T,
−1 otherwise.

• Let (xi,xj) be a paired example.
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Hash functions and classification

• h ≡ hφ,T (x) =

{
+1 if φ(x) ≥ T,
−1 otherwise.

• Let (xi,xj) be a paired example.

• We define the label of (xi,xj):

yij =

{
+1 if θi and θj are r-similar, i.e. dθ (θi, θj) < r,

−1 otherwise.

i.e. a paired example is positive if the two components have similar

(within r) parameters.
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Hash functions and classification

• h(x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

yij =

{
+1 if dθ (θi, θj) < r,

−1 otherwise.
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−1 otherwise.
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+1 if h(xi) = h(xj),

−1 otherwise.

• Collision properties of h vs. accuracy of ŷh:

– p1(h) is the true negative rate of ŷh,

– p2(h) is the false positive rate of ŷh.
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Hash functions and classification

• h(x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

yij =

{
+1 if dθ (θi, θj) < r,

−1 otherwise.

ŷh(xi,xj) =

{
+1 if h(xi) = h(xj),

−1 otherwise.

• Collision properties of h vs. accuracy of ŷh:

– p1(h) is the true negative rate of ŷh,

– p2(h) is the false positive rate of ŷh.

• Optimizing w.r.t. p1 and 1 − p2 is a straightforward machine

learning task.
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Learning parameter-sensitive hash functions

Some practical aspects:

• Very unbalanced problem: few positive examples, very many very

diverse negative examples.

• Only need to look at finite set of thresholds T

– One-pass algorithm (in the ICCV ’03 paper)

• Need to balance the two objectives: increasing p1, decreasing p2.

– Not tied together, in contrast to the common learning practice.
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PSH

• Given: set of labeled examples {〈x, θ〉}, set of filters{φ}.

• Sample paired training set:

– positive example = pair of images with similar θ,

– negative example = pair of images with far θ.

• Evaluate all φ(x), for each find optimal T .

• Select features with p1(hφ,T ), p2(hφ,T ) within target bounds.

• Proceed with LSH.
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Articulated pose estimation

• 13 DOF (including torso rotation).

• Edge direction histograms: almost 12,000 features

• 500,000 syn thetic images (Poser)
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Paired examples

POS POS

AND

NEG NEG
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Articulated pose: experiments

• Selected 213 features / hash functions, with

p1 = .85, p2 = 0.52.

• Used l = 80 hash tables, k = 19 bit hash functions.

• According to the theoretical analysis:

– Probability of success: 0.985

– Expected number of comparisons: 130
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Results on real data
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More results
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Summary: NN in vision

• NN-based methods may be efficient for recognition and estimation

in vision, when large data sets are available.

• Synthetically generated data may be useful in these scenarios.

• Using a single NN usually is not a good idea

• LWR, local density models usually are.
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Summary: recipes

• Low dimension (d ≤10), exact NN: use kd-trees

• Moderate dimension (10 ≥ d ≤ 20), approximate NN: use BBF

• High dimension: use LSH for approximate NN

• Consider whether r-neighbors, rather then NN, are the goal.

• Use embeddings for fast similarity search in metric spaces

• Carefully choose the distance function!
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