
Example-Based Computer Vision
6.891

Greg Shakhnarovich

April 27, 2004



Today

• Example-based paradigm in vision

– NN classification and regression

• algorithms for similarity search

– kd-trees and Best Bin First seacrh

– Locality-Sensitive Hashing

• Locally-Weighted Regression

1



Model-based vision

• Image I is produced by a parametric process I = F (θ).

– θ: object class, pose, illumination, activity, etc.

• Given I, recover the relevant subset of θ.

• Typical paradigm: “Generate and test”

2



Model-based vision

• Advantages

– Often an interpretable model

– Relatively compact representation

• Disadvantages

– May be computationally costly

– Susceptible to local minima

– It is very difficult to come up with a manageable model for a

complex phenomenon

3



Example-based vision

• Large set of labeled examples 〈x1, θ1〉, . . . , 〈xN , θN〉

• Distance measure d(xa,xb)

4



Example-based vision

• Large set of labeled examples 〈x1, θ1〉, . . . , 〈xN , θN〉

• Distance measure d(xa,xb)

• Approach: infer the unknown θ from the example(s) closest (most

similar) to the query x0 w.r.t. d.

4



Example-based vision

• Large set of labeled examples 〈x1, θ1〉, . . . , 〈xN , θN〉

• Distance measure d(xa,xb)

• Approach: infer the unknown θ from the example(s) closest (most

similar) to the query x0 w.r.t. d.

• Intuition: similar images are likely to belong to the same class, or

have the same parameters (class, pose etc.)

• Notion of “similarity” is problem-dependent, and critical to the

success of an approach.

4



Examples: recognition

Shape Multi-cue Texture

5



Examples: estimation

Orientation Articulated pose

[Nyogi & Freeman ’96] [Shakhnarovich et al ’03]

6



Probabilistic approach to recognition

• C classes, with prior probabilities P1, . . . , PC.

• Data from class c have distribution p(x|c) ≡ pc(x).

• Risk of a classifier h(x)→ {1, . . . , C}:

R = Ep(x,c) [L (h(x), c)] ,

where L is the loss function, e.g. 0/1 loss

L(c1, c2) =

{
0, if c1 = c2,

1 otherwise

7



Recognition: optimal classifier

• Suppose we know pc, Pc for all classes.

• Under 0/1 loss, the risk is minimized if

f∗(x) = argmax
c

pc(x)Pc.

• This minimal risk R∗ is called Bayes risk (of the problem).

• See [Duda, Hart & Stork (2nd edition)]

8



Nearest neighbors classification

• NN classifier: find i = argminj d (x0,xj).

• Theory [Cover & Hart ’67]:

– Binary classification: limN→∞RN ≤ 2R∗(1−R∗).
– C-class problem: limN→∞RN = R∗

(
2− C

C−1R
∗
)

– Arbitrarily slow rate of convergence to the asymptotic rate

[Cover ’68]

• Practice: often on par with the best classifier even with data sets

of modest size.

9



Nearest Neighbor boundary

• NN decision boundaries set a Voronoi tasselation:

√
(x1 − y1)2 + (x2 − y2)2

• The distance defines the NN and thus the decision boundaries.

10



Nearest Neighbor boundary

• NN decision boundaries set a Voronoi tasselation:

√
(x1 − y1)2 + (x2 − y2)2

√
(x1 − y1)2 + (3x2 − 3y2)2

• The distance defines the NN and thus the decision boundaries.

10



Example: object categorization

• ETH data set: 8 categories × 10 objects × 41 viewpoints

[Leibe & Schiele ’03]

11



Example: object categorization

• The data set: 8 categories × 10 objects × 41 viewpoints

• Cues:

– Color histograms

– Texture (histograms of derivatives at multiple scales)

– Shape - global descriptor (binary mask)

– Shape - local descriptor (shape context)

12



Example: object categorization

• Best NN in a single modality: shape (contour) 86.4%

• Decision tree (from [Leibe & Schiele ’03]):

13



NN: search

• Brute force search for NN: O(dN) (need to compare to all

examples).

– Becomes impractical for large high-dimensional data sets.

• In 1D, 2D tricks exist that allow very efficient search.

• In higher dimension, clever indexing of the data can help...

14



kd-trees: preprocessing

Recursively partition by the median along max spread.

15



kd-trees: preprocessing

Recursively partition by the median along max spread

16



kd-trees: preprocessing

Recursively partition by the median along max spread:

16



kd-trees: search

17



kd-trees: search

• Find the leaf containing the query point

– This may rule out much of the data set, since a NN must not be

farther than this leaf!

18



kd-trees: search

• Find the leaf containing the query point

– This may rule out much of the data set, since a NN must not be

farther than this leaf!

• Back up, and explore the nodes which may contain the query.

18



kd-trees: search

• Find the leaf containing the query point

– This may rule out much of the data set, since a NN must not be

farther than this leaf!

• Back up, and explore the nodes which may contain the query.

• Very efficient in low dimensions; expected search time O(logN)
(but exponential in d!).

• When d > 20, often achieves worst case – almost linear.

18



BBF: Best Bin First

• An approximation of NN search [Beis & Lowe ’99].

• kd-tree: search bins closest in the tree structure

• BBF: search bins closest in space (i.e. distance from query to the

bin boundary).

• Approximation: only search m candidates, settle for the best among

them.

– Note: must compare to restricted search with “standard” kd-

tree.

19



BBF: Best Bin First

[Beis & Lowe ’99]

20



Shape indexing with BBF

• Extract geometric features (3- and 4-segment groups);

• Index the data set, find k NN for each feature;

• Use k-NN density estimator to rank hypothesis probabilities;

• Verify hypotheses

21



Shape indexing with BBF

• Database: random viewpoints of

22



Shape indexing with BBF

• Database: random viewpoints of

22



Shape indexing with BBF

“Easy”: 99.5% “Difficult”: 50%

23



Search in very high dimensions

• BBF provides an answer for dimensions up to 20.

• What happens when d=100? 1,000?

• May relax the search objective and resort to randomization...

24



Approximate nearest neighbors

25



Approximate nearest neighbors

k nearest neighbors

25



Approximate nearest neighbors

k nearest neighbors

r-neighbors:

within radius r from x0

25



Approximate nearest neighbors

k nearest neighbors

r-neighbors:

within radius r from x0

(ε, r)-neighbors:

within radius (1 + ε)r

25



LSH: Fast search for (ε, r)-neighbors

• [Gionis et al ’99, Indyk&Motwani ’98]

• Algorithm for finding a (ε, r)-neighbor of x0:

26



LSH: Fast search for (ε, r)-neighbors

• [Gionis et al ’99, Indyk&Motwani ’98]

• Algorithm for finding a (ε, r)-neighbor of x0:

– Query time O
(
dn1/(1+ε)

)

26



LSH: Fast search for (ε, r)-neighbors

• [Gionis et al ’99, Indyk&Motwani ’98]

• Algorithm for finding a (ε, r)-neighbor of x0:

– Query time O
(
dn1/(1+ε)

)
– Storage O

(
dn+ n1+1/(1+ε)

)

26



LSH: Fast search for (ε, r)-neighbors

• [Gionis et al ’99, Indyk&Motwani ’98]

• Algorithm for finding a (ε, r)-neighbor of x0:

– Query time O
(
dn1/(1+ε)

)
– Storage O

(
dn+ n1+1/(1+ε)

)
• Practical meaning, with 106 examples ×10000 features, for ε = 1:

26



LSH: Fast search for (ε, r)-neighbors

• [Gionis et al ’99, Indyk&Motwani ’98]

• Algorithm for finding a (ε, r)-neighbor of x0:

– Query time O
(
dn1/(1+ε)

)
– Storage O

(
dn+ n1+1/(1+ε)

)
• Practical meaning, with 106 examples ×10000 features, for ε = 1:

– Assume each feature is a float (4× 1010 data bytes).

26



LSH: Fast search for (ε, r)-neighbors

• [Gionis et al ’99, Indyk&Motwani ’98]

• Algorithm for finding a (ε, r)-neighbor of x0:

– Query time O
(
dn1/(1+ε)

)
– Storage O

(
dn+ n1+1/(1+ε)

)
• Practical meaning, with 106 examples ×10000 features, for ε = 1:

– Assume each feature is a float (4× 1010 data bytes).

– The algorithm requires 4.1× 1010 bytes storage,

– Query requires about O(107) byte operations,

– Compared to O(1010) for exhaustive search.

26



LSH: intuition

• Preprocessing: index the data by l hash tables

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Preprocessing: index the data by l hash tables

• Hash functions are unlikely to separate close points

27



LSH: intuition

• Exhaustively search the union of the matching buckets.

• More bits per key = smaller buckets, less to search.

• More hash tables = more to search but unlikely to miss neighbors.

28



Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}

29



Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}

• This is a (r,R, p1, p2)-sensitive hash family, if for a random h ∈ H

29



Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}

• This is a (r,R, p1, p2)-sensitive hash family, if for a random h ∈ H
– if d(x0,x) < r then Pr (h(x0) = h(x)) ≥ p1

29



Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}

• This is a (r,R, p1, p2)-sensitive hash family, if for a random h ∈ H
– if d(x0,x) < r then Pr (h(x0) = h(x)) ≥ p1,

Probability of “good” collision

29



Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}

• This is a (r,R, p1, p2)-sensitive hash family, if for a random h ∈ H
– if d(x0,x) < r then Pr (h(x0) = h(x)) ≥ p1

– if d(x0,x) ≥ R then Pr (h(x0) = h(x)) ≤ p2.

29



Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}

• This is a (r,R, p1, p2)-sensitive hash family, if for a random h ∈ H
– if d(x0,x) < r then Pr (h(x0) = h(x)) ≥ p1

– if d(x0,x) ≥ R then Pr (h(x0) = h(x)) ≤ p2.

Probability of “bad” collision

29



Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}

• This is a (r,R, p1, p2)-sensitive hash family, if for a random h ∈ H
– if d(x0,x) < r then Pr (h(x0) = h(x)) ≥ p1

– if d(x0,x) ≥ R then Pr (h(x0) = h(x)) ≤ p2.

• Useful if p1 > p2, r < R.

29



Locality-sensitive hash functions

• Let H be a family of bit-valued hash functions

h : X → {−1,+1}

• This is a (r,R, p1, p2)-sensitive hash family, if for a random h ∈ H
– if d(x0,x) < r then Pr (h(x0) = h(x)) ≥ p1

– if d(x0,x) ≥ R then Pr (h(x0) = h(x)) ≤ p2.

• Useful if p1 > p2, r < R.

• For X = R
n and d ≡ L1: axis-parallel decision stumps are locality-

sensitive.

29



LSH: review of the algorithm

• Choose a locality-sensitive family H of hash functions.

• Build l indepedent hash tables:

– Construct a k-bit hash function g(x) = (h1(x), . . . , hk(x)) with

randomly selected hj ∈ H.

– Store each example xi in the bucket g(xj).

• On query x0: exhaustively search the union of g1(x0), . . . , gl(x0)
for (ε, r)-neighbors of x0.

30



LSH: properties

• l hash tables with k-bit hash functions.

• Hash function family: probability of “good” collision ≥ p1, “bad”

collision ≤ p2.

31



LSH: properties

• l hash tables with k-bit hash functions.

• Hash function family: probability of “good” collision ≥ p1, “bad”

collision ≤ p2.

• Probability of collision in one table: at least pk1 for similar points,

at most pk2 for dissimilar ones.

31



LSH: properties

• l hash tables with k-bit hash functions.

• Hash function family: probability of “good” collision ≥ p1, “bad”

collision ≤ p2.

• Probability of collision in one table: at least pk1 for similar points,

at most pk2 for dissimilar ones.

• The probability of finding at least one similar point ≥ 1− (1−pk1)l

• The expected number of points to search ≤ lNpk2

31



LSH: properties

• l hash tables with k-bit hash functions.

• Hash function family: probability of “good” collision ≥ p1, “bad”

collision ≤ p2.

• Probability of collision in one table: at least pk1 for similar points,

at most pk2 for dissimilar ones.

• The probability of finding at least one similar point ≥ 1− (1−pk1)l

• The expected number of points to search ≤ lNpk2

• Parameters k, l can be set based on p1, p2.

31



NN in non-Euclidean spaces

• The distance may not be a norm.

• Embedding into a norm (possibly with distortion).

• Example: Earth-Mover’s Distance

32



EMD

33



Shape contexts [Belongie et al]

A local shape descriptor : histogram in each contour point describes

the shape (other contour points) in the vicinity.

34



Shape retrieval with LSH

[Grauman & Darrell ’04]: tests on body silhouettes (PCA on shape

contexts → EMD → embedding in L1)

35



Shape retrieval with LSH

[Grauman & Darrell ’04]: tests on hand-written digits.

Query NN (EMD) NN (L1) LSH

36



Example-based estimation (regression)

• Labels θ = f(x)

• Simple k-NN method: f̂(x0) = 1
k

∑
xj∈ NN of x0

f(xj)

• Problem: if neighborhood is sparse relative to f ,

• Possible remedy: pay more attention to the examples closer to x0.

37



LWR - intuition

• Excellent introduction in [Atkeson,Moore,Schaal].

���
�

� �� �
� �� �

���
�

���
�

� �� �		


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �

x0

• The relative strengths of the springs depend on the kernel.

38



LWR

• Fit the model θ = g (x;β) to observations within a small

neighborhood of the query point x0:

β∗(x0) = argmin
β

∑
i

L (g(xi;β), θi)K (d(xi,x0))

39



LWR

• Fit the model θ = g (x;β) to observations within a small

neighborhood of the query point x0:

β∗(x0) = argmin
β

∑
i

L (g(xi;β), θi)K (d(xi,x0)) where

– L is the loss function,

39



LWR

• Fit the model θ = g (x;β) to observations within a small

neighborhood of the query point x0:

β∗(x0) = argmin
β

∑
i

L (g(xi;β), θi)K (d(xi,x0)) where

– L is the loss function,

– K is the kernel, which determines the weight falloff with

increasing distance from x0.

39



Robust LWR

• Introduced by [Cleveland].

40



Robust LWR

• Introduced by [Cleveland].

• Iterative process:

40



Robust LWR

• Introduced by [Cleveland].

• Iterative process:

(1) Set the weights according to K(x0,xi).

40



Robust LWR

• Introduced by [Cleveland].

• Iterative process:

(1) Set the weights according to K(x0,xi).

(2) Run weighted least squares.

40



Robust LWR

• Introduced by [Cleveland].

• Iterative process:

(1) Set the weights according to K(x0,xi).

(2) Run weighted least squares.

(3) Estimate the residuals in θ

40



Robust LWR

• Introduced by [Cleveland].

• Iterative process:

(1) Set the weights according to K(x0,xi).

(2) Run weighted least squares.

(3) Estimate the residuals in θ

(4) Reweight according to residuals and go back to (2)

40



Robust LWR

• Introduced by [Cleveland].

• Iterative process:

(1) Set the weights according to K(x0,xi).

(2) Run weighted least squares.

(3) Estimate the residuals in θ

(4) Reweight according to residuals and go back to (2)

• Takes care of outliers.

40



Back to pose estimation

• LWR provides means of example-based regression.

• LSH allows rapid search for similar examples.

• Problem: similarity in the parameter space does not have to be

consistent with similarity in feature space.

– Need to derive useful similarity measure, and to modify the LSH

apparatus as necessary.

41



Filters and hash functions

• Consider simple family of binary hash functions:

hφ,T (x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

for given filter φ and threshold T .

42



Filters and hash functions

• Consider simple family of binary hash functions:

hφ,T (x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

for given filter φ and threshold T . Examples:

– Box filters [Viola&Jones] A B

φ(x) =
∑
A−

∑
B.

42



Filters and hash functions

• Consider simple family of binary hash functions:

hφ,T (x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

for given filter φ and threshold T . Examples:

– Box filters [Viola&Jones] A B

φ(x) =
∑
A−

∑
B.

– Edge direction histograms
A

B φ(x) =
∑
A horiz.

42



Hash functions and classification

• hφ,T applied on a paired examples will either:

43



Hash functions and classification

• hφ,T applied on a paired examples will either:

θ

φ(X)

T

43



Hash functions and classification

• hφ,T applied on a paired examples will either:

– Place both in the same bin θ

φ(X)

T

43



Hash functions and classification

• hφ,T applied on a paired examples will either:

– Place both in the same bin ,or θ

φ(X)

T

– Separate between them.

43



Hash functions and classification

• hφ,T applied on a paired examples will either:

– Place both in the same bin ,or θ

φ(X)

T

– Separate between them.

•

43



Hash functions and classification

• hφ,T applied on a paired examples will either:

– Place both in the same bin ,or θ

φ(X)

T

– Separate between them.

•

43



Hash functions and classification

• h ≡ hφ,T (x) =

{
+1 if φ(x) ≥ T,
−1 otherwise.

• Let (xi,xj) be a paired example.

44



Hash functions and classification

• h ≡ hφ,T (x) =

{
+1 if φ(x) ≥ T,
−1 otherwise.

• Let (xi,xj) be a paired example.

• We define the label of (xi,xj):

yij =

{
+1 if θi and θj are r-similar, i.e. dθ (θi, θj) < r,

−1 otherwise.

i.e. a paired example is positive if the two components have similar

(within r) parameters.

44



Hash functions and classification

• h(x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

yij =

{
+1 if dθ (θi, θj) < r,

−1 otherwise.

45



Hash functions and classification

• h(x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

yij =

{
+1 if dθ (θi, θj) < r,

−1 otherwise.

• We define the paired classifier associated with h by

ŷh(xi,xj) =

{
+1 if h(xi) = h(xj),

−1 otherwise.

45



Hash functions and classification

• h(x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

yij =

{
+1 if dθ (θi, θj) < r,

−1 otherwise.

• We define the paired classifier associated with h by

ŷh(xi,xj) =

{
+1 if h(xi) = h(xj),

−1 otherwise.

45



Hash functions and classification

• h(x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

yij =

{
+1 if dθ (θi, θj) < r,

−1 otherwise.

ŷh(xi,xj) =

{
+1 if h(xi) = h(xj),

−1 otherwise.

• Collision properties of h vs. accuracy of ŷh:

46



Hash functions and classification

• h(x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

yij =

{
+1 if dθ (θi, θj) < r,

−1 otherwise.

ŷh(xi,xj) =

{
+1 if h(xi) = h(xj),

−1 otherwise.

• Collision properties of h vs. accuracy of ŷh:

– p1(h) is the true negative rate of ŷh,

– p2(h) is the false positive rate of ŷh.

46



Hash functions and classification

• h(x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

yij =

{
+1 if dθ (θi, θj) < r,

−1 otherwise.

ŷh(xi,xj) =

{
+1 if h(xi) = h(xj),

−1 otherwise.

• Collision properties of h vs. accuracy of ŷh:

– p1(h) is the true negative rate of ŷh,

– p2(h) is the false positive rate of ŷh.

• Optimizing w.r.t. p1 and 1 − p2 is a straightforward machine

learning task.

46



Learning parameter-sensitive hash functions

Some practical aspects:

• Very unbalanced problem: few positive examples, very many very

diverse negative examples.

• Only need to look at finite set of thresholds T

– One-pass algorithm (in the ICCV ’03 paper)

• Need to balance the two objectives: increasing p1, decreasing p2.

– Not tied together, in contrast to the common learning practice.

47



PSH

• Given: set of labeled examples {〈x, θ〉}, set of filters{φ}.

• Sample paired training set:

– positive example = pair of images with similar θ,

– negative example = pair of images with far θ.

• Evaluate all φ(x), for each find optimal T .

• Select features with p1(hφ,T ), p2(hφ,T ) within target bounds.

• Proceed with LSH.

48



Articulated pose estimation

• 13 DOF (including torso rotation).

• Edge direction histograms: almost 12,000 features

• 500,000 syn thetic images (Poser)

49



Paired examples

POS POS

AND

NEG NEG

50



Articulated pose: experiments

• Selected 213 features / hash functions, with

p1 = .85, p2 = 0.52.

• Used l = 80 hash tables, k = 19 bit hash functions.

• According to the theoretical analysis:

– Probability of success: 0.985

– Expected number of comparisons: 130

51



Results on real data

IN
P

U
T

T
O

P
M

A
T

C
H

R
LW

R

52



More results

IN
P

U
T

T
O

P
M

A
T

C
H

R
LW

R

53



Summary: NN in vision

• NN-based methods may be efficient for recognition and estimation

in vision, when large data sets are available.

• Synthetically generated data may be useful in these scenarios.

• Using a single NN usually is not a good idea

• LWR, local density models usually are.

54



Summary: recipes

• Low dimension (d ≤10), exact NN: use kd-trees

• Moderate dimension (10 ≥ d ≤ 20), approximate NN: use BBF

• High dimension: use LSH for approximate NN

• Consider whether r-neighbors, rather then NN, are the goal.

• Use embeddings for fast similarity search in metric spaces

• Carefully choose the distance function!

55



References
[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. Artificial Intelligence Review, 11(1-5):11–73, 1997.

[2] J. S. Beis and D. G. Lowe. Indexing without invariants in 3D object recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(10):1000–1015, 1999.

[3] Serge Belongie, Jitendra Malik, and Jan Puzicha. Matching shapes. In International Conference on Computer Vision, pages 454–463,
Los Alamitos, CA, July 9–12 2001. IEEE Computer Society.

[4] W. S. Cleveland. Robust locally weighted regression and smoothing scatter plots. Journal of American Statistical Association,
74(368):829–836, 1979.

[5] W. S. Cleveland and S. J. Delvin. Locally weighted regression: an approach to regression analysis by local fitting. Journal of American
Statistical Association, 83(403):596–610, 1988.

[6] T. M. Cover. Rates of Convergence for Nearest Neighbor Procedures. In Proc. 1st Ann. Hawaii Conf. Systems Theory, pages 413–415,
January 1968.

[7] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13:21–27, January 1967.

[8] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley & sons, New York, second edition, 2001.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB ’99), pages 518–529, San Francisco, September 1999. Morgan Kaufmann.

[10] K. Grauman and T. Darrell. Fast Contour Matching Using Approximate Earth-Mover’s Distance. In IEEE Conf. on Computer Vision and
Pattern Recognition, Washington, DC, 2004. to appear.

[11] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings of the 30th
Annual ACM Symposium on Theory of Computing (STOC-98), pages 604–613, New York, May 23–26 1998. ACM Press.

[12] B. Leibe and B. Schiele. Analyzing contour and appearance based methods for object categorization. In IEEE Conf. on Computer Vision
and Pattern Recognition, Madison, WI, 2003.

[13] S. Niyogi and W. T. Freeman. Example-Based Head Tracking. Technical report, MERL, 1996.

[14] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter sensitive hashing. In International Conference on
Computer Vision, Nice, France, October 2003.

56


