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6.891
Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 2:
– Linear Filters and Convolution (review)
– Fourier Transform (review)
– Sampling and Aliasing (review)

Readings: F&P Chapter 7.1-7.6
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Recap: Cameras, lenses, and 
calibration

Last time:
• Camera models
• Projection equations
• Calibration methods

Images are projections of the 3-D world onto 
a 2-D plane…
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Recap: pinhole/perspective
Pinole camera model -

box with a small hole 
in it:

Perspective projection:

Forsyth&Ponce
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Recap: Intrinsic parameters
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Using homogenous coordinates,
we can write this as:
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Recap: Combining extrinsic and 
intrinsic calibration parameters

Forsyth&Ponce
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Other ways to write the same equation
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pixel coordinates
world coordinates

z is in the camera coordinate system, but we can 
solve for that, since                     , leading to:
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Recap:
Camera calibration
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into a big matrix:

��
��
��

�

�

��
��
��

�

�

�
��
�
�

�
��
�
�

�

��
��
��

�

�

��
��
��

�

�

�
�
�
�

0
0

0
0

0
0

0
0

3

2

1111

111

����

m
m
m

PvP
PuP

PvP
PuP

T
nn

T
n

T

T
nn

TT
n

TTT

TTT

Pm
Pmv

Pm
Pmu

�

�

�

�

�

�
�

�

�
�

3

2

3

1

8

Today
Review of early visual processing

– Linear Filters and Convolution
– Fourier Transform
– Sampling and Aliasing

You should have been exposed to this material in 
previous courses; this lecture is just a (quick) 
review.

Administrivia: 
– sign-up sheet
– introductions
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What is image filtering?
• Modify the pixels in an image based on 

some function of a local neighborhood of 
the pixels.

5 14
1 71

5 310

Local image data

7

Modified image data

Some function
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Linear functions
• Simplest:  linear filtering.
– Replace each pixel by a linear combination of 
its neighbors.

• The prescription for the linear combination 
is called the “convolution kernel”.

5 14
1 71

5 310

0.5
0.5 00
10

0 00

Local image data kernel

7

Modified image data
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Convolution
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Linear filtering (warm-up slide)

original
0Pixel offset
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Linear filtering (warm-up slide)

original
0Pixel offset

co
ef
fic

ien
t

1.0

Filtered
(no change)
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Linear filtering

0Pixel offset
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original
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?

15

shift
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Linear filtering
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original
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Blurring

0Pixel offset
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original
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Blurred (filter
applied in both 
dimensions).
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Blur examples
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Blur examples
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edge
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original
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filtered
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Smoothing reduces noise
• Generally expect pixels to 
“be like” their neighbours

– surfaces turn slowly
– relatively few reflectance 

changes
• Generally expect noise 
processes to be 
independent from pixel to 
pixel

• Implies that smoothing 
suppresses noise, for 
appropriate noise models

• Scale
– the parameter in the 

symmetric Gaussian
– as this parameter goes up, 

more pixels are involved in 
the average

– and the image gets more 
blurred

– and noise is more 
effectively suppressed
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The effects of smoothing
Each row shows smoothing
with gaussians of different
width; each column shows
different realisations of 
an image of gaussian noise.
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Linear filtering (warm-up slide)

original
0

2.0

?
0

1.0
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Linear filtering (no change)

original
0

2.0

0

1.0

Filtered
(no change)
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Linear filtering

original
0

2.0

0

0.33 ?



5

25

(remember blurring)

0Pixel offset

co
ef
fic

ien
t

original

0.3

Blurred (filter
applied in both 
dimensions).
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Linear filtering

original
0

2.0

0

0.33 ?
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Sharpening 

original
0

2.0

0

0.33

Sharpened 
original
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Sharpening example
co
ef
fic
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t

-0.3original

8

Sharpened
(differences are

accentuated;  constant
areas are left untouched).

11.21.7

-0.25

8

29

Sharpening

before after

30

Gradients and edges
• Points of sharp change 
in an image are 
interesting:
– change in reflectance
– change in object
– change in illumination
– noise

• Sometimes called 
edge points

• General strategy
– linear filters to estimate 
image gradient

– mark points where 
gradient magnitude is 
particularly large wrt 
neighbours (ideally, 
curves of such points).
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Smoothing and Differentiation
• Issue:  noise

– smooth before differentiation
– two convolutions to smooth, then differentiate?
– actually, no - we can use a derivative of Gaussian filter

• because differentiation is convolution, and convolution is 
associative

32

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels

33

Oriented filters
Gabor filters (Gaussian modulated 
harmonics) at different
scales and spatial frequencies

Top row shows anti-symmetric 
(or odd) filters, bottom row the
symmetric (or even) filters.
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Linear image transformations
• In analyzing images, it’s often useful to 

make a change of basis.

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

fUF ��

� Vectorized image
transformed image
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Self-inverting transforms
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Same basis functions are used for the inverse transform

U transpose and complex conjugate
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An example of such a transform:  
the Fourier transform

discrete domain
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To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. 

38

Here u and v 
are larger than 
in the previous 
slide.

39

And larger still...

40

Phase and Magnitude
• Fourier transform of a real 
function is complex
– difficult to plot, visualize
– instead, we can think of the 

phase and magnitude of the 
transform

• Phase is the phase of the 
complex transform

• Magnitude is the 
magnitude of the complex 
transform

• Curious fact
– all natural images have 

about the same magnitude 
transform

– hence, phase seems to 
matter, but magnitude 
largely doesn’t

• Demonstration
– Take two pictures, swap the 

phase transforms, compute 
the inverse - what does the 
result look like?

41 42

This is the 
magnitude 
transform 
of the 
cheetah pic
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This is the 
phase 
transform 
of the 
cheetah pic

44

45

This is the 
magnitude 
transform 
of the zebra
pic

46

This is the 
phase 
transform 
of the zebra
pic

47

Reconstruction 
with zebra 
phase, cheetah 
magnitude

48

Reconstruction 
with cheetah 
phase, zebra 
magnitude
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Example image synthesis with 
fourier basis.

• 16 images

50

2
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6

52

18

53

50

54

82
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136

56

282

57

538

58

1088

59

2094

60

4052.
4052
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61

8056.

62

15366

63

28743

64

49190.

65

65536.

66

Fourier transform magnitude
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67

Masking out the fundamental and 
harmonics from periodic pillars

68

Name as many functions as you 
can that retain that same 

functional form in the transform 
domain

69Forsyth&Ponce 70

Oppenheim, 
Schafer and 
Buck,
Discrete-time 
signal processing,
Prentice Hall, 
1999

Discrete-time, continuous frequency Fourier transform

71

Discrete-time, continuous frequency Fourier transform pairs

Oppenheim, 
Schafer and 
Buck,
Discrete-time 
signal processing,
Prentice Hall, 
1999

73Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 

Bracewell’s pictorial dictionary of Fourier 
transform pairs
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74Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 

Bracewell’s pictorial dictionary of Fourier 
transform pairs

75Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 

Bracewell’s pictorial dictionary of Fourier 
transform pairs

76Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 

Bracewell’s pictorial dictionary of Fourier 
transform pairs

77

Why is the Fourier domain 
particularly useful?

• It tells us the effect of linear convolutions.
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hgf ��

Fourier transform of convolution
Consider a (circular) convolution of g and h

79

hgf ��

� �hgDFTnmF ��],[

Fourier transform of convolution

Take DFT of both sides



14

80

hgf ��
� �hgDFTnmF ��],[

Fourier transform of convolution

Write the DFT and convolution explicitly
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hgf ��
� �hgDFTnmF ��],[

Fourier transform of convolution

Move the exponent in
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hgf ��
� �hgDFTnmF ��],[

Fourier transform of convolution

Change variables in the sum
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hgf ��
� �hgDFTnmF ��],[

Fourier transform of convolution

Perform the DFT (circular boundary conditions)
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hgf ��
� �hgDFTnmF ��],[

Fourier transform of convolution

Perform the other DFT (circular boundary conditions)
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Analysis of our simple filters
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Analysis of our simple filters

original
0Pixel offset
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(no change)
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Analysis of our simple filters
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Analysis of our simple filters

0Pixel offset
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Analysis of our simple filters

original
0

2.0

0

0.33

sharpened 
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90

Sampling and aliasing

91

Sampling in 1D takes a continuous function and replaces it with a 
vector of values, consisting of the function’s values at a set of 
sample points.  We’ll assume that these sample points are on a 
regular grid, and can place one at each integer for convenience.
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92

Sampling in 2D does the same thing, only in 2D.  We’ll assume that 
these sample points are on a regular grid, and can place one at each 
integer point for convenience.

93

A continuous model for a 
sampled function

• We want to be able to 
approximate integrals 
sensibly

• Leads to
– the delta function
– model on right

Sample2D f (x,y)� �� f (x, y)� (x � i, y � j )
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The Fourier transform of a 
sampled signal

F Sample2D f (x,y)� �� �� F f (x, y) � (x � i,y � j)
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96 97

Aliasing
• Can’t shrink an image by taking every second 
pixel

• If we do, characteristic errors appear 
– In the next few slides
– Typically, small phenomena look bigger; fast 
phenomena can look slower

– Common phenomenon
• Wagon wheels rolling the wrong way in movies
• Checkerboards misrepresented in ray tracing
• Striped shirts look funny on colour television
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98

Resample the 
checkerboard by taking 
one sample at each circle.  
In the case of the top left 
board, new representation 
is reasonable. 
Top right also yields a 
reasonable representation. 
Bottom left is all black 
(dubious) and bottom 
right has checks that are 
too big.

99

Constructing a pyramid by 
taking every second pixel 
leads to layers that badly 
misrepresent the top layer

100

Smoothing as low-pass filtering
• The message of the FT is 
that high frequencies lead 
to trouble with sampling.

• Solution: suppress high 
frequencies before 
sampling
– multiply the FT of the 
signal with something 
that suppresses high 
frequencies

– or convolve with a low-pass 
filter

• A filter whose FT is a 
box is bad, because the 
filter kernel has 
infinite support

• Common solution: use 
a Gaussian
– multiplying FT by 
Gaussian is equivalent 
to convolving image 
with Gaussian.

101

Sampling without smoothing.  Top row shows the images,
sampled at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.

102

Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.

103

Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.
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104

Thought problem
Analyze crossed 

gratings…

105

Thought problem
Analyze crossed 

gratings…

106

Thought problem
Analyze crossed 

gratings…

107

Thought problem
Analyze crossed 

gratings…

Where does 
perceived near 
horizontal 
grating come 
from? 

108

What is a good representation for 
image analysis?

• Fourier transform domain tells you “what” 
(textural properties), but not “where”.

• Pixel domain representation tells you 
“where” (pixel location), but not “what”.

• Want an image representation that gives 
you a local description of image events—
what is happening where.


