

Recap: Cameras, lenses, and calibration

Images are projections of the 3-D world onto

To get some sense of what basis elements look like, we plot a basis element -- or rather, its real part -as a function of x.y for some fixed u, v. We get a function that is constant when (ux+vy)is constant. The magnitude of the vector (u, v) gives a frequency, and its direction gives an orientation. The function is a simusoid with this frequency along the direction, and constant perpendicular to the direction.

Masking out the fundamental and harmonics from periodic pillars

Name as many functions as you can that retain that same functional form in the transform domain

68

Fourier transform of convolution $f = g \otimes h$ Take DFT of both sides $F[m, n] = DFT(g \otimes h)$

Fourier transform of convolution

$$f = g \otimes h$$

$$F[m,n] = DFT(g \otimes h)$$

$$F[m,n] = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \sum_{k,l} g[u-k,v-l]h(k,l)e^{-\pi \left(\frac{um}{M},\frac{w}{N}\right)}$$
Move the exponent in

$$= \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \sum_{k,l} g[u-k,v-l]e^{-\pi \left(\frac{um}{M},\frac{w}{N}\right)}h[k,l]$$

Fourier transform of convolution

$$f = g \otimes h$$

$$F[m,n] = DFT(g \otimes h)$$

$$F[m,n] = \sum_{u=0}^{M-1N-1} \sum_{v=0}^{N} g[u-k,v-l]h[k,l]e^{-\pi \left(\frac{lm}{M},\frac{vn}{N}\right)}$$

$$= \sum_{u=0}^{M-1N-1} \sum_{v=1}^{N} g[u-k,v-l]e^{-\pi \left(\frac{lm}{M},\frac{vn}{N}\right)}h[k,l]$$

$$= \sum_{u=-k}^{M-k-1N-k-1} \sum_{u=-k}^{N} g[\mu,v]e^{-\pi \left(\frac{lm+u}{M},\frac{lw}{N}\right)}h[k,l]$$
Perform the DFT (circular boundary conditions)

$$= \sum_{k,l} G[m,n]e^{-\pi \left(\frac{km}{M}+\frac{ln}{N}\right)}h[k,l]$$

Smoothing as low-pass filtering

- The message of the FT is that high frequencies lead to trouble with sampling.
 Solution: suppress high frequencies before
 - sampling - multiply the FT of the signal with something that suppresses high
 - frequencies – or convolve with a low-pass filter
- A filter whose FT is a box is bad, because the filter kernel has infinite support
- Common solution: use a Gaussian

 multiplying FT by
 - Gaussian is equivalent to convolving image with Gaussian.

100

What is a good representation for image analysis?

- Fourier transform domain tells you "what" (textural properties), but not "where".
- Pixel domain representation tells you "where" (pixel location), but not "what".
- Want an image representation that gives you a local description of image events—what is happening where.

108