### 6.891

### Computer Vision and Applications

#### Prof. Trevor. Darrell

Lecture 7: Features and Geometry

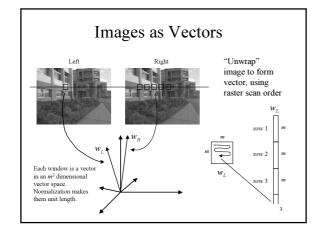
- Affine invariant features
- Epipolar geometry

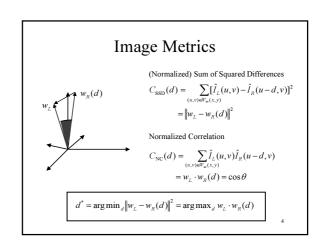
Readings: Mikolajczyk and Schmid; F&P Ch 10

## Last time

Interesting points, correspondence, affine patch tracking

Scale and rotation invariant descriptors [Lowe]





### Harris detector

Auto-correlation matrix

$$= \begin{pmatrix} \Delta x & \Delta y \end{pmatrix} \begin{bmatrix} \sum\limits_{(x_1,y_k) \in \mathbb{N}} (I_x(x_k,y_k))^2 & \sum\limits_{(x_1,y_k) \in \mathbb{N}} I_x(x_k,y_k)I_y(x_k,y_k) \\ \sum\limits_{(x_1,y_k) \in \mathbb{N}} I_x(x_k,y_k)I_y(x_k,y_k) & \sum\limits_{(x_1,y_k) \in \mathbb{N}} (I_y(x_k,y_k))^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

- Auto-correlation matrix
  - captures the structure of the local neighborhood
  - measure based on eigenvalues of this matrix
    - 2 strong eigenvalues => interest point

    - 1 strong eigenvalue => contour
       0 eigenvalue => uniform region
- · Interest point detection
  - threshold on the eigenvalues
  - local maximum for localization

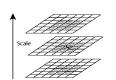
# **Key point localization**

- Detect maxima and minima of difference-of-Gaussian in scale space
- Fit a quadratic to surrounding values for sub-pixel and sub-scale interpolation (Brown & Lowe, 2002)

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

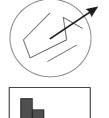
Offset of extremum (use finite differences for derivatives):

$$\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$



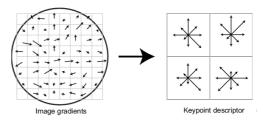
### **Select canonical orientation**

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- · Each key specifies stable 2D coordinates (x, y, scale, orientation)



### **SIFT vector formation**

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- · Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions



# Today

Affine Invariant Interest points [Schmid]

Evaluation of interest points and descriptors [Schmid]

Epipolar geometry and the Essential Matrix

Affine invariance of interest points

Cordelia Schmid CVPR'03 Tutorial

### Scale invariant Harris points

- · Multi-scale extraction of Harris interest points
- · Selection of points at characteristic scale in scale space



Laplacian





Chacteristic scale - maximum in scale space

- scale invariant

# Scale invariant interest

multi-scale Harris points



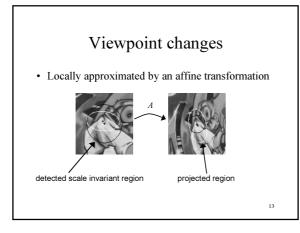


selection of points at the characteristic scale with Laplacian





invariant points + associated regions [Mikolajczyk &



### State of the art

- Affine invariant regions (Tuytelaars et al.'00)
  - ellipses fitted to intensity maxima
  - parallelogram formed by interest points and edges

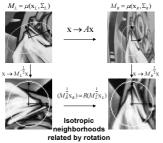




14

# State of the art

• Theory for affine invariant neighborhood (Lindeberg'94)



### State of the art

- Localization & scale influence affine neighborbood
  - => affine invariant Harris points (Mikolajczyk & Schmid'02)
- Iterative estimation of these parameters
  - 1. localization local maximum of the Harris measure
  - $2. \ \ scale-automatic\ scale\ selection\ with\ the\ Laplacian$
  - 3. affine neighborhood normalization with second moment matrix

Repeat estimation until convergence

16

### Affine invariant Harris points

 Iterative estimation of localization, scale, neighborhood Initial points





17

### Affine invariant Harris points

 Iterative estimation of localization, scale, neighborhood lteration #1





18

# Affine invariant Harris points

• Iterative estimation of localization, scale, neighborhood Iteration #2





# Affine invariant Harris points

• Iterative estimation of localization, scale, neighborhood Iteration #3, #4,





# Affine invariant Harris points

· Initialization with multi-scale interest points





· Iterative modification of location, scale and neighborhood





# Affine invariant Harris points









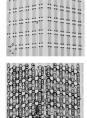




Harris-Laplace + affine regions

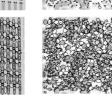
Harris-Laplace

### Affine invariant neighborhhood





affine Harris detector



affine Laplace

change in viewing angle

# Image retrieval



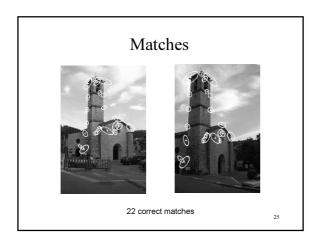


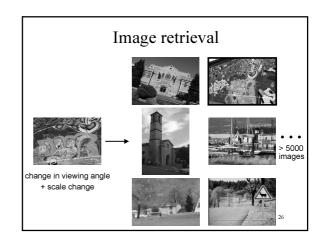


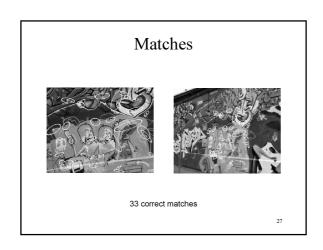


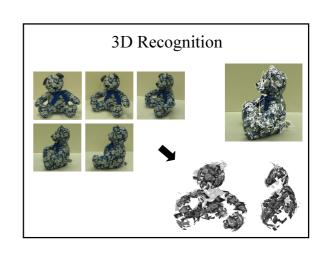














Evaluation of interest points and descriptors

Cordelia Schmid

CVPR'03 Tutorial

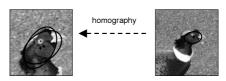
### Introduction

- · Quantitative evaluation of interest point detectors
  - points / regions at the same relative location
  - => repeatability rate
- Quantitative evaluation of descriptors
  - dictinativanaca
  - => detection rate with respect to false positives

31

## Quantitative evaluation of detectors

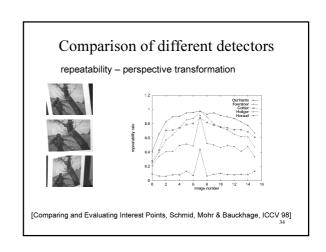
• Repeatability rate : percentage of corresponding points

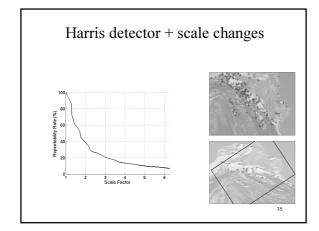


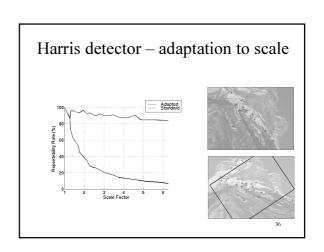
- Two points are corresponding if
  - 1. The location error is less than 1.5 pixel
  - 2. The intersection error is less than 20%

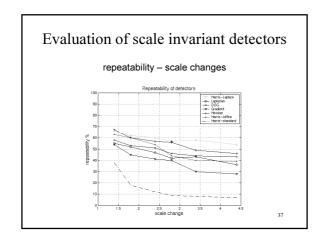
32

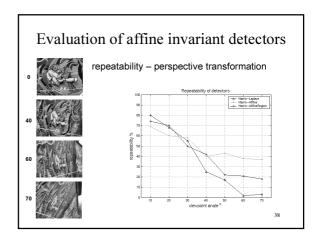
# Comparison of different detectors repeatability - image rotation The state of the









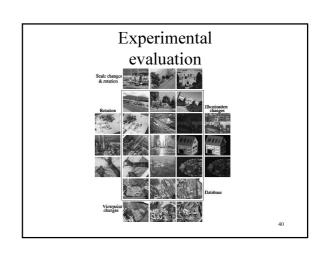


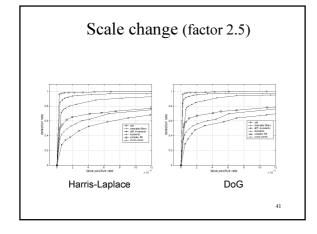
# Quantitative evaluation of descriptors

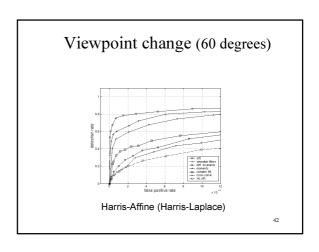
- Evaluation of different local features
  - SIFT, steerable filters, differential invariants, moment invariants, cross-correlation
- · Measure : distinctiveness
  - receiver operating characteristics of detection rate with respect to false positives

  - detection rate = correct matches / possible matches
     false positives = false matches / (database points \* query points)

[A performance evaluation of local descriptors, Mikolajczyk & Schmid, CVPR'03]







# Descriptors - conclusion

- SIFT + steerable perform best
- Performance of the descriptor independent of the detector
- Errors due to imprecision in region estimation, localization

# Today

Affine Invariant Interest points [Schmid]

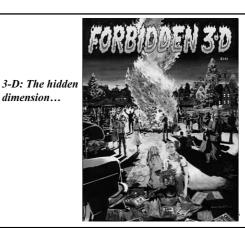
Evaluation of interest points and descriptors [Schmid]

Epipolar geometry and the Essential Matrix

# Multi-view geometry and 3-D

We have 2 eyes, yet we see 3-D!

Using multiple views allows inference of hidden dimension.





Multiple views to the rescue!

### How to see in 3-D

(Using geometry...)

• Find features

dimension...

• Triangulate & reconstruct depth

# Multi-view geometry

Relate

49

# Multi-view geometry

Relate

• 3-D points

50

# Multi-view geometry

### Relate

- 3-D points
- Camera centers

# Multi-view geometry

## Relate

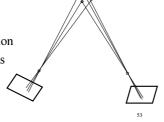
- 3-D points
- Camera centers
- Camera orientation



# Multi-view geometry

### Relate

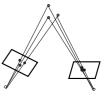
- 3-D points
- · Camera centers
- Camera orientation
- Camera intrinsics



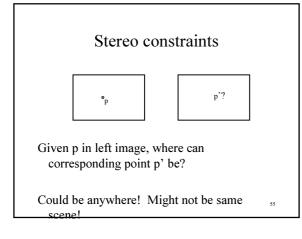
# Multi-view geometry

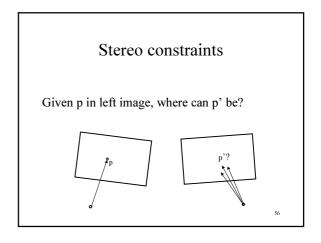
### Relate

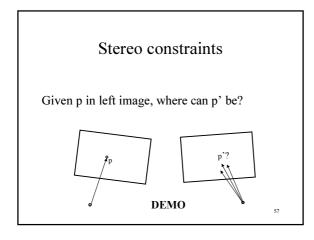
- 3-D points
- Camera centers
- Camera orientation
- Camera intrinsics

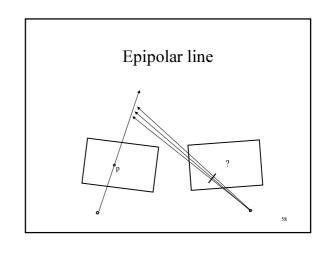


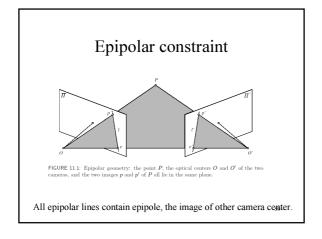
54

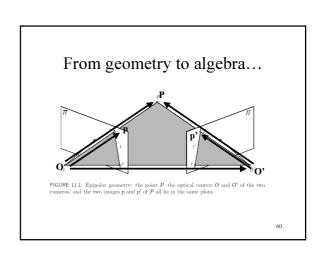




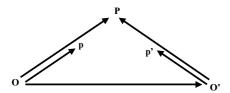




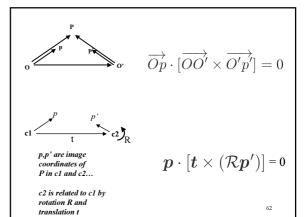




From geometry to algebra...



The epipolar constraint: these vectors are  $\overrightarrow{Op} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0$ 



Matrix form

$$m{p}\cdot [m{t} imes (\mathcal{R}m{p}')]$$
 = 0

Linear constraint, should be able to express as matrix equation...

# Review: matrix form of crossproduct

The vector cross product also acts on two vectors and returns a third vector. Geometrically, this new vector is constructed such that its projection onto either of the two

s zero. 
$$\vec{a} \times \vec{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_z \\ -a_y & a_z & 0 \end{bmatrix} \begin{bmatrix} b_z \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{b} \cdot \vec{c} = 0$$

Review: matrix form of cross-

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{a} \cdot \vec{c} = 0$$

$$[a_x] = \begin{bmatrix} 0 & -a_x & a_y \\ a_x & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix}$$
 
$$\vec{a} \times \vec{b} = [a_x] \vec{b}$$

Matrix form

$$p \cdot [t \times (\mathcal{R}p')] = 0$$
  $\vec{a} \times \vec{b} = [a_x]\vec{b}$   $p^T[t_x]\Re p' = 0$   $\varepsilon = [t_x]\Re$ 

$$\boldsymbol{p}^T \mathcal{E} \boldsymbol{p}' = 0$$

### The Essential Matrix

Matrix that relates image of point in one camera to a second camera, given translation and rotation.

Assumes intrinsic parameters are known.

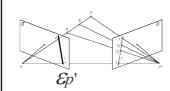
$$\varepsilon = [t_x]\Re$$



 $\vec{a} \times \vec{b} = [a_x]\vec{b}$ 

### The Essential Matrix

 $\mathcal{E}p'$  is the epipolar line corresponding to p' in the left camera.



au + bv + c = 0  $p = (u, v, 1)^{T}$   $l = (a, b, c)^{T}$   $l \cdot p = 0$ 

 $\mathbf{p}^T \mathcal{E} \mathbf{p}' = 0$ 

 $\mathcal{E}p'\cdot p=0_{68}$ 

# Today

Affine Invariant Interest points [Schmid]

Evaluation of interest points and descriptors [Schmid]

Epipolar geometry and the Essential Matrix

69