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Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 7: Features and Geometry
— Affine invariant features
— Epipolar geometry
— Essential matrix

Readings: Mikolajczyk and Schmid; F&P Ch 10

Last time

Interesting points, correspondence, affine patch
tracking

Scale and rotation invariant descriptors [Lowe]

Images as Vectors

Left Right “Unwrap”
1 image to form
vector, using

wy

Each window is a vector
in an m? dimensional
vector space.
Normalization makes
them unit length.

raster scan order

Image Metrics

(Normalized) Sum of Squared Differences
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Harris detector

Auto-correlation matrix
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* Auto-correlation matrix
— captures the structure of the local neighborhood
— measure based on eigenvalues of this matrix
* 2 strong eigenvalues => interest point
« 1 strong eigenvalue => contour
« 0 eigenvalue => uniform region

« Interest point detection
— threshold on the eigenvalues
— local maximum for localization
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Key point localization

« Detect maxima and minima of
difference-of-Gaussian in scale

space
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« Fit a quadratic to surrounding AT
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«  Offset of extremum (use finite
differences for derivatives):
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Select canonical orientation

¢ Create histogram of local
gradient directions computed
at selected scale

« Assign canonical orientation
at peak of smoothed
histogram

« Each key specifies stable 2D
coordinates (x, y, scale,
orientation)
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SIFT vector formation

* Thresholded image gradients are sampled over 16x16
array of locations in scale space

« Create array of orientation histograms
« 8 orientations x 4x4 histogram array = 128 dimensions
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Image gradients Keypoint descriptor 3

Today

Affine Invariant Interest points [Schmid]

Evaluation of interest points and descriptors
[Schmid]

Epipolar geometry and the Essential Matrix

Affine invariance of interest points

Cordelia Schmid
CVPR’03 Tutorial

Scale invariant Harris points

« Multi-scale extraction of Harris interest points

« Selection of points at characteristic scale in scale space

Chacteristic scale :
7 - maximum in scale space
Laplacian / f N - scale invariant

Scale invariant interest
points

multi-scale Harris points

selection of points
at the characteristic scale
with Laplacian

™ invariant points + associated regions [Mikolajczyk &
Schmid’01]




Viewpoint changes

 Locally approximated by an affine transformation

detected scale invariant region projected region

State of the art

« Affine invariant regions (Tuytelaars et al.”00)
— ellipses fitted to intensity maxima
— parallelogram formed by interest points and edges

State of the art

* Theory for affine invariant neighborhood
(Lindeberg’94)

M, = p(x,.%,)

M, = (5. 5,)
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Isotropic
neighborhoods
related by rotation 15

State of the art

* Localization & scale influence affine
neighhorbood

=> affine invariant Harris points (Mikolajczyk &
Schmid’02)

 Iterative estimation of these parameters
1. localization — local maximum of the Harris measure
2. scale — automatic scale selection with the Laplacian
3. affine neighborhood — normalization with second
moment matrix

Repeat estimation until convergence 6

Affine invariant Harris points

 [Iterative estimation of localization, scale, neighborhood
Initial points

=T

Affine invariant Harris points

 Iterative estimation of localization, scale, neighborhood
Iteration #1




Affine invariant Harris points

« Iterative estimation of localization, scale, neighborhood
Iteration #2

Affine invariant Harris points

« Iterative estimation of localization, scale, neighborhood
Iteration #3, #4, ...
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Affine invariant Harris points

« Initialization with multi-scale interest points
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« Iterative modification of location, scale and neighborhood
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Affine invariant Harris points

affine Harris Harris-Laplace Harris-Laplace

+ affine regions 2

Affine invariant neighborhhood
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Image retrieval

> 5000
images

change in viewing angle




Image retrieval

change in viewing angle
+ scale change

22 correct matches 2

Matches 3D Recognition

33 correct matches

3D Recognition Evaluation of interest points and

descriptors

Cordelia Schmid
CVPR’03 Tutorial

3D object ing and ition using affine-i
patches and multi-view spatial constraints,

F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce,
CVPR 2003
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Introduction

< Quantitative evaluation of interest point detectors
— points / regions at the same relative location

=> repeatability rate

¢ Quantitative evaluation of descriptors
— distinctiveness

=> detection rate with respect to false positives
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Quantitative evaluation of detectors

» Repeatability rate : percentage of corresponding points

* Two points are corresponding if
1. The location error is less than 1.5 pixel
2. The intersection error is less than 20%
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Comparison of different detectors

repeatability - image rotation
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[Comparing and Evaluating Interest Points, Schmid, Mohr & Bauckhage, ICCV 98]
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Comparison of different detectors

repeatability — perspective transformation
T
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[Comparing and Evaluating Interest Points, Schmid, Mohr & Bauckhage, ICCV 98]
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Harris detector + scale changes

Repeatability Rate (%)

3 q
Scale Factor

Harris detector — adaptation to scale

Repeatability Rate (%)

3 q
Scale Factor
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Evaluation of scale invariant detectors

repeatability — scale changes

Repeatabilty of detectors

repeatability %

10 SRR RIS ot

35 3
scale change 37

Evaluation of affine invariant detectors

repeatability — perspective transformation

Repeatabilty of detectors

Quantitative evaluation of descriptors

« Evaluation of different local features

— SIFT, steerable filters, differential invariants, moment invariants,
cross-correlation

* Measure : distinctiveness
— receiver operating characteristics of
detection rate with respect to false positives

— detection rate = correct matches / possible matches

— false positives = false matches / (database points * query points)

[A performance evaluation of local descriptors, Mikolajczyk & Schmid,
CVPR’03]
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Experimental
evaluation
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Scale change (factor 2.5)

flse posiive rate e ) flse posiive rate

Harris-Laplace DoG
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Viewpoint change (60 degrees)
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Harris-Affine (Harris-Laplace)
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Descriptors - conclusion

 SIFT + steerable perform best

 Performance of the descriptor independent
of the detector

* Errors due to imprecision in region
estimation, localization
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Today

Affine Invariant Interest points [Schmid]

Evaluation of interest points and descriptors
[Schmid]

Epipolar geometry and the Essential Matrix
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Multi-view geometry and 3-D

We have 2 eyes, yet we see 3-D!

Using multiple views allows inference of
hidden dimension.
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3-D: The hidden
dimension...

Multiple views to
the rescue!
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How to see in 3-D

(Using geometry...)

* Find features
* Triangulate & reconstruct depth
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Multi-view geometry

Relate
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Multi-view geometry

Relate .
* 3-D points

Multi-view geometry

Relate .
* 3-D points

e Camera centers

Multi-view geometry

Relate
* 3-D points
e Camera centers

» Camera orientation

Multi-view geometry

Relate

* 3-D points

« Camera centers

» Camera orientation

» Camera intrinsics
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Multi-view geometry

Relate

* 3-D points

« Camera centers

» Camera orientation

» Camera intrinsics
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Stereo constraints

Given p in left image, where can
corresponding point p’ be?

Could be anywhere! Might not be same .

scenel

Stereo constraints

Given p in left image, where can p’ be?

U

Stereo constraints

Given p in left image, where can p’ be?

N

DEMO

Epipolar line

Epipolar constraint

ry: the point P, the optical centers O and O’ of the two
pand pf of P all lie in the same plane

FIGURE 11.1;

Epipolar
cameras, and the tw

All epipolar lines contain epipole, the image of other camera cesnter.
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From geometry to algebra...
FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O’ of the two
cameras, and the two images p and p’ of P all lie in the same plane
60
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From geometry to algebra...

P

P

O’
The epipolar constraint: these vectors are
coplanar:
Op . [OO/ X O/p/} =0 61

p »
d/ 1 \CZJR

p.p’ areimage

coordinates of p . [t X (Rp/)] =0

Pinclandc2...

c2is related to c1 by
rotation R and
translation t o2

Matrix form
p-[tx (Rp')]=0

Linear constraint, should be able to express as
matrix equation...

Review: matrix form of cross-
product

The vector cross product also acts on two vectors and returns
a third vector. Geometrically, this new vector is
constructed such that its projection onto either of the two
input vectors is zero.

ab.—ab,
axb = ab,—ab
ab,—ab,
0 - b
Zxb L:)z % bx _ ac=0
axb= az —ax 'y =cC Z; F=0
-4, a, 0 |5, o

Review: matrix form of cross-

product
o - b
o L HI% gaE=0
axb=| a, 0 =-a, [b|=¢ 5220
-4, a, 0 |5,
0 -a, a,
[ax] a 0 -a,
-a, a, 0 axb :[Clx]b
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Matrix form
p-[tx(Rp)l=0

Pt 1Rp'=0

66
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The Essential Matrix

Matrix that relates image of point in one
camera to a second camera, given
translation and rotation.

Assumes intrinsic parameters are:known.

m

The Essential Matrix

8p' is the epipolar line corresponding to p’ in
the left camera.

au+bv+c=0

p=@vl)
[=(a,b,c)"
l-p=0

p"Ep' =0
&'p=0,

Today

Affine Invariant Interest points [Schmid]

Evaluation of interest points and descriptors
[Schmid]

Epipolar geometry and the Essential Matrix
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