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Computer Vision and Applications

Protf. Trevor. Darrell

Lecture 9: Affine SFM

— Geometric Approach
— Algebraic Approach
— Tomasi/Kanade Factorization

Readings: F&P Ch. 12; (except 12.1 is optional)



Lecture Date

Description Readings
Course Introduction Feq: FP 1.1, 2.1, 2.2,

Assignments

FSo out

PSo due

F=1 out

P51 due

F=2 out

PS2 due

E¥1 out

E¥1 due

1 2/3  Cameras, Lenses and 2.3, 3.1, 3.2
Censors
o 2/t Image Filtering 5561 P 7l = T
Image Representations: )
3 2/10 . Feq: FP 7.7, 0.2
il 2/12  Texture Feq: FP 9.1, 9.3, 9.4
2717  Monday Classes Held (MO LECTURE)
5 2/1g9  Color Feq: FP 6.1-6.4
& 2/24 Local Features
7 2/26  Multiview Geometry FEeq: FP 10
g 3/=  Multiview Geometry 11
g 3/4  Affine Reconstruction  FP 12, except 12.1
=/a  Projective Reconstruction FP 1!
“3 /10 311 Model-based Object Recognitid Horn Le.Cture
12 3/16 Project Previews D.I Seminar
. (no class -- Horn lecture Wed lpm
L3 318 6n3/10 instead) NE43-8th fl.
3/23-

3/ 25

Spring Break (WO LECTURE)

Mater



Horn Lecture: Perspective Projection Properly
Models Image Formation

Date: 3-10-2004 Time: 1:00 PM - 2:00 PM Location: NE43-814

Methods based on projective geometry have become popular in machine
vision because they lead to elegant mathematics, and easy-to-solve
linear equations.

It 1s often not realized that one pays a heavy price for this convenience.
Such methods do not correctly model the physics of image formation,
require more correspondences, and are considerably more sensitive to
measurement error than methods based on true perspective projection.

In this talk we find that for the example of exterior orientation: (1) Methods
based on projective geometry are fundamentally different from methods
based on perspective projection; (i1) Methods based on projective
geometry yield a transformation matrix T that in general does not
correspond to a physical imaging situation that 1s, a rotation, translation
and perspective projection; (ii1) Optimization methods based on the real
physical imaging equations (true perspective projection) produce
considerably more accurate results. 3



[Last Time

Instantaneous Essential Matricies
Fundamental Matrix and the 8-point algorithm

Tri-focal geometry



Translating Camera
P (v ] )p—(pxp)v=0
w=0

(pxpv=0

p, p,and v are coplanar

Focus of expansion (FOE): Under pure translation, the motion
field at every point in the image points toward the focus of

. 5
expansion



Fundamental matrix

Essential matrix for points on normalized image plane,

D EP'=0

assume unknown calibration matrix:

yields:

p=Kp

p Fp' =

F=K-TEK




The 8 point algorithm

8 corresponding points, 8 equations.
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Invert and solve for .

(Use more points if available; find least-squares
solution to minimize > (p! Fpl)’ )
=1



Trinocular epipolar geometry

Trifocal plane _/A//n point transfer:

fqrmed from 2 Given p2 & p3, pl is
trifocal lines: determined!

(without explicit depth
estimation;
only weak calibration)




Today

Affine SFM

— Geometric Approach
— Algebraic Approach

— Tomasi1/Kanade Factorization



Orthographic Projection

r

ks
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Weak Perspective Projection
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Paraperspective Projection
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“Affine geometry 1s, roughly speaking, what 1s left after all
ability to measure lengths, areas, angles, etc. has been
removed from Euclidean geometry. The concept of
parallelism remains, however, as well as the ability to
measure the ratio of distances between collinear points.”

[Snapper and Troyer, 1989]

13



Projection
direction

Y
™~

FIGURE 13.2: Parallel projection preserves: (left) the ratio of signed distances between

collinear points and (right) the parallelism of lines.
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Affine projection matrix

D
pijM:ﬁi( f) = A P; + b,

Weak Perspective Projection

15



Tracked feature j in camera 1: P, ;

P
P@*jM@( f) = A, P; + b,

Affine structure from motion is the problem of estimating

m 2 X 4 matrices
and the n positions P;

from the mn 1mage correspondences p;;

16



P.
P@jMz‘( 1‘?) - A, P; + b,

This equation provides 2mn constraints on the 8m+3n unknown
coetficients defining the matrices M; and the point positions P;.

Fortunately, 2mn 1s greater than 8m+3n for large enough values of m
and n...

But, the solution 1s ambiguous...

17



[t M; and P; are solutions to

then so are M’; and P’;, where

!
- wa (%)= (P)

and Q 1s an arbitrary affine transformation matrix, that s,

c d
o (o 9)

where C 1s a non-singular 3 % 3 matrix and d is a vector in
R3. In other words, any solution of the affine structure-
from-motion problem can only defined up to an affine

. . . 18
transformation ambiguity.



Affine Structure from Motion

e Two views

— Geometric Approach: infer affine shape (then recover affine
projection matricies i1f needed)

— Algebraic Approach: estimate projection matricies (then determine
position of scene points)

e Sequence

— Factorization Approach

19



Affine Structure from Motion Theorem

Two affine views of four non co-planar points are sufficient to
compute the affine coordinate of any other point P.

[Koenderink and Van Doorn, 1990]
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d W

21




Two affine views of four points are sufficient to compute the
affine coordinate of any other point P...
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Given Affine Basis (A,B,C,D)
(e.g., A=(0,0,0), B=(0,0,1), C=(0,1,0), D=(1,0,0))
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Given Affine Basis (A,B,C,D)
(e.g., A=(0,0,0), B=(0,0,1), C=(0,1,0), D=(1,0,0))

And correspondences
a’,b’,c’,d” and

29 29 29 29
a’’.b’’,c’,d”’...
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Given Affine Basis (A,B,C,D)
(e.g., A=(0,0,0), B=(0,0,1), C=(0,1,0), D=(1,0,0))

And correspondences
a’,b’,c’,d” and

29 29 29 29
a’’.b’’,c’,d”’...

uniquely

determine the
location of P in the
basis (A,B,C,D)!2s




p’,p’’ uniquely determine the location of P 1n the
basis (A,B,C,D)...

P=aAB+BAC+LAD

Find o,3,A ?

26




p’,p’’ uniquely determine the location of P 1n the
basis (A,B,C,D)...

A

P=a0AB+BAC+LAD
Find o, ?

Find ¢’ and q’’ using
basis A,B,C

27




p’,p’’ uniquely determine the location of P 1n the
basis (A,B,C,D)...

P=aAB+BAC+AAD
Find o, 3,A ?
Find ¢’ and q’’ using (A,B,C)

compute
}\,:QP/ED:q, 9p9 9/67 7d7 b/

28




p’,p’’ uniquely determine the location of P 1n the
basis (A,B,C,D)...

P=aAB+BAC+LAD
Find a,B,A ?

Find ¢’’ and q”’ using (A,B,C)
Compute A=QP/ED=q"p"’/c”’d"" |
Use coordinates of D, P in ABC...

use coordinates of D, P
in ABC... (&’d”; 6&’)
(apr, Bypr)




p’,p’’ uniquely determine the location of P 1n the
basis (A,B,C,D)...

P=aAB+BAC+LAD
Find a,B,A ?

Find ¢’’ and q”’ using (A,B,C)
Compute A=QP/ED=q"p"’/c”’d"" |
Use coordinates of D, P in ABC...

AP — AC+ QP k k
— 0, AE + fAC + 2BD
= ({Ipx — Ay g :l.rﬁ + (J@p’ - }"ﬁd’ )E

+2AD.
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p’,p’’ uniquely determine the location of P 1n the
basis (A,B,C,D)...

A

P=aAB+BAC+LAD
Find a,B,A ?

Find ¢’’ and q”’ using (A,B,C)
Compute A=QP/ED=q"p"’/c”’d"" |
Use coordinates of D, P in ABC...

AP — AC+ QP k :
— 0, AE + B AC + 2BD
= ({Ipx — Ay g :l.rﬁ + (J@p’ - }"ﬁd’ )E

+2AD.
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p’,p’’ uniquely determine the location of P 1n the
basis (A,B,C,D)...

A

P=aAB+BAC+LAD
Find a,B,A ?

Find ¢’’ and q”’ using (A,B,C)
Compute A=QP/ED=q"p"’/c”’d"" |
Use coordinates of D, P in ABC...

AP - 4Q+QP

= QPIE + ﬁpxﬂé + )‘;E-ﬁ
= ({Ipx — Ay g :l.rﬁ + (J@p’ - }"ﬁd’ )E

+2AD.
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Geometric Approach

p’,p’’ uniquely determined the location of P in the
basis (A,B,C,D)

AP was expressed using weighted combination of AB, AC,
AD

Weights were determined by a’,a’’,b’,b’’,c’,¢’’,d’,d”’,p’,p"".
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Affine Structure from Motion

Two views

— Algebraic Approach: estimate projection matricies (then determine
position of scene points)

34



Algebraic approach

3-d P satisfies two affine views:

p=AP +b,
p=AP+b,

A p-—2> P 0
A p=b'J\—-1)

A p—-b\
Det(A; p"—b’) =0

35



A p—-b\
Det(A}, pf_b;>0

But any affine transform of A 1s equally good...

AC p—Ad—-b\
Det(A”C p’—A’d—b”) 0

for any affine transform

36



AC P — Ad — b B C d
e (e daw) 0 o (&9
Let’s pick a special C, d...

o1 al b
C=9 S(G;T) ’T’(b;)
d—= —-S1pr ai! b1

which 1s equivalent to choosing cannonical affine projection
matrices

- (1 0 0 O -, (00 1 0
M(0100) M(abcd)



and our determinant becomes very simple:

Det 8 ol =au—bv+c +0—d=0

a,b,c,d can be estimated using least squares with a sufficient
number of points. Then P can be recovered with:

o O O =

T O = O
P e = I
Qﬂ_‘@
/i"_"\
U
N
|
-
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Affine Structure from Motion

e Sequence

— Factorization Approach

39



Factorization Approach

Consider a sequence of affine ﬁe S....
p; Mﬁ(l = AP + b
Stack affine projection equations:
qgq=7r+ AP
b
aet [ P1 def | 7 def
q — . e ; Tr — L os s aﬂd '/4, —

Ay

* &

40



Form the (2m+1)n data matrix where each column is the observed data
from one point:

41



Form the (2m+1)n data matrix where each column is the observed data
from one point:

Since 1 o 1

then

42



With an appropriate choice of origin (e.g., first point,

centriod)

p; = AP

and the data matrix becomes:

D B (CI1

q= AP,
q,) = AP
P,)

43



Rank of Object-relative Data Matrix

D =

A

P

Data-Matrix = Affine-Motions x 3-d-Points

(2mxn) =

2m

2mx3) x (3xn)

3

n

D is now rank 3

44



Factorization algorithm

Given a data matrix,

find Motion (A) and Shape (P) matrices that generate that
data...

Tomasi and Kanade Factorization algorithm (1992):

Use Singular Value Decomposition to factor D into
appropriately sized A and P.

45



SVD

Technique: Singular Value Decomposition Let 4 be an m X n matrix, with

m =, then A can always be written as
A =LUWyT,

where:
e U is an m X n column-orthogonal matrix, i.e., U7 U = Id,,,

¢ VW is a diagonal matrix whose diagonal entries w; (¢ = 1,...,n) are the singular
values of A with w1 = we > ... = w, = 0,

¢ and V is an n X n orthogonal matrix, i.e., VIV = vt =14d,.

The SVD of a matrix can also be used to characterize matrices that are rank-deficient:
suppose that A has rank ¢ < rn, then the matrices I{, W, and V can be written as

Wy | 0 r | Vi
0o o] d V= vl

U=|Up |Unp | W=

3
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Factorization algorithm

1. Compute the singular value decomposition D = UWVT,

2. Congtruct the matrices 5, Vi, and WWs formed by the three leftmost
columns of the matrices i and V, and the corresponding 3 x 3 sub-matrix

of W,
3. Define
Ag=Us and Py = WsVi;

the 2m x 3 matrix Ay is an estimate of the camera motion, and the 3 x n
matrix Py 15 an estimate of the scene structure.

47



Factorization algorithm

¥

-lon.m
1200
-la0.m
-len.m
-1Z0.m
0.0 :
INm __.; ¥
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260 D

7RO
S willial
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0D
A0

] -4'.‘h'.
i, 5 5%
3 :g'?u't
S i
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comparision



Factorization algorithm

Can perform Euclidean upgrade to estimate metric
quantities...

— Of all the family of affine solutions, find the one that obeys
calibration constraints.

49



Euclidean upgrade

Lets recover Euclidean structure from affine structure, under
orthographic projection:

Add constraints on rows a,b of A4:

a-b=0 and |al*=|b]*=1.

50



Recall, if M; and P; are solutions to

P.
P@jMz‘( f) - A, P; + b,

then so are M’; and P’;, where

!
- wa (%)= (P)

and Q 1s an arbitrary affine transformation matrix, that s,

c d
o (o 9)

where C 1s a non-singular 3 % 3 matrix and d is a vector in
R3.

Search for Q which satisfies constraint on previous slides,.



Euclidean upgrade

Orthographic camera ; constraints on rows a,b of 4:
a-b=0 and |al’=|b]*=1.

M=MQand P = Q1P

SO

al Q0" b; =0,
a,%TQQTa,i =1,
b/ 00"b, =1,

but we can assume 00
Ml:(o 1 0)

Solve for M. with nonlinear least squares (or via Choelsky decomp.)
52



Euclidean upgrade

il t
L I

T

I

== e T e e o

|.l.......
G el b




Factorization algorithm

Extensions to basic algorithm:
— sparse data
— multiple motions

— projective cameras (later)
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Multiple motions

With multiple motions

{Pu Pm\

D = :
1 1

has rank 4k
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Multiple motions

With multiple motions

fori=1,...,k, arank-4 data matrix

(2)
'D(z) dcf /p
(1

DO = MO Pp)

MH) ﬂ{i}\ ;
M@ = ( ..1. 1 and PO < <PE)
Li) ﬂi}

i\

p) }
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Let us define the 2m x n composite data matrix
D < (pWD? D)y,

as well as the composite 2m x 4k (motion) and 4k x n (structure) matrices

PO 0 ... 0
def (M{l)M(g) M(k)) and P dif { 0 P2 .0 \I ‘
R ) w)}
With this notation, we have
D= MP,

which confirms, of course, that D has rank 4k (or less).
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Multiple motions

With multiple motions

{Pu Pm\

D = :
1 1

has rank 4k
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Affine Structure from Motion

e Two views

— Geometric Approach: infer affine shape (then recover affine
projection matricies i1f needed)

— Algebraic Approach: estimate projection matricies (then determine
position of scene points)

e Sequence

— Factorization Approach

[Most Figures from Forsythe and Papce]



Today

Affine SFM

— Geometric Approach
— Algebraic Approach

— Tomasi1/Kanade Factorization
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