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Abstract

In this paper, we propose a novel method, called local non-
negative matrix factorization (LNMF), for learning spa-
tially localized, parts-based subspace representation of vi-
sual patterns. An objective function is defined to impose lo-
calization constraint, in addition to the non-negativity con-
straint in the standard NMF [1]. This gives a set of bases
which not only allows a non-subtractive (part-based) repre-
sentation of images but also manifests localized features.
An algorithm is presented for the learning of such basis
components. Experimental results are presented to compare
LNMF with the NMF and PCA methods for face represen-
tation and recognition, which demonstrates advantages of
LNMF.

1 Introduction

Subspace analysis helps to reveal low dimensional struc-
tures of patterns observed in high dimensional spaces. A
specific pattern of interest can reside in a low dimensional
sub-manifold in the original input data space of an unnec-
essarily high dimensionality. Consider the case of N x M
image pixels, each taking a value in {0, 1, ..., 255}; there is
a huge number of possible configurations: 256> This
space is capable of describing a wide variety of patterns or
visual object classes. However, for a specific pattern, such
as the human face, the number of admissible configurations
is a only tiny fraction of that. In other words, the intrinsic
dimension is much lower than N x M.

An observation can be considered as a consequence of
linear or nonlinear fusion of a small number of hidden or
latent variables. Subspace analysis is aimed to derive a rep-
resentation that results in such a fusion. In fact, the essence
of feature extraction in pattern analysis can be considered
as discovering and computing intrinsic low dimension of
the pattern from the observation.

For these reasons, subspace analysis has been a major
research issue in appearance based imaging and vision, such

*The work presented in the paper was carried out at Microsoft Re-
search, China.

as object detection and recognition [2, 3, 4, 5, 6, 7]. The
significance of is twofold: effective characterization of the
pattern and dimension reduction.

One approach for learning a subspace representation for
a class of image patterns involves deriving a set of basis
components for construction of the subspace. The eige-
niamge method [2, 3, 4] uses principal component analy-
sis (PCA) [8] performed on a set of representative training
data to decorrelate second order moments corresponding to
low frequency property. Any image can be represented as a
linear combination of these bases. Dimension reduction is
achieved by discarding least significant components. Due to
the holistic nature of the method, the resulting components
are global interpretations, and thus PCA is unable to extract
basis components manifesting localized features.

However, in many applications, localized features offer
advantages in object recognition, including stability to lo-
cal deformations, lighting variations, and partial occlusion.
Several methods have been proposed recently for localized
(spatially), parts-based (non-subtractive) feature extraction.

Local feature analysis (LFA) [9], also based on second
order statistics, is a method for extracting, from the holis-
tic (global) PCA basis, local topographic representation in
terms of local features. Independent component analysis
[10, 11] is a linear non-orthogonal transform. It yields a
representation in which unknown linear mixtures of multi-
dimensional random variables are made as statistically in-
dependent as possible. It not only decorrelates the second
order statistics but also reduces higher-order statistical de-
pendencies. It is found that independent component of nat-
ural scenes are localized edge-like filters [12].

The projection coefficients for the linear combinations
in the above methods can be either positive or negative, and
such linear combinations generally involve complex cancel-
lations between positive and negative numbers. Therefore,
these representations lack the intuitive meaning of adding
parts to form a whole.

Non-negative matrix factorization (NMF) [1] imposes
the non-negativity constraints in learning basis images. The
pixel values of resulting basis images, as well as coeffi-
cients for reconstruction, are all non-negative. This way,
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only non-subtractive combinations are allowed. This en-
sures that the components are combined to form a whole in
the non-subtractive way. For this reason, NMF is consid-
ered as a procedure for learning a parts-based representa-
tion [1]. However, the additive parts learned by NMF are
not necessarily localized, and moreover, we found that the
original NMF representation yields low recognition accu-
racy, as will be shown.

In this paper, we propose a novel subspace method,
called local non-negative matrix factorization (LNMF), for
learning spatially localized, parts-based representation of
visual patterns. Inspired by the original NMF [1], the aim
of this work to impose the locality of features in basis com-
ponents and to make the representation suitable for tasks
where feature localization is important. An objective func-
tion is defined to impose the localization constraint, in addi-
tion to the non-negativity constraint of [1]. A procedure is
presented to optimize the objective to learn truly localized,
parts-based components. A proof of the convergence of the
algorithm is provided.

The rest of the paper is organized as follows: Section 2
introduces NMF in contrast to PCA. This is followed by
the formulation of LNMF. A LNMF learning procedure is
presented and its convergence proved. Section 3 presents
experimental results illustrating properties of LNMF and its
performance in face recognition as compared to PCA and
NME

2 Constrained Non-Negative Matrix
Factorization

Let a set of Ny training images be given as an n X Np
matrix X = [z;;], with each column consisting of the n
non-negative pixel values of an image. Denote a set of m <
n basis images by an n X m matrix B. Each image can
be represented as a linear combination of the basis images
using the approximate factorization

X ~ BH (1)

where H is the matrix of m x Nt coefficients or weights.
Dimension reduction is achieved when m < n.

The PCA factorization requires that the basis images
(columns of B be orthonormal and the rows of H be mu-
tually orthogonal. It imposes no other constraints than the
orthogonality, and hence allows the entries of B and H to
be of arbitrary sign. Many basis images, or eigenfaces in
the case of face recognition, lack intuitive meaning, and a
linear combination of the bases generally involves complex
cancellations between positive and negative numbers. The
NMF and LNMF representations allow only positive coef-
ficients and thus non-subtractive combinations.

2.1 NMF

NMF imposes the non-negativity constraints instead of the
orthogonality. As the consequence, the entries of b and h
are all non-negative, and hence only non-subtractive combi-
nations are allowed. This is believed to be compatible to the
intuitive notion of combining parts to form a whole, and is
how NMF learns a parts-based representation [1]. It is also
consistent with the physiological fact that the firing rate are
non-negative.
NMF uses the divergence of X from Y, defined as

Tij
DX|[Y) =3 (mij log y—J — i + yij) 2)

i K

as the measure of cost for factorizing X into BH 2y =
[yij].- An NMF factorization is defined as

min  D(X|[BH) 3)

)

st BH>0,) b;=1Vj
i

where B,H > 0 means that all entries of B and H are
non-negative. D(X||Y) reduces to Kullback-Leibler di-
vergence when 7, @i; = >, ¥;; = 1. The above
optimization can be done by using multiplicative update
rules [13], for which a matlab program is available at
http://journalclub.mit .edu under the “Compu-
tational Neuroscience” discussion category.

2.2 LNMF

The NMF model defined by the constrained minimization
of (2) does not impose any constraints on the spatial locality
and therefore minimizing the objective function can hardly
yield a factorization which reveals local features in the data
X. Letting U = [u;;] = BTB, V = [v;;] = HHT, both
being m x m, LNMF is aimed at learning local features by
imposing the following three additional constraints on the
NMF basis:

1. A basis component should not be further decomposed
into more components, so as to minimize the num-
ber of basis components required to represent X. Let
b; = [b;;]-; be a basis vector. Given the existing
constraints Y, b;; = 1 for all ¢, we wish that ), b;
should be as small as possible so that b; contains as
many non-zero elements as possible. This can be im-
posed by >, uj; = min.

2. Different bases should be as orthogonal as possible,
so0 as to minimize redundancy between different bases.
This can be imposed by Ei# Uj; = min.
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3. Only components giving most important information
should be retained. Given that every image in X
has been normalized into a certain range such as
[0, ..., 255], the total “activity” on each retained com-
ponent, defined as the total squared projection coef-
ficients summed over all training images, should be
maximized. This is imposed by >, v;; = max.

The incorporated of the above constraints leads the fol-
lowing constrained divergence as the objective function for
LNMF:

D(X||BH) = 4)

Z (wl] log
Yij
« Z Ujj — B Z Vii

where a, 8 > 0 are some constants. A LNMF factorization
is defined as a solution to the constrained minimization of
5).

A local solution to the above constrained minimization
can be found by using the following three step update rules:

— Ty + yij) +

hw = \/hkl Z Tl E khkl (&)
k 2.
. _ bkl Zj Tkj >k bk]lhl]. (6)
K=
Ej hu;
bri
by = 7
kl S b @)

2.3 Convergence Proof

The learning algorithm (5)-(7) alternates between updating
H and updating B, which is derived based on a technique
in which an objective function L(Z) is minimized by
using an auxiliary function. G(H,Z') is said to be an
auxiliary function for L(Z) if G(Z,Z') > L(Z) and
G(Z,Z) = L(Z) are satisfied. If G is an auxiliary function,
then L(Z) is non-increasing when Z is updated using
Z(tH) = argming G(Z,Z") [14]. This is because
L(ZtHD) < G(ZHD) | Z20) < G(Z®) | ZW) = L(ZM).

Updating H: H is updated by minimizing L(H) =
D(X||BH) with B fixed. An auxiliary function is con-
structed for L(H) as

GH,H') = (®)
Z l‘ij IOg l‘ij —
i,j
bikhi; bik hy;
Tij = | log(bixhy;) — log =——2— | +
ZXJ% ! Zk bikh;cj Y Ek bikh;cj

E Yij — E Tij E Uij_ﬂi Vij
2 2 i,J i,J

Itis easy to verify G(H, H) = L(H). The following proves
G(H,H') > L(H). Because log (3, birhyj) is a convex
function, the following holds for all 7, j and ), ;5% = 1:

—log (Z bikhkj> <
k

birhp:
_ Z i log Jik k) )

& YHijk
Let b
tk1tgj
Wik = =7 (10)
! Ek bikh;@j
Then
—log (Z bikhkj> < (1D
birhy; bikhy;
logbirhy; — log =————
sz zkh < & Dkl ng bikh;@j

which is G(H, H') > L(H).
To minimize L(H) w.r.t. H, we can update H using

HEHD = argm}iInG(H,H(t)) (12)
Such an H can be found by letting w = 0 for all £l.

Because

6G(H,H’ zkhkz
—_— bir — 28h
Oh Z Ek birhy, hit +Z it = 25hw
(13)
we find
birh
. 1—\/1—8[32 T e "
kl 13
There exists vy such that
h Zx bl &5 (15)
Kl R Y zlzk bl ’Y kl
where
hi = ; 16
kl \/szlzk bl (16)
and v = (B,w) is a function of 8 and w =
i)
> xllzkkl:fik,

The result we want to derive from the LNMF learning is
the basis B, and H itself is not so important. Because by;
will be normalized by Eq.7, the normalized by, is regardless
of the v value as long as v > 0. Therefore, we simply
replace Eq.(15) by (5).
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Updating B: B is updated by minimizing L(B) =
D(X||BH) with H fixed. The auxiliary function for L(B)
is
G(B,B') =

Z Tij lOg Tij —

i,j

bi ok < bi Pk >

ij = | log(bighij) — log =—— ) +
% ! > ighj 8(0ikhs) s > Uil
Doy =Y wiitady ui—BY v
1,3 (2] .3 1,3

We can prove G(B,B) = L(B) and G(B,B’) > L(B)
likewise. By letting M =0, we find

A7)

h;
Vbt 225 i sy
5y (Z] hyj + 253, bkj)

by = buz kiS00 by b,c,h,J .
Zj hij + 2042]- bk]

Because b;; € [0, 1] and B is an approximately orthog-
onal basis, and z;; € [0,255], there must be h;; > z;; €
[0,255]. Therefore, we can always set the ratio £ to be not
too large (e.g. % ~ 1) so that Zj Elj +2% Zj by; and thus
iLlj > 2% Zj brj = iLlj. Therefore, we have Eq.(6).

From the above analysis, we conclude that the three step
update rules (5)-(7) results in a sequence of non-increasing

values of D(X|BH), and hence converges to a local mini-
mum of it.

2.4 Face Recognition in Subspace

Face recognition in the PCA, NMF or LNMF linear sub-
space is performed as follows:

1. Feature extraction. Let X be the mean of training im-
ages. Each training face image x; is projected into the
linear space as a feature vector h; = B~!(x; — %)
which is then used as a prototype feature point. A
query face image q to be classified is represented by
its projection into the space as h, = B~1(q — x).

2. Nearest neighbor classification. The Euclidean dis-
tance between the query and each prototype, d(h,, h;),
is calculated. The query is classified to the class to
which the closest prototype belongs.

3 Experiments

3.1 Data Preparation

The Cambridge ORL face database is used for deriving
PCA, NMF and LNMF bases. There are 400 images

(18)

(112 % 92) of 40 persons, 10 images per person (Fig.1 shows
the 10 images of one person). The images are taken at
different times, varying lighting slightly, facial expressions
(open/closed eyes, smiling/non-smiling) and facial details
(glasses/no-glasses). All the images are taken against a dark
homogeneous background. The faces are in up-right posi-
tion of frontal view, with slight left-right out-of-plane rota-
tion. Each image is linearly stretched to the full range of
pixel values of [0,255].

Figure 1: Face examples from ORL database.

The set of the 10 images for each person is randomly
partitioned into a training subset of 5 images and a test set
of the other 5. The training set is then used to learn basis
components, and the test set for evaluate. All the compared
methods take the same training and test data.

3.2 Learning Basis Components

LNMF, NMF and PCA representations with
25,36,49,64,81,100,121 basis components are com-
puted from the training set. The matlab package from
http://journalclub.mit.edu is used for NMF
NMF converges about 5-times faster than LNMF. Fig.2
shows the resulting LNMF and NMF components for
subspaces of dimensions 25, 49 and 81. Higher pixel values
are in in darker color; the components in each LNMF
basis set have been ordered (left-right then top-down)
according to the significance value v;;. The NMF bases are
as holistic as the PCA basis (eigenfaces) for the training
set. We notice the result presented in [1] does not appear
so, perhaps because the faces used for producing that
result are well aligned. The LNMF procedure learns
basis components which not only lead to non-subtractive
representations, but also manifest localized features and
thus truly parts-based representations. Also, we see that
as the dimension (number of components) increases, the
features formed in the LNMF components become more
localized.
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Figure 2: LNMF (left) and NMF (right) bases of dimen-
sions 25 (row 1), 49 (row 2) and 81 (row 3). Every basis
component is of size 112 x 92 and the displayed images are
re-sized to fit the paper format. The LNMF representation
is both parts-based and local, whereas NMF is parts-based
but holistic.

3.3 Reconstruction

Fig.3 shows reconstructions in the LNMF, NMF and PCA
subspaces of various dimensions for a face image in the test
set which corresponds to the one in the middle of row 1
of Fig.1. As the dimension is increased, more details are
recovered. We see that while NMF and PCA reconstruc-
tions look similar in terms of the smoothness and texture
of the reconstructed images, with PCA presenting better
reconstruction quality than NMF. Surprisingly the LNMF
representation, which is based on more localized features,
provides smoother reconstructions than NMF and PCA.

3.4 Face Recognition

The LNMF, NMF and PCA representations are compara-
tively evaluated for face recognition using the images from
the test set. The recognition accuracy, defined as the per-
centage of correctly recognized faces, is used as the per-
formance measure. Tests are done with varying number of

g
=
Figure 3: Reconstructions of the face image in the (left to

right) 25, 49, 81 and 121 dimensional (top-down) LNMF,
NMEF, and PCA subspaces.

Figure 4: Examples of random occluding patches of sizes
(from left to right) 10x10, 20x20, ..., 50x50, 60x60.

basis components, with or without occlusion. The occlu-
sion is simulated in an image by using a white patch of size
s x s with s € {10,20,...,60} at a random location; see
Fig.4 for examples.

Figs.5 and 6 show recognition accuracy curves under
various conditions. Fig.5 compares the three representa-
tions in terms of the recognition accuracies versus the num-
ber m x m of basis components for m € {5,6,...,10,11}.
The LNMF yields the best recognition accuracy, slightly
better than PCA whereas the original NMF gives very low
accuracy. Fig.6 compares the three representations un-
der varying degrees of occlusion and with varying num-
ber of basis components, in terms of the recognition ac-
curacies versus the size s x s of occluding patch for s €
{10, 20, ...,50,60}. As we see, although PCA yields more
favorable results than LNMF when the patch size is small,
the better stability of the LNMF representation under partial
occlusion becomes clear as the patch size increases.

4 Conclusion

In this paper, we have proposed a new method, local non-
negative matrix factorization (LNMF), for learning spatially
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Figure 5: Recognition accuracies as function of the num-
ber (in 5x5, 6x6, ..., 11x11) of basis components used, for
the LNMF (solid) and NMF (dashed) and PCA (dot-dashed)
representations.
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Figure 6: Recognition accuracies versus the size (in 10x10,
20x20, ..., 60x60) of occluding patches, with 25,49, 81, 121
basis components (left-right, then top-down), for the LNMF
(solid) and NMF (dashed) and PCA (dot-dashed) represen-

tations.

localized, part-based subspace representation of visual pat-
terns. The work is aimed to learn localized of features
in NMF basis components suitable for tasks such as face
recognition. An algorithms is presented for the learning and
its convergence proved. Experimental results have shown
that we have achieved our objectives: LNMF derives bases
which are better suited for a localized representation than
PCA and NMF, and leads to better recognition results than
the existing methods.

The LNMF and NMF learning algorithms are local min-
imizers. They give different basis components from differ-
ent initial conditions. We will investigate how this affects
the recognition rate. Further future work includes the fol-
lowing topics. The first is to develop algorithms for faster
convergence and better solution in terms of minimizing the

objective function. The second is to investigate the abil-
ity of the model to generalize, i.e. how the constraints, the
non-negativity and others, are satisfied for data not seen in
the training set.The third is to compare with other methods
for learning spatially localized features such as LFA [9] and
ICA [12].
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