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Abstract

Model-based recognition and motion tracking depends upon the ability to solve for
projection and model parameters that will best fit a 3-D model to matching 2-D
image features. This paper extends current methods of parameter solving to han-
dle objects with arbitrary curved surfaces and with any number of internal param-
eters representing articulations, variable dimensions, or surface deformations. Nu-
merical stabilization methods are developed that take account of inherent inaccura-
cies in the image measurements and allow useful solutions to be determined even
when there are fewer matches than unknown parameters. The Levenberg-Marquardt
method is used to always ensure convergence of the solution. These techniques al-
low model-based vision to be used for a much wider class of problems than was
possible with previous methods. Their application is demonstrated for tracking the
motion of curved, parameterized objects.

This paper has been published in IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 5
(May 1991), pp. 441–450.
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1 Introduction

Model-based vision allows prior knowledge of the shape and appearance of specific objects to be
used during the process of visual interpretation. Reliable identifications can be made by iden-
tifying consistent partial matches between the models and features extracted from the image,
thereby allowing the system to make inferences about the scene that go beyond what is explic-
itly available from the image. By providing this link between perception and prior knowledge
of the components of the scene, model-based recognition is an essential component of most po-
tential applications of vision.

One important component of model-based vision is the ability to solve for the values of all
viewpoint and model parameters that will best fit a model to some matching image features. This
is important because it allows some tentative initial matches to constrain the locations of other
features of the model, and thereby generate new matches that can be used to verify or reject the
initial interpretation. The reliability of this process and the final interpretation can be greatly
improved by taking account of all available quantitative information to constrain the unknown
parameters during the matching process. In addition, parameter determination is necessary for
identifying object sub-categories, for interpreting images of articulated or flexible objects, and
for robotic interaction with the objects.

In most cases, it is possible to solve for all unknown parameters for a 3-D model from matches
to a single 2-D image. However, in some circumstances—such as when both the size and dis-
tance of the model is unknown—the accuracy of parameter determination can be substantially
improved by simultaneously fitting the model to images taken from more than one viewpoint.
The methods presented here can be used in either situation.

The locations of projected model features in an image are a non-linear function of the view-
point and model parameters. Therefore, the solution is based on Newton’s method of lineariza-
tion and iteration to perform a least-squares minimization. This is augmented by a stabilization
method that incorporates a prior model of the range of uncertainty in each parameter and esti-
mates of the standard deviation of each image measurement. This allows useful approximate so-
lutions to be obtained for problems that would otherwise be underdetermined or ill-conditioned.
In addition, the Levenberg-Marquardt method is used to always force convergence of the solu-
tion to a local minimum. These techniques have all been implemented and tested as part of a
system for model-based motion tracking, and they have been found to be reliable and efficient.

2 Previous approaches

Attempts to solve for viewpoint and model parameters date back to the work of Roberts [30].
Although his solution methods were specialized to certain classes of objects, such as rectangular
blocks, Roberts clearly understood the value of quantitative parameter determination for making
vision robust against missing and noisy data. Unfortunately, there were few attempts to build
upon this work for many years following its initial publication.

In 1980, the author [19] presented a general technique for solving for viewpoint and model
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parameters using Newton’s method for nonlinear least-squares minimization. Since that time the
method has been used successfully in a number of applications, and it also provides the starting
point for the work presented in this paper. The application of the method to robust model-based
recognition has been described by Lowe [20, 21, 22], McIvor [26], and Worrall, Baker & Sul-
livan [34]. Bray [2] has applied the method to model-based motion tracking of rigid objects.
Ishii et al. [14] describe the application of this work to the problem of tracking the orientation
and location of a robot hand from a single view of LED targets mounted on the wrist. Their pa-
per provides a detailed analysis that shows good accuracy and stability. Goldberg & Lowe [8]
describe the application and testing of a number of more advanced numerical methods for this
problem.

In recent years, there has been a considerable increase in the number of publications on pa-
rameter solving for model-based vision, with most of the work aimed at solving for viewpoint
parameters of rigid objects. Liu et al. [18] and Kumar [15] have examined alternative iterative
approaches to solving for the viewpoint parameters by separating the solution for rotations from
those for translations. However, Kumar shows that this approach leads to much worse param-
eter estimates in the presence of noisy data. Therefore, he adopts a similar simultaneous mini-
mization as is used in the work above. A quite different approach based on the use of elimina-
tion methods to provide the initial problem formulation has been proposed by Ponce and Krieg-
man [29]. This also uses Newton’s method for the final parameter determination based on least-
squares minimization.

Haralick et al. [11] have experimented with robust methods such as iterative reweighting
in order to allow for outliers caused by incorrect matches. However, their results show that
even one outlier among 20 correct matches leads to a large increase in expected error follow-
ing reweighting. The alternative that is used in this paper is to provide a higher-level search
process that considers other sets of matches when the first set fails to result in an accurate fit of
the model.

2.1 The problem of multiple solutions

Much work has been published on characterizing the minimum amount of data needed to solve
for the six viewpoint parameters (assuming a rigid object) and on solving for each of the multiple
solutions that can occur when only this minimum data is available. Fischler and Bolles [6] show
that up to four solutions will be present for the problem of matching 3 model points to 3 image
points, and they give a procedure for identifying each of these solutions. A solution for the cor-
responding 4-point problem, which can also have multiple solutions under some circumstances,
is given by Horaud et al. [12]. Huttenlocher and Ullman [13] show that the 3-point problem has
a simple solution for orthographic projection, which is a sufficiently close approximation to per-
spective projection for some applications. They use the term “alignment” to refer to the solution
for viewpoint parameters during the model fitting process. In the most valuable technique for
many practical applications, Dhome et al. [4] give a method for determining all solutions to the
problem of matching 3 model lines to 3 image lines. They show that this is particularly useful
for generating starting positions for the iterative techniques used in this paper when there are
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multiple solutions.
This work on determining all possible exact solutions will no doubt be important for some

specific vision applications, but it is probably not the best approach for practical parameter de-
termination in general model-based vision. One problem with these methods is that they do not
address the issue of ill-conditioning. Even if a problem has only one analytic solution, it will
often be sufficiently ill-conditioned in practice to have a substantial number and range of solu-
tions. Secondly, all these methods deal with specific properties of the six viewpoint parameters,
and there is little likelihood that they can be extended to deal with an arbitrary number of inter-
nal model parameters. Finally, these methods fail to address the problem of what to do when
the solution is underconstrained. The stabilization methods described in this paper allow an ap-
proximate solution to be obtained even when a problem is underconstrained, as will often be the
case when models contain many parameters.

Possibly the most convincing reason for believing that it is not necessary to determine all
possible solutions is the fact that human vision apparently also fails to do so. The well-known
Necker cube illusion illustrates that human vision easily falls into a local minimum in the deter-
mination of viewpoint parameters, and seems unable to consider multiple solutions at one time.
Rock [31], pp. 22ff summarizes the way in which human perception seems to always adopt one
particular perception at any time even in the face of completely indeterminate continuous vari-
ables. The perception can suddenly change to a new stable position in the face of new infor-
mation, which may come internally from other components of the visual system (attention) as
well as from the external stimulus. This behavior is consistent with a stabilized minimization
approach for determining the parameter values, in which the process can be initiated from new
starting points as new information becomes available. The extremely good performance of hu-
man vision in most recognition problems, in spite of its potential for getting stuck in false local
minima, indicates that local minima may not be a major problem when determining model pa-
rameters.

It is worth noting that the parameter solving problem is simplified when accurate 3-D im-
age data is available (as from a scanning laser rangefinder), since this avoids some of the non-
linearities resulting from projection. Examples of solutions to this problem are given by Faugeras
& Hebert [5] and Grimson & Lozano-Pérez [10]. However, in this paper we restrict our attention
to fitting 3-D models to 2-D image features.

3 Object and scene modeling

Most research in model-based vision has been based on models of simple polyhedral 3-D ob-
jects. While they are simple to work with, they are clearly inadequate for representing many
real-world objects. Some research has been based on models built from certain classes of volu-
metric primitives, most notably generalized cylinders [1, 3] and superquadrics [27]. While these
are attractive because of their ability to capture common symmetries and represent certain shapes
with few parameters, they are ill-suited for modeling many natural objects that do not exhibit the
set of regularities incorporated into the primitives.
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Figure 1: Model points (in circles) are represented as leaves in a tree of rotation or translation
transformations. The position and partial derivatives of each point in camera-centered coordi-
nates is determined by the transformations along the path back to the root.

The field that has most thoroughly examined the problem of representing the visual appear-
ance of arbitrary objects is computer graphics. The lessons from developments in that field are
quite clear: complex analytic representations have given way to simple local approximations as
the most cost-effective solution. The most common forms of local approximation now used for
model representation prior to rendering are polygonal surface patches, with the appropriate in-
terpolation in the various parameters of interest for display. Since an arbitrary function can be
approximated to any desired degree of accuracy by using enough simple local approximations,
the only important issue at this level of representation is one of efficiency. Experience in com-
puter graphics has tended to show that the increased number of approximating patches required
for simple linear approximations is more than compensated for by the speed with which they can
be manipulated. Of course, more complex splines and volumetric primitives may still be used
for model input or other higher-level reasoning.

As with computer graphics, vision is based upon the art of approximation. Of course, it is
important to approximate the appropriate measurements, as otherwise an approximation in one
quantity may introduce unwanted errors in its derivatives or other functions that depend upon
it. In model-based vision, we are concerned with correctly approximating those functions that
will be matched with image measurements. In the case of edge-based matching, this will include
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the projected locations, tangents, curvatures, and discontinuities of edges. If shading or surface
properties were being matched, then surface curvatures must also be approximated. We have de-
veloped a modeling system that allows these quantities to be modeled as a function of viewpoint
and internal model parameters to any desired degree of accuracy and used for efficient parameter
solving.

Although model-based vision can learn much from computer graphics, the modeling require-
ments also have important differences. In model-based matching to 2-D images, the models are
matched to derived image features rather than being used to generate dense surface descriptions.
For example, it is important to be able to directly calculate the positions of occluding contours,
which is not possible in many modeling systems developed for computer graphics. Since the
models are projected and manipulated in the inner-loop of the matching process, it is important
that all possible sources of efficiency particular to the vision domain be exploited. In addition,
certain quantities that do not occur in graphics applications, such as derivatives with respect to
model parameters, must be efficiently represented and computed. For all these reasons, it is nec-
essary to develop a modeling system aimed at vision rather than adopting existing systems de-
veloped for graphics.

A simple modeling language has been developed that can be used to describe arbitrary mod-
els and their internal parameters for use in model-based vision. The language is used to define
and name 3-D points, edges and surface patches, as well as model parameters defining rotations
and translations. Each model point is a leaf in a tree of coordinate transformations that repre-
sent any combination of previous rotations and translations specified by different parameters (see
Figure 1). The same mechanism is used to handle both viewpoint parameters and internal model
parameters, so the root of this tree represents the camera coordinate frame.

When an internal model is built from a description in this language, a dense pointer network
is constructed that links each edge element to its adjoining surface patches and endpoints. A
caching mechanism is used so that the visibility of each surface polygon and the projection of
each point is calculated only once, unlike in most graphics modeling systems. Because each
point on a surface or line may move independently by being attached to different frames, it is
possible to specify arbitrary flexible motions of models. For example, the line connecting the
points F and G in Figure 1 can stretch under the influence of parameter s and rotate in conjunction
with another model subpart under the influence of parameter p (each translation frame specifies
a translation direction and each rotation specifies a rotation axis).

Edges are labeled according to whether they lie on a smooth surface or form a discontinuity.
By caching a record of the surface normal for the patch on each side of each edge, the visibil-
ity and locations of the occluding boundaries and surface discontinuities can be generated very
efficiently even when there are large numbers of underlying polygons. An example of a model
with occluding boundaries is shown in Figure 2. Later, we will describe how the model repre-
sentation enables the efficient computation of partial derivatives of image features with respect
to each parameter.
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Figure 2: An example of a model with curved surfaces and an internal parameter specifying
rotation of the handle. The underlying approximating patches are shown on the left, and the
generated contours for matching are shown on the right.

4 Solving for viewpoint and model parameters

Projection from 3-D to 2-D is a non-linear operation. Fortunately, however, it is a smooth and
well-behaved transformation. Rotation in depth prior to projection transforms the projected points
as a function of the cosine of the rotation angle. Translation towards or away from the camera
introduces perspective distortion as a function of the inverse of the distance. Translation parallel
to the image plane is almost entirely linear. Translations and rotations associated with internal
model parameters have effects that are identical to the viewpoint parameters, but applied to only
a subset of the model points. All of these transformations are smooth and well behaved.

Therefore, this problem is a promising candidate for the application of Newton’s method,
which is based on assuming that the function is locally linear. While this does require starting
with an appropriate initial choice for the unknown parameters and faces the risk of converging
to a false local minimum, we will see below that stabilization methods can be used to make this
method highly effective in practice.
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4.1 Newton’s method and least-squares minimization

Rather than solving directly for the vector of non-linear parameters, p, Newton’s method com-
putes a vector of corrections,x, to be subtracted from the current estimate forp on each iteration.
If p(i) is the parameter vector for iteration i, then,

p(i+1) = p(i) � x:

Given a vector of error measurements, e, between components of the model and the image,
we would like to solve for an x that would eliminate this error. Based on the assumption of
local linearity, the affect of each parameter correction, xi, on an error measurement will be xi

multiplied by the partial derivative of the error with respect to that parameter. Therefore, we
would like to solve for x in the following matrix equation:

Jx = e

where J is the Jacobian matrix:

Jij =
@ei

@xj

:

Each row of this matrix equation states that one measured error, ei, should be equal to the sum
of all the changes in that error resulting from the parameter corrections. If all these constraints
can be simultaneously satisfied and the problem is locally linear, then the error will be reduced
to zero after subtracting the corrections.

If there are more error measurements than parameters, this system of equations may be overde-
termined (in fact, this will always be the case given the stabilization methods presented below).
Therefore, we will find an x that minimizes the 2-norm of the residual rather than solves for it
exactly:

min kJx� ek2:

Since kJx� ek2 = (Jx� e)T(Jx� e), it can be shown that this minimization has the same
solution as the normal equations,

JTJx = JTe: (1)

where JT is the transpose of J. This minimization is making the assumption that the original non-
linear function is locally linear over the range of typical errors, which is true to a high degree of
approximation for the projection function with typical errors in image measurements.

Therefore, on each iteration of Newton’s method, we can simply multiply out JTJ andJTe in
the normal equations (1) and solve forx using any standard method for solving a system of linear
equations. Many numerical texts criticize this use of the normal equations as potentially unsta-
ble, and instead recommend the use of Householder orthogonal transformations or singular value
decomposition. However, a close study of the trade-offs indicates that in fact the normal equa-
tions provide the best solution method for this problem. The solution using the normal equations
requires only half as many operations as the Householder algorithm (and an even smaller frac-
tion with respect to SVD), but requires a precision of twice the word-length of the Householder
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algorithm in order to solve problems that are equally ill-conditioned [9, 16]. Given the stabi-
lization methods described below, the normal equations are never sufficiently ill-conditioned to
require more than single-precision floating point arithmetic, and therefore are more efficient in
practice than any of the competing methods. Even if higher precision were required, the trade-
offs for single versus double precision computation on modern hardware would likely favor the
normal equations.

4.2 Efficient computation of partial derivatives

One of the most expensive aspects of implementing this solution method is calculating the Ja-
cobian matrix of partial derivatives. Therefore, we have developed methods for using precom-
putation and shared data structures to reduce these costs. In addition, a special technique is used
to handle derivatives with respect to full 3-D rotations in order to eliminate singularities and
increase the rate of convergence.

As described earlier in the section on model representation, all model points are leaves in a
tree of “frame” data structures. Each frame represents a rotation or translation with respect to
its parent. Therefore, by tracing back to the root of the tree from each model point, it is possible
to identify the set of variable transformations that influence that point. Each frame data struc-
ture also contains precomputed results for the current view that can be used by all points which
depend on that frame in order to compute their partial derivatives with respect to that frame’s
parameters. As there are usually many points influenced by each frame, any precomputation of
results for the frame is far more efficient than computing them for each point.

It is possible that the same parameter will appear in more than one frame along a path through
the tree (e.g., the last 2 joints of a human finger do not move independently, but depend on a
single parameter of tendon contraction). This case is easily handled by simply summing all of
the partial derivatives for a particular parameter.

Each type of frame transformation requires different precomputed results, so these are de-
scribed individually as follows.

Translation. Each variable translation frame contains a 3-D vector giving the directional deriva-
tive in camera-centered coordinates with respect to that frame’s variable. As all points depending
on that frame will have this same directional derivative, no further computation is required.

Rotation about one axis. Each variable rotation frame contains the 3-D angular velocity vector
and the origin of rotation for the current viewpoint. The directional derivative of each point that
depends on the frame is computed by taking the cross product of the angular velocity vector with
the vector from the origin of rotation to the point.

Rotation about three axes. If we compose three rotations about individual axes in order to com-
pute an arbitrary 3-D rotation, singularities can easily result where the sequential composition of
the three rotations fail to specify independent directions of rotation. Therefore, we represent full
three-degree-of-freedom rotations with a 3 by 3 rotation matrix, and compute corrections about
each of the coordinate axes to be composed with this rotation. This also has the benefit that the
derivatives can be computed in an extremely efficient form. For example, the directional deriva-
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tive of a point with respect to an incremental rotation about the x-axis is the vector (0;�z; y),
where z and y refer to the coordinates of the vector from the origin of rotation to the point.

Once the directional derivatives of each model point have been computed, it is simply a mat-
ter of projecting these into image coordinates (u; v). Perspective projection of a model point
(x; y; z) in camera-centered coordinates to produce an image point (u; v) is given as follows:

u =
�fx

z
and v =

�afy

z

where f is a constant proportional to the focal length of the camera lens. We include another
constant, a, specifying the width-to-height aspect ratio of each pixel in the original image, as
most current video standards have non-square aspect ratios. Taking the partial derivative of each
of the above functions with respect to a parameter p, we get

@u

@p
=
�f

z

 
@x

@p
�

x

z

@z

@p

!

and
@v

@p
=
�af

z

 
@y

@p
�

y

z

@z

@p

!

Here the partial derivatives of x, y and z with respect to p are simply the components of the
directional derivatives calculated earlier.

4.3 Measuring perpendicular errors for curves

The methods above would be sufficient if we had matches between points on the model and
points in the image. However, in most cases the matches will actually be between projected con-
tours of the model and partial edges in the image. Since the precise position of the endpoints of
image edges are unknown (and may be displaced due to occlusion), it is necessary to minimize
only the perpendicular distance from points on an image edge to the projected model curve.

It might be thought that self-occluding edges of curved surfaces would require special treat-
ment, as the actual model edge that forms such an occluding contour will shift with changes in
viewpoint. However, the surface normal at such an occluding point is exactly perpendicular to
the viewing direction, and therefore the instantaneous motion of the contour projected into the
image is zero as nearby points on the surface replace it. For larger rotations, the error intro-
duced by non-linearity is easily handled through the same iterations that compensate for other
non-linearities.

In order to measure the perpendicular distance from an image point to a projected 2-D model
line, it is useful to express the projected model line in the following form:

u sin � � v cos � = d

where � is the orientation of the line with respect to the u-axis and d is the signed perpendicular
distance of the line from the origin. If we substitute an image point (u0; v0) into the left side of this

10



equation and calculate a new d0, then the signed perpendicular distance of this point from the line
is d0 � d. The partial derivative of this perpendicular error measure is just a linear combination
of the partial derivatives of u and v:

@d

@p
= sin �

@u

@p
� cos �

@v

@p

In practice, we calculate sin � and cos � from 2 points, (u1; v1) and (u2; v2), on the line. Let L
be the length of the line between these points:

L =
q
(u2 � u1)2 + (v2 � v1)2

then
cos � =

u2 � u1

L
and sin � =

v2 � v1

L

The perpendicular error is measured between selected points on the image curve and the per-
pendicular projection of this point onto the closest segment of the projected model curve. This
determination of the closest matching point is updated on each iteration of convergence.

4.4 Determining a starting position for convergence

Worrall, Baker & Sullivan [34] have studied the range of convergence for the author’s earlier
version of this algorithm using Monte Carlo techniques. They found that the algorithm would
converge to the correct solution in virtually every case for rotation errors of less than 90 degrees
(translation errors have almost no effect). The number of iterations rises with increasing errors
up to an average of about 6 iterations at 90 degrees. With the stabilization methods described in
the next section, convergence is significantly improved over even these levels.

Therefore, the accuracy requirements for determining the initial starting position are quite
minimal. For the motion tracking problem which serves as our initial focus, we simply use the
parameter estimates from the previous frame added to a velocity estimate for each parameter
obtained from the previous 2 frames. For a general recognition problem, properties of the image
matches that are being fitted can be used to determine initial parameter estimates. For rotation
in depth, each match can vote for a mean direction from which it is visible (very few model
features are visible from all viewpoints) and these direction vectors can be averaged. For rotation
in the image plane, we can project the model from the estimated rotation in depth and take the
average image rotation between projected model edges and the matching image edges. Estimates
for translation can be made by matching the centers of gravity and standard deviations from the
centers of gravity for the projected model features and image features. See [21] for an example
of calculating initial estimates for a recognition problem.

If there are only about as many matches as are needed to solve for the degrees of freedom,
then it is possible that there is more than one local minimum. This problem can be overcome
by starting with some extra matches (the solution adopted in the author’s applications), by at-
tempting to converge from several starting positions, or by using an analytic method applied to
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subsets of the matches (as in Dhome et al. [4]) to compute a candidate set of starting positions.
Yet another approach is to construct an inverse lookup table that maps feature measurements into
approximate viewpoint parameter estimates. Such an approach has been used by Thompson and
Mundy [32] for vertices and by Goad [7] for a wide range of arbitrary model features.

5 Stabilizing the solution

As long as there are significantly more constraints on the solution than unknowns, Newton’s
method as described above will usually converge in a stable manner from a wide range of starting
positions. However, in both recognition and motion tracking problems, it is often desirable to
begin with only a few of the most reliable matches available and to use these to narrow the range
of viewpoints for later matches. Even when there are more matches than free parameters, it is
often the case that some of the matches are parallel or have other relationships which lead to an
ill-conditioned solution. These problems are further exacerbated by having models with many
internal parameters.

5.1 Specifying a prior model

All of these problems can be solved by introducing prior constraints on the desired solution that
specify the default to be used in the absence of further data. In many situations, the default so-
lution will simply be to solve for zero corrections to the current parameter estimates. However,
for certain motion tracking problems, it is possible to predict specific final parameter estimates
by extrapolating from velocity and acceleration measurements, which in turn imply non-zero
preferences for parameter values in later iterations of non-linear convergence.

Any of these prior constraints on the solution can be incorporated by simply adding rows to
the linear system stating the value that we wish to assign each parameter:

"
J

I

#
x =

�
e

d

�
(2)

The identity matrix I adds one row for specifying the value of each parameter, and di specifies
the desired default value for parameter i.

The obvious problem here is that there is no specification of the trade-offs between meet-
ing the constraints from the data versus those of the prior model. The appropriate solution is to
weight each row of the matrix equation so that each element of the right-hand side has the same
standard deviation. Therefore, as we minimize the error vector, each constraint will contribute
in proportion to the number of standard deviations from its expected value.

We will normalize each row of the system to unit standard deviation. If the image measure-
ments are in pixels, then leaving these with a standard deviation of 1 is already a good first es-
timate for the error in measuring the position of image features. In our matching algorithm, we
also take account of potential ambiguities in the match to increase the standard deviation (i.e.,
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reduce the weighting) for matches that exhibit more than one nearby alternative, so that uncer-
tainties in the correct match for nearby alternatives translate into the appropriate uncertainties in
position.

The more important normalization is to weight the prior model according to the standard de-
viations in the prior estimates for each parameter. This is relatively straightforward in the case
of motion tracking, where limits on the acceleration of each parameter from frame to frame can
be expressed as a standard deviation. However, in the case of model-based recognition from any
viewpoint, it may seem that the range of expected values is infinite. In fact, each parameter is
limited during convergence because we are assumed to be starting from some initial approxi-
mation to the viewpoint. Therefore, the rotation parameters will have a standard deviation of at
most �=2, and the translations will be limited to maintaining the position of the object within the
image frame. Internal model parameters will have standard deviations corresponding to a large
fraction of their valid range of movement. These deviations may be large in comparison to those
arising from the image measurements, but they still play a substantial role in stabilizing the so-
lution for ill-conditioned problems. In fact the standard deviations can be made several times
smaller without an adverse effect on the degree to which the final solution fits the data measure-
ments, because the non-linear iterative solution can reset the starting point of the prior model to
the results of each previous iteration.

5.2 Efficient computation of stabilization

The prior estimates of the parameter values will be weighted by a diagonal matrix W in which
each weight is inversely proportional to the standard deviation, �i, for parameter i:

Wii =
1

�i

This matrix is used to scale each row of the prior model in the lower part of equation (2). We
assume that the constraints based on image measurements in the upper part of the equation are
already scaled to have unit standard deviation."

J

W

#
x =

�
e

Wd

�

We will minimize this system by solving the corresponding normal equations:

h
JT WT

i " J
W

#
x =

h
JTWT

i� e

Wd

�

Which multiplies out to �
JTJ+WTW

�
x = JTe+WTWd

Since W is a diagonal matrix, WTW is also diagonal but with each element on the diagonal
squared. This means that the computational cost of the stabilization is trivial, as we can first form
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JTJ and then simply add small constants to the diagonal that are the inverse of the square of the
standard deviation of each parameter. Ifd is non-zero, then we add the same constants multiplied
by d to the right hand side. If there are fewer rows in the original system than parameters, we
can simply add enough zero rows to form a square system and add the constants to the diagonals
to stabilize it.

5.3 Forcing convergence

Even after incorporating this stabilization based on a prior model, it is possible that the system
will fail to converge to a minimum due to the fact that this is a linear approximation of a non-
linear system. We can force convergence by adding a scalar parameter � that can be used to
increase the weight of stabilization whenever divergence occurs. The new form of this system
is "

J

�W

#
x =

�
e

�Wd

�

This system minimizes
kJx� ek2 + �2kW(x� d)k2

Many people in the vision community will recognize this as an example of regularization us-
ing a Tikhonov [33] stabilizing functional, as has been applied to many areas of low-level vision
(Poggio et al. [28]). In this case, the parameter � controls the trade-off between approximating
the new data, kJx� ek2, and minimizing the distance of the solution from its original starting
position, d; prior to non-linear iteration, kW(x� d)k2.

The use of this parameter � to force iterative convergence for a non-linear system was first
studied by Levenberg [17] and later reduced to a specific numerical procedure by Marquardt
[24]. They realized that as the parameter � is increased, the solution would increasingly cor-
respond to pure gradient descent with smaller and smaller step sizes, along with its properties
of guaranteed (but slow) convergence. For decreasing �, the problem instead moves over to
Newton’s method, with its fast quadratic convergence near the solution but the possibility of
divergence when starting too far away. Therefore, Marquardt suggested the simple solution of
monitoring the residual of each solution and increasing � by factors of 10 until the residual de-
creased; otherwise, � is decreased by a factor of 10 on each iteration. This does not guarantee
any particular rate of convergence and can, of course, converge to a local rather than global min-
imum. However, it has proved highly effective in practice and is one of the most widely used
methods for non-linear least-squares.

Marquardt did not assume any prior knowledge of the weighting matrixW, but instead esti-
mated each of its elements from the euclidean norm of the corresponding column of JTJ. In our
case, the availablity ofW allows the algorithm to perform much better when a column of JTJ is
near zero. It also gives the stabilization a much more predictable behavior. Increasing the value
of � will essentially freeze the parameters having the lowest standard deviations and therefore
solve first for those with higher standard deviations. For our problem, this implies that conver-
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Figure 3: Two iterations of convergence are shown for determining 3-D viewpoint and the height
of the pyramid from partial matches to 2-D image segments. Perpendicular errors being mini-
mized are displayed as gray bars between model and image edges.

gence for difficult problems will proceed by solving first for translations and then proceeding on
subsequent iterations to solve for rotations and finally short-range internal model parameters.

6 Results of implementation

All of the methods for object modeling and parameter solving described above have been im-
plemented in about 4000 lines of C code. A very simple example of model fitting is shown in
Figure 3. The model is a pyramid with an internal parameter allowing for variable height. The
model was projected from one particular set of parameter values, and random intervals of some
of the projected segments were chosen for matching. The model parameters were changed to
produce the starting parameter estimates shown in Figure 3(b). In this figure, the perpendicular
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Figure 4: An image from a motion sequence of a person using a hand drill.

errors being minimized are displayed as gray bars between the projected model segments and the
matching image segments. Figures 3(c) and 3(d) show the output following the first two itera-
tions of the stabilized algorithm presented above. This fast rate of convergence within a couple
of iterations is typical over a wide range of initial parameter values (up to at least 60 degree er-
rors in rotation parameters). See Worrall, Baker & Sullivan [34] for a systematic exploration
of convergence over a wide range of errors, even prior to the addition of the stabilization and
Levenberg-Marquardt methods. In fact, divergence is relatively rare, so it is uncommon for the
Levenberg-Marquardt method to take effect; however, its computational cost is also low, so it is
probably of practical value.

6.1 Application to motion tracking

One initial application of these methods has been to the problem of model-based motion track-
ing. A Datacube image processor was used to implement Marr-Hildreth [25] edge detection in
real time on 512 by 485 pixel images. The image containing these edge points is transferred to a
Sun 3/260, where the edges are linked into lists on the basis of local connectivity. A fairly simple
matching technique is used to identify the image edges that are closest to the current projected
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Figure 5: Edges extracted from the image of Figure 4 using the Canny edge detector. Super-
imposed on these edges are the model from its previous estimated viewpoint, nearby matching
edges, and perpendicular errors to be minimized.

contours of a 3-D model. The few best initial matches are used to perform one iteration of the
viewpoint solution, then further matches are generated from the new viewpoint estimate. Up to 5
iterations of this procedure are performed, with a gradually narrowing range of image locations
which are searched for potential matches (this helps to eliminate any false outlier matches). For
simple models with straight edges, all of these steps can be performed in less than 1 second, re-
sulting in a system that can perform robust but rather slow real-time motion tracking. We have
run this system for thousands of frames at a time by holding an object in front of the video cam-
era and slowly moving it. Correctness of the motion tracking can be easily judged in real time
by watching a wire-frame model superimposed on the image from the current set of parameter
estimates. We are currently exploring the use of parallel architectures that could greatly speed
the operation of this system so that it performs at video rates for complex object models.

Figures 4–7 show the operation of the system for one frame of motion tracking. However,
due to the complexity of the model, this version requires about 6 seconds of processing per frame
on a Sun 3/260 and does not operate in real time. Figure 4 shows an image of a hand drill from
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Figure 6: The new model position and handle rotation after one iteration of model fitting. New
matches to image edges are shown with heavy lines.

which edges are extracted with a simplified version of the Canny edge detector. In Figure 5, the
model is shown superimposed on these edges from the previous best estimate of its current view-
point. A simple matching algorithm is used that finds image edges that are close to the projected
model curves over the maximum possible length of the edge. These matches are ranked accord-
ing to their length and average separation, and the best ones are chosen for minimization. The
selected matches are shown with heavy lines in Figure 5 along with perpendicular bars marking
the errors between model and image curves that are minimized. After one iteration of model
fitting, the new model position is shown in Figure 6 along with a new set of image matches gen-
erated from this position. Note that the rotation of the handle is a free parameter along with the
viewpoint parameters. After this second iteration of convergence, the final results of model fit-
ting are shown superimposed on the original image in Figure 7. Note that due to occlusion and
errors in low-level edge detection, this final result is based on only a small subset of the pre-
dicted image edges. However, due to the overconstrained nature of the problem, in which far
more measurements are available than unknown parameters, the final result can be reliable and
accurate.
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Figure 7: After the second iteration of convergence, the model is shown superimposed on the
original image.

7 Conclusions and future directions

This paper has presented general methods for fitting models with arbitrary curved surfaces and
any number of internal parameters to matched image features. Considerable attention has been
given to issues of robustness and efficiency, and these techniques should serve as a practical basis
for model fitting in most applications of model-based vision.

There are a number of directions in which these methods could be further improved. One is in
dealing with objects that have very large numbers of variable parameters. Since the complexity
of solving a linear system rises as O(n3) in the number of variables, it would likely be more
efficient to partition problems with very large numbers of parameters into smaller subsets. The
simultaneous solution method would be used for all parameters with large ranges of uncertainty,
but the remaining ones would be solved for on the basis of local independent optimization. This
would become particularly important if generic classes of objects are modeled, as was done in
the Acronym system [3], in which almost every dimension of the object is variable.

While this paper extends the modeling and parameter solving components of a vision sys-
tem so that they can work with curved objects, there is still much research to be done regarding
low-level curve segmentation and grouping. The author has developed some multi-scale curve
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smoothing methods [23] that would be suitable for the initial curve description, but much re-
mains to be done at the level of grouping and indexing in order to produce a fully general system
for recognition of curved objects. By making use of properties such as curvature, smoothness
and higher-level groupings, it should be possible to make major gains in the reliability of match-
ing.
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