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Abstract

   This paper is about detecting activations in statistical parametric maps and considers

the relative sensitivity of a nested hierarchy of tests that we have framed in terms of the

level of inference (voxel-level, cluster-level and set-level).  These tests are based on the

probability of obtaining c, or more, clusters with k, or more, voxels, above a threshold

u.  This probability has a reasonably simple form and is derived using distributional

approximations from the theory of Gaussian fields.  The most important contribution of

this work is the notion of set-level inference.  Set-level inference refers to the statistical

inference that the number of clusters comprising an observed activation profile is highly

unlikely to have occurred by chance. This inference pertains to the set of activations

reaching criteria and represents a new way of assigning p values to distributed effects.

   Cluster-level inferences are a special case of set-level inferences, that obtain when the

number of clusters c = 1.  Similarly voxel-level inferences are special cases of cluster-

level inferences that result when the cluster can be very small (i.e. k = 0).  Using a

theoretical power analysis of distributed activations, we observed that set-level

inferences are generally more powerful than cluster-level inferences and that cluster-

level inferences are generally more powerful than voxel-level inferences.  The price paid

for this increased sensitivity is reduced localizing power:  Voxel-level tests permit

individual voxels to be identified as significant, whereas cluster and set-level inferences

only allows clusters or sets of clusters to be so identified.  For all levels of inference the

spatial size of the underlying signal ƒ (relative to resolution) determines the most

powerful thresholds to adopt.  For set-level inferences if ƒ is large (e.g. fMRI) then the

optimum extent threshold should be greater than the expected number of voxels for each

cluster.  If ƒ is small (e.g. PET) the extent threshold should be small.  We envisage that

set-level inferences will find a role in making statistical inferences about distributed

activations, particularly in fMRI.
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Introduction

   This paper concerns statistical inference about activation profiles in functional

neuroimaging, particularly functional magnetic resonance imaging (fMRI).  We present

a taxonomy of tests that pertain to different levels of inference for an activation profile,

namely a voxel, a cluster of voxels and a set of clusters.  We then consider the relative

sensitivity of the ensuing tests in terms of power and how that power varies as a

function of resolution and the nature of the underlying signal.  This paper is concerned

primarily with distributed signals that have no a priori anatomical specification.

   Activations in position emission tomography (PET) and fMRI are almost universally

detected using some form of statistical mapping.  The statistical processes that ensue

(i.e. statistical parametric maps or SPMs) are usually characterised in terms of regional

excursions above some threshold and a p value is assigned to these excursions.  In this

paper we re-examine the nature of this statistical inference and ask 'what is the most

powerful way to proceed?', with special reference to high resolution data, such as that

obtained with fMRI.  The problem addressed, by the more advanced approaches, is that

of the multiple dependent comparisons embodied in the SPM.  This dependency (of one

voxel’s value on its neighbours) is a result of smoothness or autocorrelations in the data

(or more strictly the error terms).  Put simply the statistic at any voxel can be used as

the basis of statistical inference if, and only if, that particular region was predicted in

advance.  However if the alternate hypothesis was anatomically open (i.e. activations

have occurred somewhere), then we need to assess the statistics at all voxels

individually and simultaneously, whilst ensuring that the probability of a false positive

is less than the specified test level α.  In statistical terminology this is a multiple

comparisons problem.  At each voxel we have a null hypothesis of no activation.

Considering all voxels together we have a family of hypotheses and we wish to assess
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the omnibus hypothesis that all the voxel [null] hypotheses are true, whilst controlling

the probability of a false positive or a type 1 error.  There two forms of control over

family-wise type 1 error (FWE); weak and strong, which determine the level at which

departures from the omnibus hypothesis can be reported (see Holmes 1994 for a fuller

discussion).

   A test procedure controls FWE in the weak sense if the probability of false rejection

of the omnibus hypothesis is less than α.  A procedure with only weak control has no

‘localizing power’.  If the null hypothesis is rejected then all that can be said is that there

is some departure from the null hypothesis at some voxel[s].  Here the ‘level of

inference’ is the whole volume analyzed.  A procedure controls FWE in the strong

sense (at the voxel-level) if the probability of a false positive over any set of voxels, for

which the null hypothesis is true, is less than α, regardless of the truth of the null

hypothesis elsewhere.  This more stringent criterion gives localizing power: Voxels

identified by such a procedure may be declared as individually significant and the

inference is at the voxel-level.

   The simplest multiple comparisons procedure which maintains strong control over

FWE is based on the Bonferroni inequality:  Here the voxel-level p values are corrected

for the number of voxels.  However, for even mild dependencies between the voxels,

this method is excessively conservative.  This is important because, even in fMRI data,

physiological autocorrelations render nearby voxels correlated and a simple Bonferroni

correction becomes inappropriate.  The most successful solutions to the problem of

statistical inference in smooth spatially extended statistical processes are predicated on

the theory of Gaussian fields.  Early work was based on the theory of level crossings

(Friston et al. 1991) and differential topology (Worsley et al. 1992).  These approaches

control FWE strongly, allowing for inference at the voxel-level:  A corrected p value is
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assigned to a voxel using the probability that the observed voxel value, or higher, could

have occurred by chance in the volume analyzed.  There have been a number of

interesting elaborations at this level of inference [e.g. searching scale-space and other

high dimensional SPMs (e.g. Siegmund and Worsley 1994)] and results for many

statistics now exist (e.g. Worsley 1994).  The next development, using the theory of

Gaussian fields, was to use the spatial extent of a cluster of voxels  defined by a height

threshold (Friston et al 1994 see also Poline and Mazoyer 1993 and Roland et al.

1993).  These procedures control FWE strongly at the cluster-level, permitting

statistical inference about each cluster, and are based on the probability of getting a

cluster of the size observed (defined by a height threshold), or larger, in the volume

analyzed.  In this paper we introduce a third level, namely the set-level, which is based

on the probability of getting the observed number of clusters (defined by a height

threshold and an extent threshold) or more, in the volume analyzed.  This inference is

about the set of clusters (contiguous regions above some height and size thresholds) or

more simply about the excursion set.  Because there is only one ‘set’ there is no

multiple comparison problem at this level of inference.  The objective of this work was

to compare the relative power of these different levels of inference under different

conditions.  In the sense that all these inferences are based on corrected p values we

consider only the case where no a priori knowledge about the anatomy of the activations

is available.  We reiterate that if the activated region is predicted in advance the use of

the above ‘corrected’ p values is unnecessary and inappropriately conservative.  In this

instance we would recommend a simple Bonferroni correction for the number of

regions predicted.

The Theory of Gaussian Fields

  The results mentioned above, and described more fully below, derive from the theory

of Gaussian Fields.  The assumptions implicit in this approach are (i) that the SPMs are



6

reasonable lattice representations of underlying continuous Gaussian fields, (ii) that the

components of the fields have a multivariate Gaussian distribution and are wide sense

stationary and (iii) the height thresholds employed are high.  Wide sense stationary

simply means that the multivariate probability distributions of nearby points do not

change with position in the field.  This implies that spatial autocorrelations are invariant

across the field.  These are reasonable assumptions in neuroimaging as long as the

voxel size is small relative to the smoothness.  There has been some interest in revising

spatial extent approaches in the context of fMRI (where the voxel sizes are larger in

relation to resolution) using Monte-Carlo simulations and adjustments to the

smoothness estimators (e.g. Forman et al. 1995).  Usual estimates of smoothness (e.g.

Friston et al. 1991, Worsley et al. 1992) fail when the reasonable lattice assumption is

violated.  In our work we side-step this issue by simply interpolating the data to reduce

voxel size or smoothing the data to increase smoothness.  It is generally accepted that

the voxel size should be about half the full width half maximum (FWHM) of the

smoothness, or less, for the reasonable lattice assumption to hold.

   In statistical parametric mapping there is a caveat in reference to the multivariate

Gaussian assumptions.  The expressions presented below pertain to Gaussian fields (as

opposed to fields composed of statistics other than Z).  In many instances, the

alternative hypothesis is tested with a parametric map of the t statistic (i.e. SPM{t}).

The SPM{t} is usually transformed to a Gaussian field (i.e. SPM{Z}) using some

suitable transformation.  This 'Gaussianised' SPM{t} only approximates a true

SPM{Z} if the [effective] degrees freedom of the underlying t statistic are reasonably

high.  Fortuitously this is usually assured in single-subject fMRI and multi-subject PET

studies.  The good lattice and Gaussian assumptions can be further ensured by slight

spatial smoothing of the data, which, in addition, usually increases the sensitivity of the

ensuing analysis.
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   The high threshold requirement stems from the fact that many of the distributional

approximations used are asymptotic and are only exact as thresholds tend to infinity.  In

practice this means that the use of low thresholds (e.g. u <  1.64) should be avoided (or

at least validated using simulations).

Strong vs. weak control, levels of inference and regional specificity.

   There is a fundamental difference between rejecting the null hypothesis of no

activation at a particular voxel and rejecting the null hypothesis over the entire volume

analyzed.  As noted above the former requires the strongest control over FWE and the

latter the weakest.  One way of thinking about this difference is to note that if an

activation is confirmed at a particular point in the brain then, implicitly, the hypothesis

of an activation somewhere is also confirmed (but the converse is not true).  The

distinction between weak and strong control, in the context of statistical parametric

mapping, relates to the level at which the inference is made.  The stronger the control,

the more regional specificity it confers.  For example a voxel-level inference is stronger

than a cluster-level inference because the latter disallows inferences about any

component voxel.  In other words cluster-level inferences maintain strong control at the

cluster-level but only weak control at the voxel-level.  Similarly set-level inferences are

weaker than cluster-level inferences because they refer to the set of regional activations

but not any individual region or cluster in that set.  Procedures with the weakest control

over FWE assess only the omnibus hypothesis and have been referred to as 'omnibus'

tests (e.g. the γ2 test, Fox et al. 1989) and frame the alternative hypothesis in terms of

voxel-level effects anywhere in the brain.  These hypothesis are usually tested using all

the voxels above some threshold (e.g. exceedence proportion tests, Friston et al. 1991)

or use all the voxel values (e.g. quadratic tests, Worsley et al. 1995).  A weaker control

over FWE, or high-level inference, has less regional specificity but remains a valid way

of establishing the significance of an activation profile.  Intuitively one might guess that
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the weaker procedures provide more powerful tests because there is a trade-off between

sensitivity and regional specificity.  This is what we found using a power analysis (see

below).  In this paper we focus on the weaker hypotheses and consider voxel-level and

cluster-level inferences subordinate to set-level inferences.  This allows us to ask which

is the most powerful approach for detecting brain activations. 

   This paper is divided into three sections.  The first section describes the distributional

approximations used to make statistical inferences about a SPM and frames the results

to show that all levels of inference can be regarded as nested, special cases of a single

general probability (namely the probability of getting c, or more, clusters with k, or

more, voxels above height u, in a volume S of smoothness W).   The second section

describes the details and rationale behind the power analysis employed in the

subsequent section.  The final section deals with the relative power of voxel-level,

cluster-level and set-level inferences and its dependency on signal characteristics;

namely the spatial extent of the underlying hemodynamics and the signal to noise ratio.

Theory and distributional approximations

   In this section we introduce the basic results  from the theory of Gaussian fields that

are used to provide a general expression for the probability of getting any set of

clustered voxels.  We then show that voxel-level, cluster-level and set-level inferences

are all special cases of this general formation and introduce some special cases that have

not been considered before.

The general expression

   In what follows we assume that a D-dimensional SPM conforms to a reasonable

lattice representation of a Gaussian field of volume S voxels, and smoothness W.  For a
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Gaussian random field W is related to the full width at half maximum (FWHM) of the

resolution [W = FWHM(4ln2)-1/2].  Equivalently W = | Λ |-1/(2D) where Λ is the

covariance matrix of the field's first partial derivatives.  An excursion set is defined as

the set of voxels that exceeds some threshold u.  This excursion set comprises m

clusters each with n voxels.  At high thresholds m approximates the number of maxima

and has been shown to have a Poisson distribution (Adler 1981 Theorem 6.9.3 page

161).  

P(m = c)    ≈    λ(c,E{m}) = 1/c!  E{m}c  e-E{m} 1

where E(m) is the expected number of maxima (i.e. clusters), where (Hasofer 1978):

E{m}    ≈   S (2π)-(D + 1)/2  W-D  uD-1   exp(-u2/2) 2

The number of voxels n comprising a cluster is distributed according to:

P(n ≥ k) ≈ exp(-ßk2/D)

where: ß = [  Γ(D/2 + 1).E{m}/( S.Φ{-u) ) ]2/D 3

(Friston et al. 1994).  In this formulation n is a continuous variable measuring the

volume of a cluster in voxels.  Φ{-u} is the cumulative density function for the unit

Gaussian distribution and Γ denotes the gamma function.  With these results it is

possible to construct an expression for the probability of getting c, or more, clusters of

size k, or more, above a threshold u:
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PW(u,k,c) ≈ 1    −    
c − 1 

3 
i = 0 

4 

3 
j = i 

P ( m =  j) . 
j 

i .P( n $  k) i .P( n < k ) j − i 

≈ 1    −   
c − 1 

3 
i = 0 

 λ( i,  E{m}.P(n ≥ k)  ) 4

   This expression assumes that the m and n are independent (i.e.  the number of

clusters in a volume and their size are independent), which in turn depends on the

stationariness assumption.  A full derivation of this equation can be found in the

appendix.  Eq (4) can be interpreted, in an intuitive sense, in the following way:

Consider clusters as 'rare events' that occur in a volume according to the Poisson

distribution with expectation E{m}.  Now the proportion of these rare events that meet

the spatial extent criterion will be P(n ≥ k).  These criterion events will themselves

occur according to a Poisson distribution with expectation E{m}.P(n ≥ k).  The

probability that the number of events will be c or more is simply one minus the

probability that the number of events lies between 0 and c - 1  [i.e. the sum in Eq (4)].

   We now consider various ways in which Eq (4) can be used to make inferences about

brain activations.  In brief; if the number of clusters c = 1 then the probability reduces to

that of getting one, or more, clusters with k, or more, voxels.  This probability can be

used to estimate the p value for a single cluster of volume k.  This corresponds to a

cluster-level inference.  Similarly if c = 1 and the number of suprathreshold voxels k =

0, the resulting cluster-level probability (i.e. the probability of getting one or more

excursions of any volume above u) can be applied at the voxel-level.  In other words

the existing tests are special [limiting] cases of set-level inferences.  Note that k is a

continuous measure of the volume, although k is expressed in units of voxels, it

pertains to a continuous Gaussian field.
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Voxel-level inferences

   Consider the situation in which the threshold u is the statistic upon which we base our

inference.  In this instance, the size k, and number of clusters c, can only take the

values 0 and 1 (i.e. there is at least one point at or above threshold with an unspecified

size).  The corresponding probability PW(u,0,1) is the corrected p value for the voxel in

question where:

PW(u,0,1) ≈ 1 - exp(-E{m}) 5

by Eq (1) and because P(n > 0) = 1.  This, of course, is simply the corrected

probability based on the expected number of maxima as employed in the early days of

statistical mapping in PET (e.g. Friston et al. 1991) and elaborated using the expected

Euler characteristic as an alternative to E{m} (Worsley  et al. 1992).

Cluster-level inferences

   Consider now the case in which we choose to base our inference on spatial extent k.

k is defined only by specifying a height threshold U.  In this instance c can only take

the value 1 (i.e. there is at least one cluster of size k or more).  The corresponding

probability PW(U,k,1) is the corrected p value based on spatial extent (Friston et al.

1994):

PW(U,k,1) ≈ 1 - exp(-E{m}. P(n ≥ k)) 6

and has proved to be more powerful than voxel-based inference when applied to high

resolution data (see below).  
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Set-level inferences

  Now consider the instance where inference is based on cluster number c.  In this case

both height U and extent K threshold need to be specified before the statistic c is

defined.  The corresponding probability PW(U,K,c) is given by Eq (4) and is the

corrected p value for the set of activation foci reaching these joint criteria.  This level of

inference has not been routinely used in neuroimaging and one aim of this paper is to

evaluate its potential power.  Current tests are based on cluster-level inferences (i.e. c =

1).  Therefore we want to know whether the power of the analysis can be enhanced by

allowing c to be greater than one and, if so, what are the best thresholds to adopt.  This

is the key question addressed by the power analyses below.

A special case of set-level inferences - an 'Omnibus' test

   There is a conceptual relationship between set-level inferences and non-localising tests

based on the exceedence proportion (i.e. the total number of voxels above a threshold

U).  Exceedence proportion tests (e.g. Friston et al. 1991) and threshold-less quadratic

tests (Worsley et al. 1995) have been proposed that test for activation effects over the

volume analyzed in a spatially 'omnibus' sense.  These tests have not been widely used

because they have no localising power and do not pertain to a set of well defined

activations.  In this sense these tests differ from set-level tests because the latter do refer

to a well defined set of activation foci.  However in the limiting case of a small spatial

extent threshold k the set-level inference approaches an omnibus test:

PW(U,0,c) ≈ 1 -
c − 1 

3 
i = 0 

 λ( i,  E{m} ) 7

   This test simply compares the expected and observed number of maxima (or clusters

at high thresholds) in an SPM using the known Poisson distribution under the null
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hypothesis.  This is a remarkably simple test that could be considered alongside existing

'omnibus' tests (subject to the usual constraint of a relatively high height threshold)

A Power analysis

  In this section we describe the model upon which the power analysis was based and

how we derived expressions for power or sensitivity.  The specificity of a test is

defined as the probability of correctly rejecting the null hypothesis (i.e. the probability

of a true negative = 1 - α, where α corresponds to the probability of a false positive).

The sensitivity of a test is, conversely, the probability of correctly accepting the

alternative hypothesis for a given specificity.  A plot of sensitivity against α

corresponds to a receiver operator characteristic (ROC) curve.  Examples of these

curves will be provided below.   In order to determine the power of different tests

analytically it is necessary to define the exact nature of the signal implied by the

alternative hypothesis.  In this paper we consider a simple model (first presented in

Friston et al. 1994) which assumes that the activations are spatially distributed with no

predilection for one anatomical area or another.  Although this model is used for

mathematical convenience it is not physiologically unreasonable and embodies an

ignorance of where the activations will be found.  More specifically it models

activations that are distributed throughout the volume and the power analysis below

applies to this, and only this, model.  Different models (i.e. a single activation focus)

would yield different results.  In this paper we focus on a 'distributed' model, where

we expect set-level inferences to be more sensitive.

   Suppose the 'signal' comprises Gaussian foci, of random height, distributed

continuously throughout the volume.  The shape of the signal is characterised by the

width (ƒ) of these foci expressed as a proportion of W.   This signal can be modelled by

a continuous ensemble of kernels with randomly distributed heights, or equivalently by
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convolving an uncorrelated Gaussian random process with a kernel of the same height.

Let the signal (following convolution with the point spread function) have a standard

deviation σ, where σ corresponds to the amplitude of the measured signal.  Following

Friston et al. (1994) the threshold and smoothness for the process under the alternative

hypothesis are:   

u* = u. (1 + σ2)-1/2

W* = W .[ (1 + σ2)/(1 + σ2/(1 + f2)) ] 1/2  8

   The specificity of any test based on u, k and c is simply one minus the probability α

of rejecting the null hypothesis when the null hypothesis is correct, where:

α = PW(u,k,c) 9

   The sensitivity (or power) γ(α), for a given specificity (1 - α), is the probability of

accepting the alternative hypothesis when it is correct.  Under the alternative hypothesis

γ(α) = PW*(u*,k,c) 10

   By varying u, k or c we obtain a sensitivity as a function of α.  This is the ROC

curve.  The sensitivity at a particular specificity  [e.g. γ(0.05)], or the area under this

curve, indexes the relative power of the test under consideration.  In what follows we

will compare the power of voxel, cluster and set-level inferences for signals of different

sizes to identify the most powerful sorts of inference.
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Voxel-level inferences

   In this instance the only parameter that can be varied is the threshold u (i.e. k = 0 and

c = 1).  An example of an ROC curve for voxel-level inferences is seen in Figure 1 (top

panel).  Unless otherwise stated, in this and subsequent examples;  σ = 0.3, ƒ = 2, S =

64D, D = 3 and W corresponded to an isotropic smoothness of 3 voxels at FWHM.

The influence of signal parameters on power is shown in the lower panel by plotting

γ(0.05) as a functions of amplitude σ and size ƒ.  It can be seen that power is a strong

function of signal amplitude σ for all sizes of signal.  It is also evident that higher

thresholds are slightly more powerful, when the signals are smaller than the resolution

(ƒ < 1).  High resolution fMRI and optical imaging data suggest that hemodynamic

changes are typically expressed on a spatial scale of 5 - 8mm.  This is around or below

the resolution of PET (especially when the data are smoothed), however it is greater

than the resolution of fMRI data, which, before any interpolation or smoothing, can be

equated with voxel size (e.g. 3mm).  In other words in PET ƒ < 1 and in fMRI ƒ > 1.

This distinction is important and has profound implications for the sensitivity of tests

considered below.

   From the point of view of voxel-level inferences, power increases as ƒ decreases.

Therefore power can be increased by smoothing the data (i.e. increasing W or,

equivalently, decreasing ƒ).  This is a fundamental observation and it is worth noting

that high degrees of smoothing have been employed in PET for many years.  It is

important to note that this also holds for fMRI when, (and only when,) using voxel-

level inferences.  This argument discounts partial volume effects in the sense that the

model adopted here, for the alternate hypothesis, does not include the impact on signal

amplitude σ of smoothing to decrease ƒ.  This impact can be marked if the signals are

small in relation to the smoothing kernel employed.
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Cluster-level inferences

   In this section we re-iterate a previous observation (made in Friston et al. 1994) that

cluster-level inferences are generally more powerful than voxel-level inferences, with

the exception that voxel-level inferences are more powerful when ƒ < 1 (as is often the

case for PET).  It is useful to remember that voxel-level inferences are a special case of

cluster level inferences that obtain when k = 0.  Figure 2 (top panel) shows the ROC

curves for a cluster-level inferences at threshold U = 2.8 (solid line).  This curve was

calculated by varying the cluster threshold k in Eq. 9 and Eq. 10 with u = U.  The

equivalent ROC curve from the previous analysis is also shown (broken line).  The

lower panel of Figure 2 demonstrates the effect of different signal sizes (for a fixed

amplitude of σ = 0.3).  This represents a plot of γ(α) as a function of u and ƒ.  It is

immediately obvious that for small signals (i.e. low resolution) the most powerful tests

obtain when the threshold is high and k tends to zero.  A vanishingly small k

corresponds to PW(u,0,1), a voxel-level inference.   Conversely when ƒ > 1 the more

powerful tests are associated with a low height threshold u and implicitly a high extent

threshold k.  In practical terms these result suggest that voxel-level inferences are best

in PET and cluster-level inferences should supervene in fMRI.  This conclusion appears

to be consistent with the anecdotal experience of those developing fMRI analysis

strategies.

Set-level inferences

   In this section we observe that set-level inferences are generally more powerful than

cluster-level inferences and that this hold, irrespective of relative signal size ƒ.  We then

proceed to ask what is the optimum extent threshold for set-level inferences.  In brief

we observe that for ƒ < 1, small values of k are most powerful and conversely when ƒ

> 1, larger values are appropriate.



17

   Figure 3 shows the ROC curve that obtains by varying the number of clusters c for a

fixed threshold U = 2.8 and an extent threshold K = 16 (the remaining parameters are

the same as in the preceding sections).  It can be seen that the set-level inference (solid

line) is much more powerful than either the cluster-level (dashed line) or voxel level

(broken line) inferences.  To determine whether there are any special cases (c = 1) of

the set-level test (i.e. cluster or voxel-level) that are more powerful than the general case

(c > 1) we computed γ(0.05) by allowing k to vary for different values of u and c.  The

lower panels of Figure 3 shows the result of this analysis and demonstrate that the most

powerful tests result when c > 1 (i.e. set-level) over the range of thresholds u (and

implicitly k) employed.  This is the case for both low and high resolution data (left and

right lower panels respectively).  It can be seen that when c = 1 the best threshold is a

high one when ƒ < 1,  and a low one when ƒ > 1.  This is the observation made in the

previous section.  The main conclusion here however is that set-level inferences (c > 1)

are generally the most powerful for the model of signal adopted in this analysis.

   It now remains to identify the thresholds that give the most powerful set-level

inference for distributed signals.  For this analysis we have used A (the area under the

ROC curve) for a range of parameters (see the upper panel of Figure 4).  Intuitively, for

a fixed height threshold and ƒ > 1, one might conjecture that the extent threshold should

be designed to filter out clusters that are due to noise, but should be low enough to

catch all the activations.  If, on the other hand, the signal size is less then the resolution

(ƒ < 1) it is not possible to discriminate between foci due to signal and noise and the

most powerful approach is that with the weakest control (i.e. an omnibus test based on

the total number of maxima when k = 0).  Roughly speaking this is what we found.

The lower panel in Figure 4 shows A as a function of ƒ and k (for a threshold u = 2.8).

The solid vertical line (in white) is the expected number of voxels per cluster E{n}

under the null hypothesis [ E{n} = Γ(D/2 + 1).ß-D/2  see Friston et al. (1994)].  It can

be seen that when the signal is greater than the resolution (ƒ > 1) the most powerful set-
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level inferences obtain with extent thresholds that are about the same size as, or larger

than, the expected cluster size due to noise (E{n}).  Conversely when the signal is

smaller than the resolution (ƒ < 1) the most powerful extent threshold is small.  More

simply; the power is maximized when the extent threshold matches, roughly, the size of

the activation. These results suggest that for PET (ƒ < 1) a small extent threshold is

most appropriate whereas for fMRI an extent threshold of at least E{n} should be used.

This conclusion was verified by repeating this analysis for a range of signal amplitudes

and height threshold (results not shown).  We do not consider a more exhaustive

characterization of the optimum threshold in this paper because (i) in real life signals

may vary greatly in their spatial extent (i.e. there is no single optimum) and (ii) regional

specificity should not always be subordinated to sensitivity.  For example it may be

more biologically meaningful to make a less powerful inference about a small set of

large activation foci that have some clear relationship to anatomical or functional brain

systems.  This consideration relates to the interpretation of the set of clusters:

The interpretability of set-level inferences

   Are set-level inferences really useful?  Clearly if one obtained 6 clusters with a p value

of less than 0.05, and 4 clusters would have been expected by chance (i.e. E{m} = 4)

than it would be inappropriate to infer that the clusters observed represented a

distributed effect.  In this instance the set-level inference can only be used in an

'omnibus' sense (i.e. the stimulation was sufficient to activate the brain in some way,

but we cannot impute any regionally defined effects).  Conversely consider the case

where 10 clusters were seen (at p < 0.05) and only 2 clusters where expected under the

null hypothesis.  In this case it would be reasonable to equate the observed set of

clusters with a distributed system activated by the task in question.  This situation

distinguishes set-level inferences from omnibus tests and highlights their potential

usefulness.  The key issue here is the critical number of clusters relative to the number
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expected by chance (i.e. cα relative to E{m}, where PW(U,K,cα) = α).  This ratio is a

strong function of the thresholds defining the clusters (i.e. U and K).  Generally higher

height thresholds give higher ratios:  For example Figure 5 shows the values of cα,

E{m} and their ratio for S = 323 voxels, D = 3 and W equivalent to a FWHM of 3

voxels.  It can be seen that for U > 3.2 the ratio is sufficiently high to support an

interpretation of the clusters obtained in terms of a distributed activation  profile.  The

stepped nature of the curves in Figure 5 reflects the fact that the critical values of c are

discrete numbers.  The main point here is that set-level inferences should be qualified

by noting the expected number of clusters that would have occurred by chance.  To

characterize a set as representing a 'distributed system'  requires the observed number

of clusters to greatly exceed the expected number.  This will only be the case when

higher thresholds are employed,  otherwise the set-level inference confers no regional

specificity.  This argument is about how one interprets a significant set of clusters (with

a small p value).  Some sets may be significant, but the number of clusters may only

marginally exceed that expected by chance; other sets may be equally significant but

comprise many more clusters than expected under the null hypothesis.   Only in the later

case can the observed set of clusters be interpreted, in any meaningful way, as a set of

true activations.

Discussion

    We have addressed the sensitivity of various tests for activation foci in the brain by

considering a hierarchy of test,  framed in terms of the level of inference (voxel-level,

cluster-level and set-level).  All these nested levels of inference are based on a single

probability of obtaining c, or more, clusters with k, or more, voxels above a threshold

u [PW(u,k,c)].  The higher the level of the inference the weaker the hypothesis tested in

terms of regional specificity.  The weakest case of set-level inferences are based on the

total number of maxima above a threshold (i.e. k = 0) and correspond to the old
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'omnibus' tests used in PET.  Cluster-level inferences are a special case of set-level

inferences that obtain when the number of clusters c = 1.  Similarly voxel-level

inferences are special cases of cluster-level inferences that result when the cluster has an

unspecified volume (i.e. k = 0).

Levels of inference and power

   On the basis of an analytical power analysis we concluded that set-level inferences are

generally more powerful than cluster-level inferences and cluster-level inferences are

generally more powerful than voxel-level inferences for distributed signals   For all

levels of inference the size of the underlying signal ƒ (relative to resolution W)

determines the most powerful threshold to adopt.  For set level inferences if f > 1 (e.g.

fMRI) then the optimum extent threshold should be greater than the expected number of

voxels for each cluster under the null hypothesis.  If ƒ < 1 (e.g. PET) the extent

threshold should be smaller if the most powerful test is desired.  For cluster level-

inferences of ƒ > 1 (e.g. fMRI) then height threshold u should be as low as possible

(without violating the assumptions of high thresholds);  We would recommend a value

of around 2.4.  If on the other hand ƒ < 1 (e.g. PET) then a high threshold is more

powerful (e.g. 3.6).  For voxel-level inferences the most powerful test obtain when ƒ <

1.

   We envisage that the main advantage of set-level inferences will be found in fMRI.

We have repeatedly observed results that comprise a set of activation foci that are very

sensible in neurobiological terms, however no single cluster is large enough, and no

voxel is high enough to survive a correction for the large volumes of high resolution

data analyzed.  It is hoped that set-level inferences will provide more latitude in making

inferences about these sets of activation foci.

   The power analyses presented below examine sensitivity as a function of the various

thresholds employed to define the excursion set.  This is conceptually distinct from
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maximizing sensitivity by smoothing the data in space (e.g. Worsley et al 1994) or time

(e.g.  Friston et al 1995) by appeal to the matched filter theorem.  The results presented

here pertain to inferences about excursion sets that could be applied to four dimensional

processes that include a dimension of 'smoothing' or indeed a dimension of

'thresholds' (i.e. a search of smoothing or scale-space or an explicit search through

threshold-spaces).

The nature of the 'signal'.

   The analyses in this paper are predicated on a particular model of 'signal'.  One

important aspect of this model is that the underlying hemodynamic responses are

distributed throughout the volume analyzed.  We appeal here to neurobiology to

establish the validity of this model, in the sense that most brain processes are

implemented by the integration of many functionally segregated areas, that are

anatomically distributed.  This balance between topographic segregation and functional

integration is probably one of the key characteristics of complex biological systems like

the brain.  It should be noted however that many experiments discount functional

integration and attempt to elicit activity in one area that is functionally specialised for a

single sensorimotor or cognitive process.  In this instance the signal may well comprise

one (or a small number of) foci and set-level inferences may not be appropriate.  In

defence of set level inferences most functional anatomy studies of cognitive function

show that many separable cognitive components are instantiated in distributed neuronal

systems and therefore the set of activation foci that ensue are probably more

comprehensive descriptors of the evoked responses.  The second point that can be made

here is that set-level inferences do not preclude lower level inferences.  We develop this

point below.
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Which level of inference

   When confronted with the task of characterising an unknown and probably distributed

activation profile set-level inferences should clearly be considered, provided the implicit

loss of regional specificity is appropriate.  However voxel-, cluster- and set-level

inferences can be made concurrently.  For example using thresholds of u = 2.4 and k =

6 allows for a set-level inference in terms of the clusters reaching criteria.  At the same

time each cluster in that set has associated with it a corrected p value based on its size

and the cluster-level inference.  Similarly each voxel in that cluster can be identified

with a corrected p value based on the voxel-level inference (i.e. its Z value).  The nested

taxonomy presented here allows for all levels to be reported, each higher level

providing protection for the lower level.  As long as the level of inference is clearly

specified we can see no reason why different levels cannot be employed in

characterising the significance of the results obtained.  If the inferences are made in a

step-down fashion there should be no increase in FWE.  Put simply if the number of

clusters is significant, then those clusters that are significantly large can also be

identified.  Inferences about voxels within significantly large clusters can then be made

with impunity (this, of course, does not preclude the use of any one level on its own).

An example of such a characterization is seen in Figure 6 which represents a standard

(SPM96) analysis of fMRI data.  The experimental design and construction of the

SPM{Z} is not important here, suffice to say that the SPM reflects hemodynamic

activations due to intrinsically generated movements (relative to cued movements).  The

key thing to focus on, is the tabular characterization of significant activations.   u and k

are, here, the user defined height and extent thresholds.  c is the number of observed

clusters, k is the number of voxels in each cluster and Z are maxima in these clusters.

On the left the set-level inference suggests that the 12 clusters that comprise the

activation profile are conjointly significant (p < 0.001).  Within this set some regions

can be considered significant at the cluster-level (e.g. the cluster with a maximum at -
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24, 45, 12 mm - p < 0.034) whereas others are not  (e.g. the last cluster with 24

voxels).  The last cluster is only significant at a set-level.  i.e. when considered in the

context of the remaining 11 clusters.  In a similar vein, the voxel at -24, 45, 12 can be

considered significant in its own right because the voxel-level p value is p < 0.001

Other voxels in this cluster, although part of a significant cluster, are not significant at

the voxel-level (e.g. the voxel at -25, 32, 12 mm p = 0.13).  This example highlights

the potential benefit of set-level inferences; in that the entire activation profile can be

described anatomically and characterised as significant, therein providing a complete

and comprehensive picture of the activations, without having to omit activations that fail

to reach cluster- or voxel-level significance.

Conclusion

   We have reviewed current methods of inference using the theory of Gaussian fields in

statistical parametric mapping and introduced a third level of inference that may be

useful in characterising distributed activation with functional neuroimaging.
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Appendix

This appendix presents the derivation of Eq(4).  Let q = E{m} and p = P(n > k), then

4 

3 
j = i 

P ( m =  j) . 
j 

i .P( n $  k) i .P( n < k ) j − i 

=
4 

3 
v = 0 

P ( m =  v + i ) . 
( v + i ) ! 
v ! .i! 

p i ( p − 1 ) v 

where v = j - i.  Substituting the Poisson form for P(m = v+I),

=    
4 

3 
v = 0 

q v + i e − q 

v ! .i! 
p i ( p − 1 ) v     =     

1 
i ! 

. ( p.q) i e − q 
4 

3 
v = 0 

( q ( 1 − p ) ) v / v ! 

noting that the sum on the right is a Taylor expansion of eq(1-p) we have,

=
1 
i ! 

( p.q) i e − pq     =     λ ( i , pq) 

and finally,

PW(u,k,c) ≈ 1    −   
c − 1 

3 
i = 0 

 λ( i,  E{m}.P(n ≥ k)  )
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Figure Legends

Figure 1

Top panel:  ROC curve for voxel-level inference PW(u,0,1) where W corresponds to a

FWHM of 3 voxels and the volume S = 643.  Signal amplitude σ = 0.3 and width ƒ =

2.  The dotted line corresponds to α = 0.05.  In this, and subsequent ROC curves,

values of the threshold used to vary specificity are provided on the curves.  Lower

panel:  3-dimensional plot of power (α = 0.05) as a function of signal amplitude σ and

width ƒ for the same smoothness and volume.

Figure 2

Top panel:  ROC curve for cluster-level inference PW(2.8,k,1) where W corresponds to

a FWHM of 3 voxels and the volume S = 643.  Signal amplitude σ = 0.3 and width ƒ =

2.  The broken line corresponds to the equivalent voxel-level ROC curve of the

previous figure.  Lower panel:  3-dimensional plot of power (α = 0.05) as a function of

signal width ƒ and threshold u, for the same smoothness, volume and σ.

Figure 3

Top panel:  ROC curve for set-level inference PW(2.8,16,c) where W corresponds to a

FWHM of 3 voxels and the volume S = 643.  Signal amplitude σ = 0.3 and width ƒ =

2.  The dashed and broken lines corresponds to the equivalent cluster and voxel-level

ROC curves of the previous figures respectively.  Lower panels:  3-dimensional plot of

power (α = 0.05) as a function of cluster number c and threshold u, for the same

smoothness, volume and σ.  Left ƒ = 0.2 and right ƒ = 2.
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Figure 4

Top panel:  ROC curve for set-level inference PW(2.4,4,c) where W corresponds to a

FWHM of 3 voxels and the volume S = 643.  Signal amplitude σ = 0.2 and width ƒ =

2.  The shaded area corresponds to A and is a reflection of power over all specificities.

Lower panels: Image format representation of A as a function of signal width ƒ and

extent threshold k, for the same smoothness, volume and σ.  Vertical line = the

expected number of voxels per cluster under the null hypothesis (E{n}).  Horizontal

line ƒ = 1.  The minimum of this grey scale is 0.59 and the maximum is 0.84.

Figure 5

   The critical (p < 0.001 = α) cluster number cα, the expected number E{m} and their

ratio as a function of threshold U for a process of S = 323, D = 3 and W equivalent to a

FWHM of 3 voxels.

Figure 6

Top: SPM{Z}:  This is a maximum intensity projection of the SPM{Z}.  The display

format is standard and provides three views of the brain from the front, below and the

left hand side.  Data are presented only for clusters and regions that survive the height

and extent threshold detailed in the Figure's footnotes.  The grey scale is arbitrary and

the space conforms to that described in the atlas of Talairach and Tournoux (1988).

Lower panel:  Tabular data characterising the activation profile in terms of a set-level

inference, or p value, based on the number of clusters c, for each cluster a p value

reflecting the cluster-level inference based on the number of voxels comprising the

cluster k and p values corresponding to voxel-level inferences based on the Z score of

selected maxima within each cluster.  The uncorrected p value and location (x, y, z mm)

of these voxels are also provided.  The footnotes specify the thresholds used and

parameters relating to this particular analysis.


