
32 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 1, JANUARY 1999

Global, Voxel, and Cluster Tests, by Theory and
Permutation, for a Difference Between Two

Groups of Structural MR Images of the Brain
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Abstract—We describe almost entirely automated procedures
for estimation of global, voxel, and cluster-level statistics to test
the null hypothesis of zero neuroanatomical difference between
two groups of structural magnetic resonance imaging (MRI)
data. Theoretical distributions under the null hypothesis are
available for 1) global tissue class volumes; 2) standardized linear
model [analysis of variance (ANOVA and ANCOVA)] coefficients
estimated at each voxel; and 3) an area of spatially connected
clusters generated by applying an arbitrary threshold to a two-
dimensional (2-D) map of normal statistics at voxel level. We
describe novel methods for economically ascertaining probability
distributions under the null hypothesis, with fewer assumptions,
by permutation of the observed data. Nominal Type I error
control by permutation testing is generally excellent; whereas
theoretical distributions may be over conservative. Permutation
has the additional advantage that it can be used to test any
statistic of interest, such as the sum of suprathreshold voxel
statistics in a cluster (or cluster mass), regardless of its theoretical
tractability under the null hypothesis. These issues are illustrated
by application to MRI data acquired from 18 adolescents with
hyperkinetic disorder and 16 control subjects matched for age
and gender.

Index Terms—Brain, imaging/mapping, probability distribu-
tions, statistics.

I. INTRODUCTION

H UMAN brain research using magnetic resonance imag-
ing (MRI) is often motivated by an interest in one

form or another of the alternative hypothesis that there is an
anatomical difference between two groups of subjects. The
distribution of the observed difference under this alternative
hypothesis could be explicitly modeled (see [1] for an example
of this approach to activation mapping in functional MRI)
but it is more usual to resort to consideration of the null
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hypothesis that there is zero difference between groups. Two
related questions then have to be addressed.

• What measure(s) of difference between two groups are
likely to be most informative about departure from the
null hypothesis?

• How can we ascertain the distribution of a potential test
statistic under the null hypothesis?

In relation to the first of these questions, we here consider
three types (or levels) of test statistic that can be estimated
from two groups of structural MRI data. The first (global)
type is simply a measure of the difference between groups
in whole brain volume of any one of the three main tissue
classes (grey matter, white matter, or cerebrospinal fluid). The
second (voxel) type is a measure of the difference between
groups in volume of a given tissue class at the level of a
single voxel. The third (cluster) type is a measure of the
difference between groups obtained by arbitrarily thresholding
maps of a voxel test statistic and considering the properties
of the spatial clusters of suprathreshold voxels that result.
We will deal with two cluster statistics in particular: 1) the
two-dimensional (2-D) area of a suprathreshold cluster and 2)
the sum of suprathreshold voxel statistics, or mass, of a 2-D
cluster. (Two other possible types of test statistic would be
region of interest (ROI) volume measurement or a systems-
level measure of multivariate difference between two groups
[2]; however, these approaches are not discussed further here.)

Global statistics seem unlikely to be especially sensitive
unless the anatomical difference between groups is diffuse.
Voxel statistics are potentially more sensitive to focal dif-
ferences between groups, but they will entail a much larger
number of tests. In order to avoid an unacceptable number
of false positive or Type I errors in assessment of a group
difference at voxel level, it is therefore customary to adopt
a very stringent criterion for statistical significance [3]. Typ-
ically, voxel statistics must have a probability under the null
hypothesis, or value, in the order of 10 or less to be
regarded as significant. This inevitably increases the risk of
false negative or Type II error compared, say, to a test at
the conventional probability threshold of . Voxel
statistics also have the disadvantage of neglecting the spatially
coordinated nature of imaging data. Thus, each voxel is tested
independently of its neighbors, despite prior knowledge that
important group differences in regional anatomy may well be
expected to extend over several spatially contiguous voxels.
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As Poline and Mazoyer first demonstrated in the context of
functional brain-image analysis [4], these problems associated
with voxel tests can be largely circumvented by testing at
cluster level. The number of clusters to be tested is generally
far fewer than the number of voxels, allowing more relaxed
probability thresholds and reduced Type II error rates for a
given number of false positive tests. Clusters can generally
also be regarded as independent events under the null hypoth-
esis, unlike voxels, which will be correlated under the null
hypothesis at least to the extent that the image is smoothed
by the point spread function of the scanning instrument. If
strong Type I error control is required, therefore, a Bonferroni
correction of the critical value for a test at each cluster is
both appropriate and straightforward to implement [4]. Finally,
cluster area is generally a more sensitive measure of regional
cerebral blood flow changes in simulated positron emission
tomography (PET) data than a global test [4], and often more
sensitive than a voxel test [5].

The only major problem associated with use of cluster size
as a test statistic seems to relate to the (second) question of
how best to ascertain its distribution under the null hypothesis.
There are well-established theoretical approximations for the
null distributions of many global and voxel statistics, but the
issue is more controversial for cluster size. Several groups have
adopted Monte Carlo procedures to sample the distribution of
cluster size in images simulated under the null hypothesis [4],
[6], [7]. Simulation necessitates making some assumptions,
usually about the distribution of the voxel statistic and the
spatial autocorrelation or smoothness of the voxel statistic
image, under the null hypothesis. The null distribution of
cluster area is conditional on both the smoothnessof
the statistic image and the size of thresholdapplied at
voxel level. Therefore, cluster size distributions reported on
the basis of Monte Carlo simulations are only appropriate for
testing images which happen to have and identical to
the arbitrary smoothness and voxel threshold of the simulated
data [8], [9].

Friston et al. [5] derived an exponential form for the null
distribution of cluster size which can be more generally used
to estimate the probability of a cluster as a function of the
smoothness, voxel threshold, and dimensionalityof any
statistic image (see below for greater detail). However, as these
and other authors have commented [10], [11], this distribution
is derived from results in Gaussian field theory that are only
exact in the limit of very high thresholds, i.e., (assuming
the voxel statistic has a standard normal distribution). This is
unfortunate because a test of cluster size is likely to be most
useful in detecting relatively large sets of spatially connected
suprathreshold voxels that can only arise if the threshold
applied at voxel level is fairly low, i.e., [4].

One of the objectives of the present study was to develop
methods for ascertaining the null distributions of global,
voxel, and cluster statistics by permutation procedures and
to crossvalidate these permutation tests by comparison to
the corresponding tests derived from normal theory. The
basic principles of permutation testing are simple and well
established [12]–[16]. Arguably, the most salient advantage
of permutation testing in general is that it is applicable to

any test statistic of interest, not just the subset of potentially
interesting statistics with theoretically tractable distributions
under the null hypothesis. Furthermore, since the permutation
distribution is ascertained directly from the observed data, the
critical values for testing will be appropriate for arbitrary prop-
erties of the observed data, such as image smoothness, which
might prohibit appropriate use of critical values derived from
prior Monte Carlo simulations. The advantages of permutation
testing for functional brain-image analysis were first proposed
by Blair et al. [17] and have since been widely recognized
[2], [18]–[21]. However, to the best of our knowledge, this
study represents the first comparative appraisal of permutation
tests in structural brain-image analysis. It is also the first study
to validate permutation tests at cluster level in any imaging
modality.

II. M ETHODS and MATERIALS

A. Subjects

The patient group comprised 18 children (15 boys, 3 girls)
with a mean age of 10.4 years and mean I.Q. of 99 (SD 14.9)
who were attending the Child Psychiatry Department of the
Maudsley Hospital, London, for treatment of hyperkinetic
disorder (HD) diagnosed according to standard operationalized
criteria [22]. HD is a child psychiatric syndrome characterized
by inattentiveness, distractibility, and hyperactivity and is
associated with delayed development of language and motor
skills. Previous structural-imaging studies of HD, or the re-
lated syndrome of attention-deficit hyperactivity disorder, have
identified grey matter volume deficits in frontal lobes and basal
ganglia. For a review see [23].

The control group comprised 16 psychiatrically normal
children (15 boys, 1 girl) with a mean age of 10.3 years who
were the siblings of children receiving outpatient treatment at
the same hospital. There was no significant difference between
the groups in age, head circumference, height, or weight. Nine
children in the patient group and one child in the control group
were left handed.

Informed consent to participate in the study was given by
the parents of each subject. The study was approved by the
Ethics Committee of the Bethlem Royal and Maudsley NHS
Trust.

B. Image Acquisition

Dual-echo fast-spin echo (FSE) MRI data were acquired
at 1.5 T in the sagittal plane parallel to the interhemispheric
fissure using a GE Signa system at the Maudsley Hospital:
repetition time TR s, time to first echoTE ms,
time to second echoTE ms, field of view cm,
image matrix , in-plane resolution mm,
number of interleaved slices , slice thickness mm,
number of signal averages . Head movement was limited
by foam padding within the head coil and a restraining band
across the forehead.

This acquisition protocol represents each of 50 sagittally
orientated brain volumes, or slices, by a pair of images: a
proton density PD-weighted image acquired atTE and a

-weighted image acquired atTE . Since the time interval
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between the two echos is only 80 ms, we neglect the possibility
of misregistration of the image pair due to subject motion
and assume that the two images differently represent an
anatomically identical volume of the brain.

C. Segmentation of Extracerebral Voxels

The first step in image processing is segmentation of voxels
representing extracerebral tissue, such as bone and skin. This
is done by applying a computational algorithm, previously
described and validated in detail [24], to the PD-weighted
dataset for each subject. Briefly, the algorithm uses a linear
scale-space set of features obtained from derivatives of the
Gaussian kernel. Application of the second-order derivative
(the Laplacian) at three different scales results in measures
of the local grey-level curvature of the signal intensities. The
first-order derivative feature represents the image edges and
its inverse is applied as a binary mask to a combined image
of second-order derivative features such that the extracortical
cerebrospinal fluid is effectively circumscribed. A grey-level
histogram analysis of the resulting image sets a lower threshold
for the data volume and a binary mask is obtained in each
slice of the image. After removal of small islands of data
to improve computational speed, the largest three-dimensional
(3-D)-connected object in the data volume is found and is
assumed to be the brain. This binary image of the brain is
then used to select voxels of the FSE dataset representing
neural tissue (including cerebrospinal fluid) and to set to zero
all voxels representing extracerebral tissue. The process is
entirely automated.

D. Probabilistic Morphometry

The next step is estimation of the volumes of grey matter
, white matter , and cerebrospinal fluid repre-

sented at each voxel, and over all intracerebral voxels, in each
individual FSE dataset.

Let denote the number of intracerebral voxels in a single
dual-echo image. At theth voxel we have
a pair of physical measurements denotedPD and which
we can refer to collectively as the observed feature vector

. On the basis of these physical data we can derive the
probabilities that theth voxel would be correctly classified as
representative of each of the three mutually exclusive tissue
classes of interest as follows [25], [26]:

PD
PD PD

PD
PD PD

PD PD
(1)

The parameters of this polychotomous logistic discriminant
function are estimated by maximum

likelihood from a relatively small subsample or training set
of voxels ( 1% of all intracerebral voxels) expertly selected
from each image as representatives of each tissue class. The
probabilities of class membership given the feature vector
observed at theth voxel
are then simply computed by substituting theth PD- and T2-
weighted signal intensities into the trained or parameterized
discriminant function. Repeating this substitution over all
voxels in the image generates a set of three maps, representing
the probability of each voxel in the image belonging to each of
the three tissue classes. Based on previous results, we equate
these probabilities to the proportional volumes of each tissue
class in the often heterogeneous volume of tissue represented
by each voxel [25]. For example, if , we may
say that 80% of the brain tissue represented by theth voxel is
grey matter. The absolute volume of grey matter represented
is simply where and denote the three
dimensions of voxel size in millimeters. Absolute volume of
grey matter estimated over the whole image is

(2)

Substituting voxel probabilities or
in (2) estimates total image volumes for white matter and
cerebrospinal fluid, respectively.

E. Registration and Smoothing in Standard Space

The final step in image processing, prior to estimation and
testing of group differences at voxel and cluster levels, is
registration of the three probability maps (one for each tissue
class) obtained from each individual image in the standard
space of Talairach and Tournoux [27].

To do this, a template image was first constructed by
proportional rescaling of a subset of five PD-weighted images
from the control group. Using AFNI software [28] anatomical
landmarks were identified, including the anterior and posterior
commissures and lateral, superior, and inferior convexities of
the cerebral surface. The distances between landmarks were
then linearly rescaled to approximate each individual image to
the size and shape of the reference brain depicted in a standard
stereotactic atlas [27]. The five transformed images were then
averaged to produce a single template image in standard space.

The affine transformation which minimizes the sum of
absolute grey level differences between each (of )
individual PD-weighted images and the template image was
then identified by the Fletcher–Davidon–Powell algorithm
[21], [29] and this individually estimated transformation matrix
was applied in turn to each of that subject’s three probability
maps to register them in standard space.

To accommodate individual variability in anatomy and
error in spatial normalization, all probability maps were then
smoothed by convolution in the Fourier domain with a 2-D
Gaussian filter with variance mm or full width at half
maximum voxels.

We note that this procedure does not represent a unique so-
lution to the problem of coregistering several MRI datasets in a
standard space. It would be equally possible to adopt another
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stereotactic system, to effect registration of each individual
dataset in standard space by nonlinear transformation and/or
to apply a different filtering regime to the data. But however
the data are preprocessed, it is probably advisable to consider
several alternative methods of testing the null hypothesis of
zero between-group difference, as described in detail below.

F. Estimation of Voxel Statistics

Following registration of the three probability maps gen-
erated from each individual MRI dataset in the same space,
we can estimate the difference between groups in proportional
volume of a given tissue class by fitting a linear model at
each voxel.

In matrix notation, linear models are generally of the form

(3)

where is an vector of response or dependent
variables, is a (design) matrix of constants, is
a vector of parameters, andis a vector whose
elements are independent identically and normally distributed

for . The standard errors
of the parameters are the diagonal elements of the matrix

, where denotes transposition and denotes
inverse of a matrix [30].

The simplest such model we will consider is a one-way
analysis of variance (ANOVA) which can be written for a
single observation of grey matter volume as follows:

(4)

where is the proportional volume of grey
matter estimated at theth voxel for the th individual in
the th group with or
and , is overall mean at theth voxel,

is the mean of the th group at the th voxel, and
denotes a residual quantity unique to the

th member of the th group at the th voxel. (Note that
now denotes the number of intracerebral voxels in standard
space for which we have proportional volume estimates,
not the number of intracerebral voxels in an individual image
as previously.)

To estimate the parameters we construct a
design matrix , the first column of which is a vector of ones
and the second column of which is a dummy variable coding
membership of the control group by 1 and membership of the
patient group by 1. Least squares estimates of the parameters
are then given by .

It can be shown [31] that the test statistic

SE
(5)

where SE is the standard error of is equivalent to the
familiar statistic

(6)

The advantage of working with rather than is that it is
straightforward to adjust for the possibly confounding ef-
fects of other independent variables by adding the appropriate
columns to the design matrix. For example, in this study, we
wished to estimate the additive effect of group membership
after controlling for age, gender, handedness, and absolute
volume of a given tissue class over the whole image. Again
taking grey matter to be the dependent variable, we can write
this analysis of covariance (ANCOVA) model

(7)

where and denote the age,
handedness, gender, and image volume of grey matter in
the th individual from the th group. Both ANOVA and
ANCOVA models can be generalized to take proportional
volumes of white matter or CSF as dependent variables [after
substitution of the appropriate vector of image volumes in the
design matrix for (7)]. Fitting either of these models at each
intracerebral voxel in standard space yields a set of three effect
maps of the test statistic , one for each tissue class.

G. Estimation of Cluster Statistics

Applying an arbitrary threshold to any one of these effect
maps will yield a number of voxel clusters, each comprising
one or more spatially contiguous (eight-connected) voxels with
values for . We can apply the threshold such that if

the value of the th voxel in the thresholded map
is one, otherwise the value of theth voxel is zero. We can
then measure the 2-D area (in voxels) of theth such binary
cluster and denote this with .

Alternatively, we can apply the threshold such that if
the value of theth voxel in the thresholded map is

, otherwise the value of theth voxel is zero. We can then
measure the 2-D mass of theth cluster and denote this

(8)

H. Computational Issues

All computations were performed on a Sun Ultra 1 work-
station: 170 MHz with 128 MB of memory. Code was written
in the C language, with the exception of the code for logistic
discriminant analysis which was written inS-PLUS. Custom
graphical user interfaces were written in theX Window
system.

Typical processing times per subject were as follows: seg-
menatation of extracerebral voxels, 30 minutes; selection of
training data, discriminant function parameter estimation, and
tissue classification, 30 minutes; registration in standard space
and smoothing, 40 minutes. Estimation and testing of voxel
and cluster statistics, using ten permutations at each voxel
to sample the null distributions, required approximately five
hours of processing time. If computational time costs were a
major issue, it might be possible to reduce the number of per-
mutations applied at each voxel. However, smaller permutation
distributions will generally yield less stable critical values
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TABLE I
GLOBAL BRAIN VOLUMES (IN MILLILITRES) OF GREY MATTER (G),
WHITE MATTER (W ), AND CEREBROSPINALFLUID (CSF) AND TEST

STATISTICS FOR A DIFFERENCEBETWEEN GROUPS AND PROBABILITIES OF THE

OBSERVED DIFFERENCEASCERTAINED BY THEORY AND PERMUTATION

for conservative tests. If one wishes to apply a probability
threshold of then the size of the permutation
distribution should be at least 5000 and if one wishes to
set then the size of the permutation distribution
should be at least 10 000 [15]. These are approximate rules
of thumb and it would be highly advisable to check the
stability of critical values obtained from disproportionately
small permutation distributions.

III. RESULTS

A. Global Tests

The estimates of absolute image volume of grey matter,
white matter, and cerebrospinal fluid obtained by (2) for each
group are summarized in Table I. We used(6) as our global
test statistic and assessed the probability of the observed value
of under the null hypothesis by theory and by permutation.

The theoretical test is based on the familiar assumption
that, under the null hypothesis, has a distribution on

degrees of freedom (df), i.e., .
The two-tailed value for the observed statistic is then

where is the absolute value of the observed
test statistic [31].

The corresponding permutation test was based on the re-
peated and random reassignment of the individual estimates
of global tissue class volume to two groups of sizes and

. was estimated by (6) after each random reassignment.
This process was repeated 999 times, resulting in 999 estimates
of under the null hypothesis. Taken together with the single
estimate of observed in the original data, these were ordered
in size to sample the permutation distribution of. The two-
tailed value was then simply the number of entries in
the permutation distribution with absolute value greater than
observed , divided by the total number of permutations
plus one 1,000.

As shown in Table I, the values obtained by these two
methods for the observed difference between groups are very
similar for all three global statistics. By neither test would
any of the observed differences be conventionally considered
significant. This suggests that the permutation and theoretical
distributions are reasonably similar, which is also supported
by direct comparison of the distributions in Fig. 1.

B. Voxel Tests

The test statistics at voxel level were the standardized
regression coefficients estimated by fitting either of the two

Fig. 1. Theoretical and permutation distributions for the difference between
groups in global grey matter volume under the null hypothesis. The histogram
shows the null distribution sampled by 999 random permutations of the
observed data; the solid line shows thet distribution on 32 df.

linear models (4) or (7). A theoretical test of these statistics
can be conducted by assuming thathas a distribution
on df. The corresponding permutation test is
conducted along basically similar lines to the test described
above. The data are repeatedly and randomly reassigned to two
groups, and the test statistic is estimated after each permutation
to sample its distribution under the null hypothesis. However,
since the number of voxels to be tested was large, i.e.,

, we preferred to permute the data only ten
times at each voxel, then pool the resulting estimates of
over all voxels in the search volume to form a permutation
distribution comprising 3 427 330 estimates of under the
null hypothesis. A value was assigned to each voxel by
referring its observed value of to this pooled permutation
distribution.

In order to calibrate Type I error control by this procedure,
group differences between two randomly decided subsets of
the control group data were tested. Each control subject was
randomly assigned to one of two groups, each of size

, and the difference between these groups was estimated by
linear modeling. Both theoretical and permutation tests were
then used to assess the probability of each observed voxel
statistic under the null hypothesis, and the observed effect
maps were thresholded over a range of sizes of two-tailed test

. Since no true difference is expected to exist
between these two subsets of the control group, all significant
voxels identified by a given size of test should be false
positive tests. In other words, the observed number of positive
tests should equal the predicted number of false positive
tests . As shown in Fig. 2, the number of positive
tests observed by permutation testing closely corresponded
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(a)

(b)

Fig. 2. Type I error-calibration curves for voxel-level tests by theory and
permutation. The expected number of false positive voxels over a range of
sizes of test0:005 < P � 0:1 can be compared directly to the observed
number of significant voxels following tests by theory (dashed line and
circles) and permutation (solid line and triangles). The two groups tested
were randomly decided subsets of the control subjects, therefore the number
of observed and expected tests should be equal (dotted line). (a) An ANOVA
model was fitted at each of 342 733 voxels to estimate group difference in
grey matter volume (4). (b) An ANCOVA model was fitted at each voxel (7).

to the expected number of false positive tests, regardless of
the linear model used to estimate the voxel statistics. The
number of positive tests observed by the theoretical test of
the ANOVA coefficient was generally less than the expected
number, implying that this test is somewhat over conservative.
Correspondence between observed and expected positive tests
was closer for the theoretical test of the ANCOVA coefficient.

The results of testing by permutation for a difference at
voxel level between the two original groups are shown in
Fig. 3.

C. Cluster Area

Effect maps estimated by fitting both ANOVA and AN-
COVA models were thresholded such that if the value
of that voxel was set to zero, else if the value of that
voxel was set to if and set to
if . This size of threshold is approximately equivalent
to applying a threshold of size to a standard normal
voxel statistic. The area and mass of each cluster of nonzero
voxels sharing the same sign ofwere estimated as described
above.

The probability of a given cluster area under the null hypoth-
esis was estimated using an exponential distribution derived
from Gaussian field theory [5]. For cluster size measured in
two spatial dimensions, i.e., cluster area, the probability that

has some particular value is

(9)

where denotes the expected number of suprathreshold clus-
ters divided by the ex-
pected number of suprathreshold voxels .
It can be seen that the theoretical probability of a given
cluster area is a strong function of the smoothness of the
voxel statistic image , which can be estimated in 2-D by

, and the threshold , which has a value
under the standard normal distribution denoted by . This
distribution is plotted in Fig. 4 with voxels
and .

The corresponding permutation distribution ofwas ascer-
tained as follows. We randomly reassigned theobservations
at each voxel to two groups of sizes and , estimated
by ANOVA or ANCOVA at each voxel, applied a threshold
to the resulting effect maps, and then measured the area of
each of the clusters in the thresholded maps after each
permutation. This process was repeated ten times and the
resulting estimates of cluster area under the null hypothesis
were pooled over the search volume to sample the permutation
distribution. Note that in order to preserve the spatial correla-
tions between adjacent voxels in the observed maps, the same
set of reassignments must be identically applied to all voxels
in the image at each permutation. If the voxels are permuted
independently, this will lead to systematic underestimation
of the probability of a given cluster area under the null
hypothesis [11]. The resulting distribution of is plotted in
Fig. 4. It can be seen that the permutation and theoretical
distributions for cluster area are less closely approximate
than the corresponding pair of distributions for global grey
matter volume presented in Fig. 1. In particular, the theoretical
distribution relatively underestimates the probability of the
smallest clusters and overestimates the probability of medium
sized clusters.

To calibrate Type I error control by both procedures, we
again subdivided the control group into two randomly decided
subsets and compared the observed number of positive tests
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(a)

Fig. 3. The results of testing for a neuroanatomical difference between two groups of MRI data, acquired from 18 adolescents with hyperkinetic disorder and
16 matched control subjects. (a) A pair of sagittal slices through the right hemisphere are shown+9 mm (left column) and+12 mm (right column)
lateral to the cerebral midline in standard space.

(at cluster level) to the expected number of false positive
tests. As in the case of calibrating voxel testing procedures,
the observed number of positive tests should be equal to the
expected number of false positive tests. It can be seen from
Fig. 5 that the permutation distribution consistently yields
almost exactly the number of positive tests expected under the
null hypothesis, whereas the theoretical distribution generally
yields fewer positive tests than expected. This disparity is less
obvious for smaller test sizes. However, in general it seems
that the theoretical distribution is somewhat over conservative.

The results of using cluster area to test (by permutation)
for a difference between the two original groups are shown
in Fig. 3.

D. Cluster Mass

The permutation distribution for cluster mass was ascer-
tained in exactly the same way as described for cluster area,
except for the obvious difference that the massrather than
area of each suprathreshold cluster was estimated after each
permutation and pooled over the search volume (see Fig. 6).
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(b)

Fig. 3. (Continued.) The results of testing for a neuroanatomical difference between two groups of MRI data, acquired from 18 adolescents with hyperkinetic
disorder and 16 matched control subjects. (b) Another pair of sagittal slices are shown+24 mm (left column) and+27 mm (right column) lateral to the
cerebral midline. In both displays, the top row shows the results of thresholding a voxel test statistic (ANCOVA model coefficient) withP � 0:05. Voxels
demonstrating significant grey matter volume deficit in the hyperactive group are colored blue and voxels demonstrating significant grey matter volume excess
in the hyperactive group are colored yellow. The middle row shows the results of thresholding cluster area withP � 0:05. Clusters demonstrating significant
grey matter deficit in the hyperactive group are colored blue and clusters demonstrating significant grey matter excess in the hyperactive group are colored
yellow. The bottom row shows the results of thresholding cluster mass withP � 0:05. The color table is as for cluster area. The expected deficits in grey
matter volume of right prefrontal cortex and basal ganglia are demonstrated most clearly in the hyperactive group by the test based on cluster mass.

We could find no theoretical distribution for in the existing
literature.

Type I error-calibration curves for the permutation distri-
bution of are presented in Fig. 7. It can be seen that the
observed number of positive tests is almost exactly equal to
the number of false positive tests expected under the null
hypothesis.

The results of using cluster mass to test (by permutation)
for a difference between the two original groups are shown
in Fig. 3.

IV. DISCUSSION

The main aim of this paper has been to compare two ways
of testing three different kinds of statistics that might be of
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Fig. 4. Theoretical and permutation distributions for the area of suprathresh-
old clusters under the null hypothesis. The histogram shows the permutation
distribution and the solid line shows the theoretical distribution (9) with
FWHM = 5:67 voxels andu = 1:85.

value in identifying a neuroanatomical difference represented
in structural MRI data acquired from two groups of subjects.
Specifically, we have estimated global, voxel, and cluster
statistics and tested each of these (wherever possible) against
both a null distribution derived from normal theory and a null
distribution derived from repeated permutation of the observed
data.

One of our findings has been that cluster statistics appear
to be more specifically informative about the neuroanatomical
differences between these two quite small groups of subjects
than either global or voxel statistics. This is perhaps not a
particularly surprising observation given the extensive litera-
ture advocating cluster statistics in the context of functional
neuroimaging [4]–[6], [9]. Even without the benefit of this
literature, one might expect cluster statistics in structural
neuroimaging to be more informative than voxel tests simply
because measurements on suprathreshold clusters are more
informed by the full dimensionality of the data. A voxel
statistic is based on only one dimension: the feature or effect
estimated at that voxel. Cluster area is additionally informed
by the and spatial dimensions of the data, but some
information in the effect dimension is lost by setting all
suprathreshold voxels to the same value. Cluster mass is
also informed by two spatial dimensions and has the further
advantage of preserving information in the effect dimension.
Extrapolating, we might expect to find that estimating cluster
mass in all three spatial dimensions would provide even more
informative measures of the difference between groups.

Another main finding concerns the development and
(cross) validation of permutation procedures for testing global,
voxel, and cluster statistics. We have shown that permutation
distributions can be ascertained for all the statistics considered

(a)

(b)

Fig. 5. Type I error-calibration curves for tests of cluster area by theory and
permutation. The expected number of false positive clusters over a range of
sizes of test0:005 < P � 0:1 can be compared directly to the observed
number of significant clusters following tests by theory (dashed line and
circles) and permutation (solid line and triangles). The two groups tested
were randomly decided subsets of the control subjects. Therefore, the number
of observed and expected tests should be equal (dotted line). (a) Cluster area
was measured in the thresholded effect maps obtained by fitting an ANOVA
model (4) at each voxel. (b) Cluster area was measured in the thresholded
effect maps obtained by fitting an ANCOVA model (7) at each voxel.

here without imposing unrealistic demands on computational
resources. Nominal Type I error control for all voxel and
cluster permutation tests has been demonstrated by analysis
of two randomly decided subsets of the control group data.
For some test statistics, we found the theoretically ascertained
null distribution was closely approximate to the permutation
distribution and provided approximately equivalent quality
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Fig. 6. Permutation distribution for the mass of suprathreshold voxel clusters
under the null hypothesis.

of Type I error control. However, in the case of the voxel
statistic estimated by fitting a simple ANOVA model, and in
the case of cluster area, the theoretical distributions seemed
somewhat over conservative for tests of size . For
the voxel test this may not matter much since the large
number of tests conducted is likely to enforce a more stringent
probability threshold for significance than 0.01. However, one
of the potential advantages of analysis at a cluster level
is that the smaller number of tests allows more relaxed
probability thresholds, in the order of 0.01, so the behavior
of the theoretical distribution in this case is more likely to be
problematic in practice. The most likely explanation for any
discrepancy between theory and permutation tests is that the
assumptions entailed by the theoretical test were not entirely
justified in the context of the analysis. In our first example,
the residuals of the ANOVA model may not, in fact, have had
a standard normal distribution, due to the unmodeled effects
of other factors such as handedness. Likewise, the exponential
distribution adopted for cluster area is based on theoretical
results that are only exact in the case of much higher values
for the voxel threshold than we have applied here.

On the basis of these findings, it would clearly be wrong
to advance any general conclusions about the validity of
theoretical tests for structural brain-image analysis. If the
assumptions they entail are justified by the data, it seems likely
that they will yield very similar results to the corresponding
permutation test [20]. However, the validity of permutation
tests is generally conditional on far fewer assumptions and
permutation tests can be readily devised for any statistic of
interest. For example, here we were interested in cluster mass,
which could be easily tested by permutation (and only by
permutation).

(a)

(b)

Fig. 7. Type I error-calibration curves for tests of cluster mass by permuta-
tion. The expected number of false positive clusters over a range of sizes of
test0:005 < P � 0:1 can be compared directly to the observed number of
significant clusters following tests by permutation (solid line and triangles).
The two groups tested were randomly decided subsets of the control subjects,
therefore, the number of observed and expected tests should be equal (dotted
line). (a) Cluster mass was measured in the thresholded effect maps obtained
by fitting an ANOVA model (4) at each voxel. (b) Cluster mass was measured
in the thresholded effect maps obtained by fitting an ANCOVA model (7) at
each voxel.

Historically, the advantages of permutation testing have
been well recognized, but mitigated by the computational cost
entailed. To paraphrase a remark made by R. A. Fisher [12],
results obtained by theory are valid only insofar as they are
corroborated by permutation, but this elementary method is
tedious. With the increasing accessibility of powerful micro-
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processors, the tedium of permutation testing is much reduced,
and there seems no important argument remaining against
preferred use of this elementary but exact and flexible method.
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