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Abstract—We describe almost entirely automated procedures hypothesis that there is zero difference between groups. Two
for estimation of global, voxel, and cluster-level statistics to test re|ated questions then have to be addressed.

the null hypothesis of zero neuroanatomical difference between « What f diff bet ¢
two groups of structural magnetic resonance imaging (MRI) at measure(s) of difference between two groups are

data. Theoretical distributions under the null hypothesis are likely to be most informative about departure from the
available for 1) global tissue class volumes; 2) standardized linear null hypothesis?

m?_de' t[agaht/SiS o;variar;ce ('QNS())VA and ANfCOV,?_)]”coefficienttsd « How can we ascertain the distribution of a potential test
estimated at each voxel; an an area of spatially connecte . :

clusters generated by applying an arbitrary thrgsholgto a two- statistic under the null hypothesis?
dimensional (2-D) map of normal statistics at voxel level. We In relation to the first of these questions, we here consider
describe novel methods for economically ascertaining probability three types (or levels) of test statistic that can be estimated
distributions under the null hypothesis, with fewer assumptions, from two groups of structural MRI data. The first (global)

by permutation of the observed data. Nominal Type | error o .
control by permutation testing is generally excellent; whereas _type is simply a measure of the difference between groups

theoretical distributions may be over conservative. Permutation in Whole brain volume Qf any one of the threg main.tissue
has the additional advantage that it can be used to test any classes (grey matter, white matter, or cerebrospinal fluid). The
statistic of interest, such as the sum of suprathreshold voxel second (voxel) type is a measure of the difference between
statistics in a cluster (or cluster mass), regardless of its theoretical groups in volume of a given tissue class at the level of a

tractability under the null hypothesis. These issues are illustrated ~. | | The third (clust ¢ . f th
by application to MRI data acquired from 18 adolescents with single voxel. e third (cluster) type is a measure o €

hyperkinetic disorder and 16 control subjects matched for age difference between groups obtained by arbitrarily thresholding

and gender. maps of a voxel test statistic and considering the properties
Index Terms—Brain, imaging/mapping, probability distribu- Of the spatial clusters of suprathreshold voxels that result.
tions, statistics. We will deal with two cluster statistics in particular: 1) the

two-dimensional (2-D) area of a suprathreshold cluster and 2)
the sum of suprathreshold voxel statistics, or mass, of a 2-D
cluster. (Two other possible types of test statistic would be
UMAN brain research using magnetic resonance imagegion of interest (ROI) volume measurement or a systems-
ing (MRI) is often motivated by an interest in onélevel measure of multivariate difference between two groups
form or another of the alternative hypothesis that there is g7}; however, these approaches are not discussed further here.)
anatomical difference between two groups of subjects. TheGlobal statistics seem unlikely to be especially sensitive
distribution of the observed difference under this alternatiyghless the anatomical difference between groups is diffuse.
hypothesis could be explicitly modeled (see [1] for an exampigxel statistics are potentially more sensitive to focal dif-
of this approach to activation mapping in functional MRI}erences between groups, but they will entail a much larger
but it is more usual to resort to consideration of the nujumper of tests. In order to avoid an unacceptable number
of false positive or Type | errors in assessment of a group
Manuscript (SE_Ceived '\élathG, 19|?8: revised Decsrr;berh& 1998. This wagkifference at voxel level, it is therefore customary to adopt
Programme for the Training and Mobilty of Researchers. The Assosate Edifr VeTY Stringent criterion for statistical significance [3]. Typ-
responsible for coordinating the review of this paper and recommending igally, voxel statistics must have a probability under the null
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As Poline and Mazoyer first demonstrated in the context ahy test statistic of interest, not just the subset of potentially
functional brain-image analysis [4], these problems associaiateresting statistics with theoretically tractable distributions
with voxel tests can be largely circumvented by testing ander the null hypothesis. Furthermore, since the permutation
cluster level. The number of clusters to be tested is generadligtribution is ascertained directly from the observed data, the
far fewer than the number of voxels, allowing more relaxectitical values for testing will be appropriate for arbitrary prop-
probability thresholds and reduced Type Il error rates for exties of the observed data, such as image smoothness, which
given number of false positive tests. Clusters can generathight prohibit appropriate use of critical values derived from
also be regarded as independent events under the null hypattier Monte Carlo simulations. The advantages of permutation
esis, unlike voxels, which will be correlated under the nutkesting for functional brain-image analysis were first proposed
hypothesis at least to the extent that the image is smooth®dBlair et al. [17] and have since been widely recognized
by the point spread function of the scanning instrument. [2], [18]-[21]. However, to the best of our knowledge, this
strong Type | error control is required, therefore, a Bonferrostudy represents the first comparative appraisal of permutation
correction of the critical” value for a test at each cluster istests in structural brain-image analysis. It is also the first study
both appropriate and straightforward to implement [4]. Finallyo validate permutation tests at cluster level in any imaging
cluster area is generally a more sensitive measure of regionaidality.
cerebral blood flow changes in simulated positron emission
tomography (PET) data than a global test [4], and often more Il. METHODS and MATERIALS
sensitive than a voxel test [5]. A. Subjects

The only major problem associated with use of cluster sizée
as a test statistic seems to relate to the (second) question ofhe patient group comprised 18 children (15 boys, 3 girls)
how best to ascertain its distribution under the null hypothesiith a mean age of 10.4 years and mean 1.Q. of 99 (SD 14.9)
There are well-established theoretical approximations for tMéo were attending the Child Psychiatry Department of the
null distributions of many global and voxel statistics, but thtlaudsley Hospital, London, for treatment of hyperkinetic
issue is more controversial for cluster size. Several groups haligorder (HD) diagnosed according to standard operationalized
adopted Monte Carlo procedures to sample the distribution @fteria [22]. HD is a child psychiatric syndrome characterized
cluster size in images simulated under the null hypothesis [} inattentiveness, distractibility, and hyperactivity and is
[6], [7]. Simulation necessitates making some assumptio@ssociated with delayed development of language and motor
usually about the distribution of the voxel statistic and thekills. Previous structural-imaging studies of HD, or the re-
spatial autocorrelation or smoothness of the voxel statistifed syndrome of attention-deficit hyperactivity disorder, have
image, under the null hypothesis. The null distribution dflentified grey matter volume deficits in frontal lobes and basal
cluster area is conditional on both the smoothn&Esof ganglia. For a review see [23].
the statistic image and the size of threshaldapplied at ~ The control group comprised 16 psychiatrically normal
voxel level. Therefore, cluster size distributions reported dtildren (15 boys, 1 girl) with a mean age of 10.3 years who
the basis of Monte Carlo simulations are only appropriate fétere the siblings of children receiving outpatient treatment at
testing images which happen to ha¥% and « identical to the same hospital. There was no significant difference between
the arbitrary smoothness and voxel threshold of the simulaté® groups in age, head circumference, height, or weight. Nine
data [8], [9]. children in the patient group and one child in the control group

Friston et al. [5] derived an exponential form for the nullwere left handed.
distribution of cluster size which can be more generally usedInformed consent to participate in the study was given by
to estimate the probability of a cluster as a function of thiée parents of each subject. The study was approved by the
smoothness, voxel threshold, and dimensionalityof any Ethics Committee of the Bethlem Royal and Maudsley NHS
statistic image (see below for greater detail). However, as thelggist.
and other authors have commented [10], [11], this distribution -
is derived from results in Gaussian field theory that are onRr Image Acquisition
exact in the limit of very high thresholds, i.e.~ 6 (assuming  Dual-echo fast-spin echo (FSE) MRI data were acquired
the voxel statistic has a standard normal distribution). This@s 1.5 T in the sagittal plane parallel to the interhemispheric
unfortunate because a test of cluster size is likely to be mdissure using a GE Signa system at the Maudsley Hospital:
useful in detecting relatively large sets of spatially connectedpetition time(TR) = 4 s, time to first echdTE; ) = 20 ms,
suprathreshold voxels that can only arise if the threshdiidhe to second ech¢TE;) = 100 ms, field of view= 22 cm,
applied at voxel level is fairly low, i.eq = 2 [4]. image matrix= 256 x 192, in-plane resolution= 0.86 mm,

One of the objectives of the present study was to developmber of interleaved slices 50, slice thickness= 3 mm,
methods for ascertaining the null distributions of globahumber of signal averages 1. Head movement was limited
voxel, and cluster statistics by permutation procedures abyg foam padding within the head coil and a restraining band
to crossvalidate these permutation tests by comparisonatross the forehead.
the corresponding tests derived from normal theory. TheThis acquisition protocol represents each of 50 sagittally
basic principles of permutation testing are simple and wadlientated brain volumes, or slices, by a pair of images: a
established [12]-[16]. Arguably, the most salient advantageoton density PD-weighted image acquired T&; and a
of permutation testing in general is that it is applicable t&2-weighted image acquired &t;. Since the time interval
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between the two echos is only 80 ms, we neglect the possibilityelihood from a relatively small subsample or training set
of misregistration of the image pair due to subject motioof voxels (1% of all intracerebral voxels) expertly selected
and assume that the two images differently represent filom each image as representatives of each tissue class. The

anatomically identical volume of the brain. probabilities of class membership given the feature vector
observed at théth voxel { P(G | x;), P(W | x;), P(C' | x;)}
C. Segmentation of Extracerebral Voxels are then simply computed by substituting tile PD- and T2-

Sighted signal intensities into the trained or parameterized

The first step in image processing is segmentation of vox . . . . L
P gep 9 g periminant function. Repeating this substitution overall

representing extracerebral tissue, such as bone and skin. Is in the i i t of th i
is done by applying a computational algorithm, previouslVOXeS In In€ Image generates a set of three maps, representing
described and validated in detail [24], to the PD-weighte e probab_|I|ty of each voxel in the image belonging to each of
dataset for each subject. Briefly, the algorithm uses a Iinet F three tlssg_e_ classes. Based on previous results, we .equate
gse probabilities to the proportional volumes of each tissue

scale-space set of features obtained from derivatives of . .
Gaussian kernel. Application of the second-order derivati ass in the often heterogeneous volume of tissue represented
each voxel [25]. For example, (G | x;) = 0.8, we may

the Laplacian) at three different scales results in measurds o ) .
<()f the I(E)cal gre)y—level curvature of the signal intensities. TheY that 80% of the brain tissue represented byilgoxel is

first-order derivative feature represents the image edges S matter. The absolute volume of grey matter represented
its inverse is applied as a binary mask to a combined imae>"PW £(G | i) x wyz wherez, y, andz denote the three
of second-order derivative features such that the extracortical c >ons of voxel size in millimeters. Absolute volume of

cerebrospinal fluid is effectively circumscribed. A grey-leve‘i’rey matter estimated over the whole image is

histogram analysis of the resulting image sets a lower threshold v
for the data volume and a binary mask is obtained in each Gv = ZP(G | x;) X 2yz. 2
slice of the image. After removal of small islands of data i=1

to improve computational speed, the largest three'dimensm@fﬂbstituting voxel probabilitiesP(W | x;) or P(C | x;)

(3-D)-connected object .in thg da.ta vol_ume is found anq i (2) estimates total image volumes for white matter and
assumed to be the brain. This binary image of the brain ﬁrebrospinal fluid, respectively

then used to select voxels of the FSE dataset representing
neural tissue (including cerebrospinal fluid) and to set to zefo

. X . _Registration and Smoothing in Standard Space
all voxels representing extracerebral tissue. The process is

entirely automated. The final step in image processing, prior to estimation and
testing of group differences at voxel and cluster levels, is
D. Probabilistic Morphometry registration of the three probability maps (one for each tissue

. L class) obtained from each individual image in the standard
The next step is estimation of the volumes of grey mattg[)ace of Talairach and Tournoux [27]

(G), white matter(W), and cerebrospinal fluidC’) repre- To do this, a template image was first constructed by

_Sed'?t?g atl eFaSCIQ \(/joxel, and over all intracerebral voxels, in eapﬁ%portional rescaling of a subset of five PD-weighted images
n L'V' ;ad r?taset. ber of | bral Is | . (rom the control group. Using AFNI software [28] anatomical
et enote the number of intracerebral voxels In a Sing|g,qmarks were identified, including the anterior and posterior

dual-.ecrfw rl}ma.gei At theth voxel s d: 1,2,3,.. 'a‘;g"e 2?"; commissures and lateral, superior, and inferior convexities of
a pair of physical measurements denoRig; an i WNICN 46 cerebral surface. The distances between landmarks were

we can refer tq collectively as Fhe observed feature_vec en linearly rescaled to approximate each individual image to
x;. On the basis of these physical data we can derive

babilities that theth | ld b v classified size and shape of the reference brain depicted in a standard
probabilities that theth voxel would be correctly classified aSyo o atactic atlas [27]. The five transformed images were then

representatllve of each of the three mutually exclusive t'ssﬁgeraged to produce a single template image in standard space.

classes of interest as follows [25], [26]: The affine transformation which minimizes the sum of

P(G|x;) = f';lbs_o_lute grey Ie\_/el diffgrences between each M)f_: 34)
exp(Bo + BiPD; + B2T2;) individual PD-weighted images and the template image was

: : — 55 then identified by the Fletcher—Davidon—Powell algorithm
L+ exp(flo + H1PD; + 212:) + exp(fs + F4PDi + f12) [21], [29] and this individually estimated transformation matrix

PW | xi) = was applied in turn to each of that subject’s three probability
exp(fs + B4PD; + B51°2;) maps to register them in standard space.

1+ exp(fo + /1PD; + B2T2;) + exp(fBs + SuPD; + 3:72;) To accommodate individual variability in anatomy and

PC|x;)= error in spatial normalization, all probability maps were then

1 smoothed by convolution in the Fourier domain with a 2-D

1+ exp(fo + BiPD; + 3212;) + exp(f33 + B4PD; + 35172;) Gaussian filter with variance= 5 mm or full width at half
(1) maximum(FWHM) = 5.67 voxels.
We note that this procedure does not represent a unique so-
The parameters of this polychotomous logistic discriminahition to the problem of coregistering several MRI datasets in a
function {3;}, 7 = 0,1,2,...,5 are estimated by maximum standard space. It would be equally possible to adopt another
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stereotactic system, to effect registration of each individu@he advantage of working withl rather than’ is that it is
dataset in standard space by nonlinear transformation anddtraightforward to adjusti for the possibly confounding ef-
to apply a different filtering regime to the data. But howevefects of other independent variables by adding the appropriate
the data are preprocessed, it is probably advisable to consigglumns to the design matrix. For example, in this study, we
several alternative methods of testing the null hypothesis @fshed to estimate the additive effect of group membership
zero between-group difference, as described in detail belovafter controlling for age, gender, handedness, and absolute
volume of a given tissue class over the whole image. Again
taking grey matter to be the dependent variable, we can write
Following registration of the three probability maps gerthis analysis of covariance (ANCOVA) model
erated from each |nd|y|dual MRI dataset in the. same space, P(G | Xi)iy = ti + aip + bAge,, . + cHandy
we can estimate the difference between groups in proportional 4
volume of a given tissue class by fitting a linear model at +dSexy,j + fGur s + i (7)
each voxel. where Age,, ;, Handy, j, Sexy ;, and Guy,; denote the age,
In matrix notation, linear models are generally of the fornhandedness, gender, and image volume of grey matter in
y=X3+e 3) the jth individual from the kth group. Both ANOVA and
) ANCOVA models can be generalized to take proportional
where y is an IV x 1 vector of response or dependenyojumes of white matter or CSF as dependent variables [after
variables,X is a IV x p (design) matrix of constants] is  sypstitution of the appropriate vector of image volumes in the
ap x 1 vector of parameters, anglis aV x 1 vector whose design matrix for (7)]. Fitting either of these models at each
elements are independent identically and normally distributggracerebral voxel in standard space yields a set of three effect

¢j ~ N(0,0%) for ¢ = 1,2,3,...,N. The standard errors maps of the test statistid, one for each tissue class.
of the parameters are the diagonal elements of the matrix

2 T —1 T it
o%(X*X)+, where! denotes transposition and denotes G. Estimation of Cluster Statistics

inverse of a matrix [30]. ] ]
The simplest such model we will consider is a one-way Applying an arbitrary threshold to any one of these effect

analysis of variance (ANOVA) which can be written for 4naPs will yield a numbed of voxel clusters, each comprising
single observation of grey matter volume as follows: one or more spatially contiguous (eight-connected) voxels with
values forA > u. We can apply the threshold such that if

PG| i)y = pi + @ik + ik (4)  4; > u the value of theith voxel in the thresholded map
where P(G | x;)r; is the proportional volume of greyis one, otherwise the value of thth voxel is zero. We can
matter estimated at théh voxel for the jth individual in then measure the 2-D area (in voxels) of théh such binary
the kth group withj = 1,2,3,...,N; or No, k = 1,2 cluster and denote this,, with m =1,2,3,..., M.
andi = 1,2,3,...,V, u; is overall mean at théth voxel, Alternatively, we can apply the threshold such thatjf> «
wi + a; 5 is the mean of théth group at theith voxel, and the value of theth voxel in the thresholded map i$; — v =
eixj ~ N(0,0%) denotes a residual quantity unique to thé:, otherwise the value of théh voxel is zero. We can then
jth member of thekth group at theith voxel. (Note thatl’ measure the 2-D mass of theth cluster and denote this,
now denotes the number of intracerebral voxels in standard i
space for which we havéV proportional volume estimates, T = Zhi' (8)
not the number of intracerebral voxels in an individual image P
as previously.)

To estimate the paramete{g, a} we construct &N x 2) H. Computational Issues
design matrixX, the first column of which is a vector of ones

F. Estimation of Voxel Statistics

tent bv1. Least timates of th t| the C language, with the exception of the code for logistic
pa 'eﬂ group y; 'XTe;S j‘;g?res estimates ot the parametefRcriminant analysis which was written 8-PLUS. Custom
are then given by ) Y- graphical user interfaces were written in the Window

It can be shown [31] that thAe test statistic system.

A= _ % (5) Typical processing times per subject were as follows: seg-

SHa) menatation of extracerebral voxels, 30 minutes; selection of

where SEa) is the standard error o is equivalent to the training data, discriminant function parameter estimation, and
familiar " statistic tissue classification, 30 minutes; registration in standard space
T = I and smoothing, 40 minutes. Estimation and testing of voxel
s \/I ' and cluster statistics, using ten permutations at each voxel

Nt e to sample the null distributions, required approximately five

1 N1 N2 hours of processing time. If computational time costs were a

s? = NE N, —2 > (i —m)*+> (v2y— i)’ 3. major issue, it might be possible to reduce the number of per-
! 2 j=1 i=1 mutations applied at each voxel. However, smaller permutation

(6) distributions will generally yield less stable critical values
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TABLE | Null Distributions of a Global Statistic

GLoBAL BRAIN VOLUMES (IN MILLILITRES) OF GREY MATTER (G),
WHITE MATTER (W), AND CEREBROSPINALFLUID (CSF)AND TEST
STATISTICS FOR A DIFFERENCE BETWEEN GROUPS AND PROBABILITIES OF THE

set P < 0.001 then the size of the permutation distribution
should be at least 10000 [15]. These are approximate rules

.

\

OBSERVED DIFFERENCE ASCERTAINED BY THEORY AND PERMUTATION g 1 :/%‘
G (ng(ﬁ)) (?]‘B((ﬁ)) -0.087  0.931 1.915 o %%‘ZZK
W 47731.:0(;1 19{42);); 1363 0.182 0.186 Z%%%%g
CST (90 04) ("% 2 1,098 0.280 0.296 %%%%
i (36.16) (z‘{.h{«) o - é‘; %%%%\
for conservative tests. If one W|sh§s to apply a probaplhty // %%%%%/
i b e o e .

of thumb and it would be highly advisable to check the o | ..o %/% . =
stability of critical values obtained from disproportionately e ; :
small permutation distributions. 2 0 2
T
lll. RESULTS

Fig. 1. Theoretical and permutation distributions for the difference between
groups in global grey matter volume under the null hypothesis. The histogram
A. Global Tests shows the null distribution sampled by 999 random permutations of the

The estimates of absolute image volume of grey matté)P’served data; the solid line shows thdistribution on 32 df.
white matter, and cerebrospinal fluid obtained by (2) for each
group are summarized in Table |. We usEd6) as our global
test statistic and assessed the probability of the observed vdioear models (4) or (7). A theoretical test of these statistics
of 7" under the null hypothesis by theory and by permutationan be conducted by assuming th&thas at distribution
The theoretical test is based on the familiar assumptiom ~; + No — p df. The corresponding permutation test is
that, under the null hypothesig’ has at distribution on conducted along basically similar lines to the test described
N; + Ny — 2 = 32 degrees of freedom (df), i.eT] ~ t3,. above. The data are repeatedly and randomly reassigned to two
The two-tailed P value for the observed” statistic is then groups, and the test statistic is estimated after each permutation
2P{ts2 > |T|} where|T| is the absolute value of the observedo sample its distribution under the null hypothesis. However,
test statistic [31]. since the number of voxels to be tested was large, i.e.,
The corresponding permutation test was based on the ¥e-= 342733, we preferred to permute the data only ten
peated and random reassignment of the individual estimateges at each voxel, then pool the resulting estimatesiof
of global tissue class volume to two groups of siZésand over all voxels in the search volume to form a permutation
N,. T was estimated by (6) after each random reassignmedgistribution comprising 3427 330 estimates af under the
This process was repeated 999 times, resulting in 999 estimatel hypothesis. AP value was assigned to each voxel by
of T under the null hypothesis. Taken together with the singfeferring its observed value ol to this pooled permutation
estimate ofl” observed in the original data, these were orderetistribution.
in size to sample the permutation distributionZof The two- In order to calibrate Type | error control by this procedure,
tailed P value was then simply the number of entries igroup differences between two randomly decided subsets of
the permutation distribution with absolute value greater thdine control group data were tested. Each control subject was
observed|T’|, divided by the total number of permutationgandomly assigned to one of two groups, each of &z¢2 =
plus one= 1,000. 8, and the difference between these groups was estimated by
As shown in Table I, theP values obtained by these twolinear modeling. Both theoretical and permutation tests were
methods for the observed difference between groups are vérgn used to assess the probability of each observed voxel
similar for all three global statistics. By neither test wouldtatistic under the null hypothesis, and the observed effect
any of the observed differences be conventionally considenegps were thresholded over a range of sizes of two-tailed test
significant. This suggests that the permutation and theoretiéa005 < P < 0.1. Since no true difference is expected to exist
distributions are reasonably similar, which is also supportégtween these two subsets of the control group, all significant
by direct comparison of the distributions in Fig. 1. voxels identified by a given size of test should be false
positive tests. In other words, the observed number of positive
tests should equal the predicted number of false positive
The test statistics at voxel level were the standardizéests = PV. As shown in Fig. 2, the number of positive
regression coefficientd estimated by fitting either of the two tests observed by permutation testing closely corresponded

B. Voxel Tests
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= The results of testing by permutation for a difference at
§‘ o voxel level between the two original groups are shown in
ol Fig. 3.
o
g, o
=) C. Cluster Area

Effect maps estimated by fitting both ANOVA and AN-
COVA models were thresholded such thatAff < 2 the value
of that voxel was set to zero, else|Hd| > 2 the value of that
voxel was settth = A—2if A > 0and settoh = A+ 2
if A < 0. This size of threshold is approximately equivalent
to applying a threshold of size = 1.85 to a standard normal

voxel statistic. The area and mass of each cluster of nonzero
- },heﬁ?nwutaﬁon voxels sharing the same sign bfvere estimated as described
above.

The probability of a given cluster area under the null hypoth-
esis was estimated using an exponential distribution derived
from Gaussian field theory [5]. For cluster size measured in
two spatial dimensions, i.e., cluster areahe probability that
v has some particular value is

30000

20000

>0

Expected Number of False Positive Tests
10000

0

4 .

0 10000 20000 30000 40000 50000
Observed Number of Positive Tests

@ Py =) =g ¥® 9)

wheret denotes the expected number of suprathreshold clus-
ters E(M) = V(2r)=32W=2uec=¥"/2 divided by the ex-
pected number of suprathreshold voxé&l§V+) = V&(—u).
It can be seen that the theoretical probability of a given
cluster area is a strong function of the smoothness of the
voxel statistic imagéV, which can be estimated in 2-D by
FWHM/+v/4log2, and the threshold, which has aP value
under the standard normal distribution denotedy-«). This
distribution is plotted in Fig. 4 witltFWHM = 5.67 voxels
and v = 1.85.
The corresponding permutation distribution.ofvas ascer-
O --- theory tained as follows. We randomly reassigned f@bservations
A —— permutation at each voxel to two groups of sizé§ and N,, estimated4
by ANOVA or ANCOVA at each voxel, applied a threshold
to the resulting effect maps, and then measured the area of
each of theM clusters in the thresholded maps after each
. . ; . . permutation. This process was repeated ten times and the
0 10000 20000 30000 40000 50000 resulting estimates of cluster area under the null hypothesis
Observed Number of Positive Tests were pooled over the search volume to sample the permutation
(b) distribution. Note that in order to preserve the spatial correla-
Fig. 2. Type | error-calibration curves for voxel-level tests by theory antions between adjacent voxels in the observed maps, the same
permutation. The expected number of false positive voxels over a range@t of reassignments must be identically applied to all voxels
sizes of test).005 < P < 0.1 can be compared directly to the observed . .
number of significant voxels following tests by theory (dashed line anff the image at each permutation. If the voxels are permuted
circles) and permutation (solid line and triangles). The two groups testiaidependently, this will lead to systematic underestimation
were randomly decided subsets of the control subjects, therefore the numgerthe probability of a given cluster area under the null
of observed and expected tests should be equal (dotted line). (a) An ANOVA . . S . .
model was fitted at each of 342733 voxels to estimate group dn‘ference}'/ﬁé(pOtheSIS [11]' The resultlng distribution ofis plotted n
grey matter volume (4). (b) An ANCOVA model was fitted at each voxel (7)Fig. 4. It can be seen that the permutation and theoretical
distributions for cluster area are less closely approximate
than the corresponding pair of distributions for global grey
to the expected number of false positive tests, regardlesspgétter volume presented in Fig. 1. In particular, the theoretical
the linear model used to estimate the voxel statistics. Tlgstribution relatively underestimates the probability of the
number of positive tests observed by the theoretical test sthallest clusters and overestimates the probability of medium
the ANOVA coefficient was generally less than the expectefized clusters.
number, implying that this test is somewhat over conservative.To calibrate Type | error control by both procedures, we
Correspondence between observed and expected positive tagtsn subdivided the control group into two randomly decided
was closer for the theoretical test of the ANCOVA coefficiensubsets and compared the observed number of positive tests

30000 40000 50000

20000

Expected Number of False Positive Tests

10000

0
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@)

Fig. 3. The results of testing for a neuroanatomical difference between two groups of MRI data, acquired from 18 adolescents with hyperkieetimdisord
16 matched control subjects. (a) A pair of sagittal slices through the right hemisphere are $®owm (left column) and4+-12 mm (right column)
lateral to the cerebral midline in standard space.

(at cluster level) to the expected number of false positive The results of using cluster area to test (by permutation)
tests. As in the case of calibrating voxel testing procedurder a difference between the two original groups are shown
the observed number of positive tests should be equal to iheFig. 3.

expected number of false positive tests. It can be seen from

Fig. 5 that the permutation distribution consistently yield®. Cluster Mass

almost exactly the number of positive tests expected under therhe permutation distribution for cluster mass was ascer-
null hypothesis, whereas the theoretical distribution generatlyined in exactly the same way as described for cluster area,
yields fewer positive tests than expected. This disparity is lesgcept for the obvious difference that the masgather than
obvious for smaller test sizes. However, in general it seeragear of each suprathreshold cluster was estimated after each
that the theoretical distribution is somewhat over conservatiygermutation and pooled over the search volume (see Fig. 6).
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(b)

Fig. 3. (Continued) The results of testing for a neuroanatomical difference between two groups of MRI data, acquired from 18 adolescents with hyperkinetic
disorder and 16 matched control subjects. (b) Another pair of sagittal slices are shiddvmm (left column) andt-27 mm (right column) lateral to the
cerebral midline. In both displays, the top row shows the results of thresholding a voxel test statistic (ANCOVA model coefficieRt)<ivitl)5. Voxels
demonstrating significant grey matter volume deficit in the hyperactive group are colored blue and voxels demonstrating significant grey matisceskim

in the hyperactive group are colored yellow. The middle row shows the results of thresholding cluster arBa<witid5. Clusters demonstrating significant

grey matter deficit in the hyperactive group are colored blue and clusters demonstrating significant grey matter excess in the hyperactive ¢preg are co
yellow. The bottom row shows the results of thresholding cluster mass Avith 0.05. The color table is as for cluster area. The expected deficits in grey
matter volume of right prefrontal cortex and basal ganglia are demonstrated most clearly in the hyperactive group by the test based on cluster mass.

We could find no theoretical distribution farin the existing  The results of using cluster mass to test (by permutation)

literature. for a difference between the two original groups are shown
Type | error-calibration curves for the permutation distrin Fig. 3.

bution of  are presented in Fig. 7. It can be seen that the

observed number of positive tests is almost exactly equal to

the number of false positive tests expected under the nullThe main aim of this paper has been to compare two ways

hypothesis. of testing three different kinds of statistics that might be of

IV. DISCUSSION
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Fig. 4. Theoretical and permutation distributions for the area of suprathresh-
old clusters under the null hypothesis. The histogram shows the permutation
distribution and the solid line shows the theoretical distribution (9) with
FWHM = 5.67 voxels andu = 1.85.

tive Tests
300

value in identifying a neuroanatomical difference represented:
in structural MRI data acquired from two groups of subjects.
Specifically, we have estimated global, voxel, and cluster
statistics and tested each of these (wherever possible) again
both a null distribution derived from normal theory and a null
distribution derived from repeated permutation of the observed
data.

One of our findings has been that cluster statistics appea
to be more specifically informative about the neuroanatomical
differences between these two quite small groups of subject
than either global or voxel statistics. This is perhaps not a
particularly surprising observation given the extensive litera- o |
ture advocating cluster statistics in the context of functional
neuroimaging [4]-[6], [9]. Even without the benefit of this
literature, one might expect cluster statistics in structural
neuroimaging to be more informative than voxel tests simply ()
because measurements on suprathreshold clusters are rfigré. Type | error-calibration curves for tests of cluster area by theory and
informed by the ful dimensionaliy of the data. A voxePETUAIET, The expertn tmberof e posie clisrs e 5 enge o
statistic is based on only one dimension: the feature or effegber of significant clusters following tests by theory (dashed line and
estimated at that voxel. Cluster area is additionally informesiicles) and permutation (solid line and triangles). The two groups tested

: ; ; ere randomly decided subsets of the control subjects. Therefore, the number
by the = and Y spatlal dimensions of the data, but Som&(f observed and expected tests should be equal (dotted line). (a) Cluster area

information in the effect dimension is lost by setting allvas measured in the thresholded effect maps obtained by fitting an ANOVA
suprathreshold voxels to the same value. Cluster massmigiel (4) at each voxel. (b) Cluster area was measured in the thresholded
also informed by two spatial dimensions and has the furthgfect maps obtained by fitting an ANCOVA model (7) at each voxel.
advantage of preserving information in the effect dimension.
Extrapolating, we might expect to find that estimating clustérere without imposing unrealistic demands on computational
mass in all three spatial dimensions would provide even maesources. Nominal Type | error control for all voxel and
informative measures of the difference between groups. cluster permutation tests has been demonstrated by analysis
Another main finding concerns the development amaf two randomly decided subsets of the control group data.
(cross) validation of permutation procedures for testing glob&lpr some test statistics, we found the theoretically ascertained
voxel, and cluster statistics. We have shown that permutatioall distribution was closely approximate to the permutation
distributions can be ascertained for all the statistics considewidtribution and provided approximately equivalent quality
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Fig. 6. Permutation distribution for the mass of suprathreshold voxel clusters
under the null hypothesis.

250
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of Type | error control. However, in the case of the voxel
statistic estimated by fitting a simple ANOVA model, and in
the case of cluster area, the theoretical distributions seeme
somewhat over conservative for tests of size> 0.01. For

the voxel test this may not matter much since the Iarge';g
number of tests conducted is likely to enforce a more stringent 3
probability threshold for significance than 0.01. However, one € <
of the potential advantages of analysis at a cluster levelZ
is that the smaller number of tests allows more relaxed§
probability thresholds, in the order of 0.01, so the behavior § B 1
of the theoretical distribution in this case is more likely to be W
problematic in practice. The most likely explanation for any
discrepancy between theory and permutation tests is that the <.~

alse Positive Tests
150

00

X|

T

assumptions entailed by the theoretical test were not entirely 0 50 100 150 200 50
justified in the context of the analysis. In our first example, Observed Number of Positive Tests
the residuals of the ANOVA model may not, in fact, have had ®)

a standard normal distribution, due to the unmodeled effects o

f other factors such as handedness. Likewise the expone Iﬂ%ﬂ. Type | error-calibration curves for tests of cluster mass by permuta-
0' 0 L T ’ p .I’} - The expected number of false positive clusters over a range of sizes of
distribution adopted for cluster area is based on theoretie&dt0.005 < P < 0.1 can be compared directly to the observed number of

results that are only exact in the case of much higher valuaghificant clusters following tests by permutation (solid line and triangles).
The two groups tested were randomly decided subsets of the control subjects,

for the voxel t.hl’eSh0|dc th"fm \_Ne ha_ve applied here. therefore, the number of observed and expected tests should be equal (dotted
On the basis of these findings, it would clearly be wronine). (a) Cluster mass was measured in the thresholded effect maps obtained

to advance any general conclusions about the validity BY TR 20 ChCdh Ete 80 8 e ing an ANCOVA model (7) at
theoretical tests for structural brain-image analysis. If th&ch voxel.

assumptions they entail are justified by the data, it seems likely

that they will yield very similar results to the corresponding . . i )
permutation test [20]. However, the validity of permutation Historically, the advantages of permutation testing have
tests is generally conditional on far fewer assumptions aR§en well recognized, but mitigated by the computational cost
permutation tests can be readily devised for any statistic ®ftailed. To paraphrase a remark made by R. A. Fisher [12],
interest. For example, here we were interested in cluster maésults obtained by theory are valid only insofar as they are
which could be easily tested by permutation (and only bgorroborated by permutation, but this elementary method is

permutation). tedious. With the increasing accessibility of powerful micro-
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processors, the tedium of permutation testing is much reducgid)
and there seems no important argument remaining agai 5
preferred use of this elementary but exact and flexible meth%j%]
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