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ABSTRACT 

As intelligent environments become more capable, they should also provide interactive 
and convenient help to a user.  As a step toward this vision, I have developed an agent-
based help system for the MIT Artificial Intelligence Laboratory’s Intelligent Room, 
called AFAIK.  AFAIK stresses autonomy, interactivity, and the use of multiple 
modalities.  For example, AFAIK interacts with a user through a speech interface in 
addition to a traditional graphical user interface.  Help content is written in XML, 
which provides structure to the knowledge within AFAIK.  As of April 2001, the Help 
System is an operational component of the Intelligent Room. 
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C h a p t e r  1  

INTRODUCTION 

Imagine walking into a modern conference room for the first time.  As you 

look around, you see a myriad of displays, cameras, microphones, and other high-tech 

gadgets.  Being naturally curious, you wish to use and play with these resources in the 

room.  However, there is no one around to ask for help.  The people who built this 

environment are all out to lunch, and none of them brought their cell phones with 

them.  On a desk in the center of the room sits a four-inch thick book entitled, “How 

To Operate This Environment.”  Aghast by the daunting size of this user’s manual, 

you cry out, “Please help me!”  Suddenly, the room reacts to your distress call, and 

responds by speaking to you.  Surprised by this voice, you reply by asking, “What can I 

do in this room?”  A projector turns on and displays a list of applications you can use 

and devices you can control. 

1.1. OBJECTIVE: TO CREATE AN INTELLIGENT HELP SYSTEM 
The conference room in the above scenario is not an ordinary conference 

room.  It is an intelligent environment at MIT’s Artificial Intelligence Laboratory called 

the Intelligent Room.  However, even though the Intelligent Room can perform many 

impressive tasks, until recently, it could not provide the simple help described in the 

above scenario.  My thesis is about technology that rectifies this problem. 

My objective is to create an intelligent help system for the Intelligent Room.  

The help system I created is called AFAIK, and it enables a person in the Intelligent 

Room to interactively access a knowledge base containing helpful information.  The 

information within AFAIK is structured, and is written by the developers of the 
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Intelligent Room in XML.  This thesis documents my research, design, and 

implementation of AFAIK. 

In Chapter 2, I provide some background information relating to the 

development of AFAIK.  In Chapter 3, I describe the issues relating to the design of 

AFAIK.  In Chapter 4, I provide a detailed description of AFAIK.  In Chapter 5, I 

illustrate how AFAIK works using a sample scenario.  In Chapter 6, I present the next 

steps for AFAIK.  Finally, in Chapter 7, I conclude with the contributions of this 

thesis to the Intelligent Room Project. 

1.2. AFAIK IS DRIVEN BY FOUR MOTIVATIONS 
1.2.1. Smart environments are complex 

The Intelligent Room is a complex synergy of software agents, hardware 

devices, and human researchers.  New features are added daily, which increases the 

capability and functionality of the Intelligent Room.  Unfortunately, the improvements 

in capability and functionality come at a cost of increased complexity.  At the time of 

writing, there are over one hundred thousand lines of software code, a dozen 

computers, multiple input and output devices, and over twenty researchers.  For 

example, there are more than a half dozen ways of turning on the lights in the 

Intelligent Room.  Many tasks are daunting even for the most seasoned developer, let 

alone a novice user.  Therefore, there is a need to convey simple information about 

operating and interacting with Intelligent Room in a straightforward manner. 

1.2.2. The knowledge about the Intelligent Room is distributed 
The people who know best how to operate the Intelligent Room are the 

researchers who install the hardware and write the software.  Unfortunately, no single 

researcher knows every single feature or option; knowledge is distributed over a dozen 

researchers.  In addition, the Intelligent Room incorporates projects from other 
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research groups.  The InfoLab, Vision Interface Project, and Design Rationale research 

groups routinely demonstrate their projects using the Intelligent Room as a base 

platform.  For example, Design Rationale’s Assist sketch-understanding tool 

[Alvarado00] is integrated into the Intelligent Room, and serves as an additional input 

modality.  Therefore, there is a need to centralize the knowledge relating to the 

Intelligent Room. 

1.2.3. An autonomous avatar is needed 
In addition to centralizing the knowledge, presenting the knowledge to a user 

needs to be done autonomously.  It is infeasible to staff the Intelligent Room with a 

knowledgeable researcher whenever a person wishes to use the Intelligent Room.  

Traditionally, in order to give demonstrations of the Intelligent Room, a researcher had 

to be present to inform the audience how to interact with the Intelligent Room.  

Ideally, the audience should be able to learn how to use the Intelligent Room by 

themselves without the presence of a researcher.  Therefore, there is a need for an 

autonomous avatar containing a centralized knowledge base that continuously runs in 

the Intelligent Room. 

1.2.4. The Intelligent Room is extending beyond a research platform 
The above motivations relating to complexity, decentralization, and autonomy 

are relevant to a recent initiative of the Intelligent Room project.  Beginning in the 

spring of 2001, the technology of the Intelligent Room was released to other groups 

within the Artificial Intelligence Laboratory.  This release initiative packaged together 

the Metaglue software infrastructure, numerous software agents, and various hardware 

technologies.  The package is then distributed to the different offices within the 

Artificial Intelligence Laboratory.  In essence, each distribution is a miniature version 

of the Intelligent Room.  This release initiative allows other people use Intelligent 

Room technology and increases the visibility of the Intelligent Room project. 
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The people who receive the Intelligent Room technology are not associated 

with the Intelligent Room project itself.  As a consequence, these people need to be 

trained and instructed on the use of the technology.  An interactive help system that is 

packaged with the released technology should alleviate this problem.  For example, 

when a person first receives the Intelligent Room technology, the help system can lead 

him through the initial setup of the technology, and introduce him to some simple 

features of the Intelligent Room package. 
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C h a p t e r  2  

BACKGROUND 

2.1. THE INTELLIGENT ROOM IS A SMART ENVIRONMENT. 
The Intelligent Room project at MIT’s Artificial Intelligence Laboratory is a 

platform for researching the interaction between humans and computers.   

The Intelligent Room itself is a conference room at the Artificial Intelligent 

Laboratory.  The Room is equipped with numerous input and output devices, which 

enable people to interact naturally with the Room.  For example, the Intelligent Room 

has: 

• Cameras to see people and events [3.1.a] 

• Microphones to hear verbal commands and oral conversations [3.1.b] 

• Speakers to output synthesized voice and play music [3.1.c] 

• Projectors to display graphical information [3.1.d] [3.1.f] 

• LED signs to display textual information [3.1.e] 

• Various consumer technology such as VCRs, DVD players, and tuners 

These devices work collaboratively with various computer vision1, speech 

recognition, and natural language processing systems2.  For example, instead of using a 

traditional keyboard and mouse to look up the current weather in Boston, a person can 

point to Boston on an interactive map projected onto the wall and say, “What is the 

                                                 
1 Vision Interface Project, MIT Artificial Intelligence Laboratory 

2 Infolab, MIT Artificial Intelligence Laboratory 
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weather in Boston?”  In another example, the Intelligent Room turns on the lights 

when a person walks into the room.  When the person sits down at a chair, the 

Intelligent Room turns on a display that faces the person. 

 

2.1.a – Controllable Sony camera mounted on the 
ceiling of the Intelligent Room 

2.1.b – Array of microphones in the ceiling of the 
Intelligent Room 

2.1.c – Bose speakers mounted in a corner of the 
Intelligent Room provide sound output. 

2.1.d – Projector mounted to the ceiling, which 
projects a display onto the opposing wall. 

2.1.e – Alpha LED display, which displays textual 
data. 

2.1.f – Three projectors provide a large “display 
wall.” 
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2.2. METAGLUE IS A SOFTWARE SYSTEM FOR PROGRAMMING AGENTS 
Numerous software agents control the devices and interactions in the 

Intelligent Room.  These agents are developed under the Metaglue Agent System. 

[Phillips99]  The Metaglue Agent System is a Java-based programming environment 

for software agents, and relies on Java’s RMI for inter-agent communication. 

2.3. PREVIOUS WORK RELATING TO AFAIK 
2.3.1. A previous help system for the Intelligent Room 

The Sally [Groh99] system was a precursor help system for the Intelligent 

Room.  Sally’s approach was to start with an empty knowledge base and accumulate 

knowledge by learning information from users in the Intelligent Room.  For example, 

when a user asks, “How do I use the telephone,” Sally searches through its knowledge 

base for an answer.  If Sally does not know, it will ask the user for the information and 

remember the user’s response in its knowledge base.  The next time a user asks, “How 

do I use the telephone,” Sally’s knowledge base contains the matching answer, and 

Sally responds with the information in its knowledge base. 

However, Sally was not fully deployed in the Intelligent Room.  This was partly 

due to the high time expense of the initial knowledge accumulation.  In addition, while 

Sally supported multimedia data, the data within Sally was unstructured.  As a result, it 

is difficult to browse and organize the information contained within Sally. 

2.3.2. Intelligent tutoring systems extend help systems 
While intelligent help systems such as AFAIK and Sally respond to requests 

for help, intelligent tutoring systems can proactively provide help to a user.  This ability 

makes intelligent tutoring systems better suited towards the task of teaching.  Tutoring 

systems deal with the research areas of knowledge representation, student modeling, 

and tutorial strategies [Byerley88].  The ability to change the information within a 
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knowledgebase and change the information delivery strategy based on the properties 

of the user distinguishes intelligent tutoring systems from other forms of electronic 

help. 

One such system is Dominie. [Byerley88]  Dominie is an intelligent tutoring 

system designed for teaching procedural knowledge about a network switch.  Dominie 

models the user based on three characteristics, such as the user’s motivational state.  

Based on these characteristics of the user, Dominie employs one of six tutorial 

strategies, such as teaching with a top-down approach or using practice examples. 

[Byerley88]  Another intelligent tutoring system is a system for learning in the context 

of air traffic control training. [Morrisroe88]  This system consists of a Knowledge-

Based Tutor (KBT) that monitors the user’s actions and changes the operation of the 

system accordingly.  If the KBT detects a problem, it can change the current scenario 

and provide assistance to the user, or remember the circumstances of the problem and 

present advice to the user at the end of the training session. 

Intelligent tutoring systems are an interesting field of research, and share many 

of the same research issues as intelligent environments.  Thus, intelligent tutoring 

systems represent a plausible next step for AFAIK (see Section 6.1). 
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C h a p t e r  3  

DESIGN FEATURES 

3.1. AFAIK IS INTERACTIVE 
Interactivity is an important design characteristic for systems that deal with 

human users.  An interactive computer program can directly respond to a user, and the 

operation of an interactive program depends on the user’s input.3  Usually, the flow of 

communication with an interactive program is bi-directional between the program and 

the user.  In contrast, a printed user’s manual is not interactive.  The flow of 

communication is usually in one direction: from the manual to the user.  The printed 

manual reads the same regardless of the user. 

One method of capturing information about the Intelligent Room is to write a 

printed user’s manual.  When a user wants to learn about the Intelligent Room, she can 

read through this manual.  If she wants to learn about a specific topic, she can look 

through the index and find where the information for the topic is.  However, this 

approach does not scale well.  Reading through a three inch thick manual is tedious, 

especially if the user only wants to find out how to turn on the lights.  Updating a 

printed manual may also be problematic for anyone who adds or modifies information.  

In addition, a printed manual does not take full advantage of the Intelligent Room’s 

capabilities. 

AFAIK avoids these pitfalls by stressing interactivity to provide a better 

experience for the user.  AFAIK presents help information to the user in electronic 

                                                 
3 Webster’s Dictionary 
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form, which allows the information to by dynamically changed.  Searching through a 

large knowledge base is much simpler when the knowledge base is in electronic form. 

In addition, one consequence of interactivity is that it enables a user to learn 

procedural information, and then apply the information.  For example, in the 

Microsoft Windows help system, a user can read about “emptying the recycle bin,” and 

then actually have the Windows help system empty the recycle bin.  AFAIK functions 

in much the same way.  A user reads about how to “turn on the lights,” and then is 

able to have the Intelligent Room actually turn on the lights. 

3.2. AFAIK IS MULTI-MODAL 
The Intelligent Room supports human-computer interaction through 

numerous modalities.  As previously mentioned, the Intelligent Room’s cameras and 

microphones enable gesture recognition and speech recognition.  AFAIK takes 

advantage of these numerous modalities by presenting information through multiple 

channels and receiving information via multiple channels.  For example, a user can 

query help by either typing in a question or speaking a question.  Or, when the 

Intelligent Room incorporates gesture recognition in the near future, a user can query 

help by shrugging her shoulders.  In addition, a user can select a link in a help file by 

using a mouse or pointing to the link with her finger.  Similarly, the user receives the 

requested information via a projected display or by the computer speaking back to the 

user. 

One benefit of using multiple modalities is increased flexibility.  With multiple 

modalities, a user can select her preferred way of interacting with AFAIK, and control 

how AFAIK responds back. [Oviatt00]  A user can use a single method, such as 

browsing with a keyboard and mouse, or a combination of multiple methods to 

efficiently interact with AFAIK.  When a single modality is not available, having 
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multiple modalities allows AFAIK to interact with a user through alternate modalities.  

For example, if all the projectors in the Intelligent Room are busy displaying 

information, then the user can still interact with AFAIK by using the speech interface.  

Therefore, AFAIK’s use of multiple modalities accommodates a wider range of users 

and situations than a similar system with a single modality. [Oviatt00] 

Another benefit of using multiple modalities is the possibility of better 

learning.  There is biological evidence that sensory information is accumulated, and not 

averaged across multiple modalities; combining information from multiple modalities 

results in a stronger neural reaction than the effects of a single modality. [Sharma98]  

Therefore, using multiple modalities is an efficient way of transferring information 

from AFAIK to a user. 

3.3. AFAIK USES STRUCTURED INFORMATION 
There are many ways of classifying information.  One common method of 

classifying information is to distinguish between procedural information and model 

information. [Jerrams-Smith88]  Procedural information gives users procedures on 

how to perform tasks.  For example, an ordered list of what buttons to push on a 

telephone to dial a number is procedural information.  Model information gives users 

knowledge of the underlying model of the situation or application.  For example, an 

explanation of why the telephone rings when someone dials its number is model 

information.  Another way of classifying information is to arrange information by 

detail level.  For example, the operation of a telephone can be described by a short 

introductory sentence, or by a detailed report. 

AFAIK supports the classification of information, using any number of 

classifications, by using XML as the language for its help files.  XML, or eXtensible 
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Markup Language, is the universally accepted format for structured data.4  XML allows 

textual information to be “marked up” in an application independent and platform-

independent manner.  For example, the following XML fragment describes that the 

movie “AI” has an actor named Haley Joel Osment. 

<movie>
<title>AI</title>
<year>2001</year>
<actors>
<actor>
<name>Haley Joel Osment</name>
<quote>I’m a real boy.</quote>

</actor>
</actors>

</movie>

With XML, AFAIK can distinguish between procedural information and 

model information, or between high-level information and low-level information.  

Section 4.1 describes the organization of information within a help file in more detail. 

3.4. AFAIK IS EASY TO USE 
As with almost every system, ease of use should be a major design goal.  

AFAIK has two categories of users, both of which require ease of use. 

Information suppliers are usually researchers and developers in the Intelligent 

Room project.  These researchers and developers write the software that controls the 

Intelligent Room, install the hardware that operate in the Intelligent Room, and plan 

the interactions in the Intelligent Room.  Developers can easily add or modify 

information within help files because of the structured nature of AFAIK’s help files, 

and the use of a standardized language (see Section 3.3). 

                                                 
4 World Wide Web Consortium 
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The requestors of knowledge are the users of the Intelligent Room, namely the 

people who want to learn how to use the Intelligent Room.  AFAIK is easy to use 

from their perspective as well.  The user does not have to say more than a few phrases 

or click more than a few links to reach the desired information. 
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C h a p t e r  4  

OVERVIEW OF AFAIK 

AFAIK uses elements from Metaglue, XML, HTML, Java, and JavaHelp.  This 

chapter describes in detail the major components of AFAIK, and how all the 

components work together to provide help to a user in the Intelligent Room. 

4.1. HELP FILES ENCAPSULATE KNOWLEDGE 
The help file is a basic unit of knowledge in AFAIK.  Each help file contains 

knowledge about a specific topic, where a topic can be an agent, a device, or any other 

resource.  For example, a telephone in the Intelligent Room might have a help file that 

describes how a person can use the telephone, and the lighting system might have a 

help file that describes how a person can operate the lights in the Intelligent Room.  A 

help file essentially encapsulates the knowledge of a researcher regarding a specific 

topic. 

4.1.1. Help files are written in XML 
As mentioned in section 3.3, AFAIK’s help files are written in XML.  The 

following section describes how help files are written in XML, and a sample XML help 

file is given in Appendix A.  The XML help file begins with the <helpfile> root 

element and ends with the </helpfile> element. 

<helpfile>
… contents go here …

</helpfile>
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4.1.1.1. XML help files support standard HTML elements 

XML help files support a number of standard HTML elements, such as bold, 

italics, underline, paragraph, unordered list, and line break.  These tags format text in 

XML help files.  XML help files also support embedded images, using the following 

format. 

<img src=“image.jpg”>
This is the caption for the image.

</img>

Finally, XML help files use the HTML hyperlink <a> tag to allow a person 

viewing a help file to instantaneously jump to a Uniform Resource Locator.  The 

support of hyperlinks provides increased interactivity in the browsing of help files. 

4.1.1.2. Action elements trigger actions in the Intelligent Room 

In addition to a number of standard HTML elements, XML help files support 

customized “action” elements.  These special elements, such as <say> and <do>, 

provide a great deal of interactivity in the help file.  The <say> element denotes that 

AFAIK should say the specified text using speech synthesis, and the <do> element 

denotes that AFAIK should say and act upon specified text.  In the following example 

of a command to a Telephone, AFAIK will both say “Dial a number” and perform the 

specified command when the user selects the action element. 

<ul>
<li>
To dial a phone number, say <do>Dial a number</do>.

</li>
</ul>

The AFAIKActionAgent (see Section 4.2.4) interprets the special action 

elements and acts upon them.  A developer in the Intelligent Room can easily add a 

new action element to perform a custom action. 



 22

4.1.1.3. Help files are referenced by name 

Each help file has a name, which is also used as the file name.  For example, a 

help file for the Telephone is named Telephone, and is located in the file 

Telephone.xml.  The name of the help file, and thus the name of the help topic, is 

specified in the XML source file using the following format. 

<name>
Telephone

</name>

In this example, the name of the help file is “Telephone.”  For simplicity, the 

name of a help file should be unique, although this uniqueness is not required. 

4.1.1.4. Help files are also referenced by keywords 

If help files were only referenced by their names, then the user would have to 

know the name of a help file in order to query it.  Therefore, AFAIK’s help files can 

also be referenced by keywords.  These keywords, or key-phrases to be exact, are 

comma-delimited strings specified in the XML source file.  For example, the following 

example specifies keywords for the Telephone help file. 

<keywords>
telephone, phone, ringer, telephone system

</keywords>

Thus, if a user requests help about a “ringer”, then AFAIK will respond with 

the Telephone’s help file, even though the user did not specifically say “telephone.” 

4.1.1.5. Help files are divided into subtopics 

The information concerning a specific topic in a help file can be further 

separated into subtopics.  As mentioned in Section 3.3, this structures the information 

within help files.  For example, a help file for the topic of “Telephone” may have the 

subtopics of Overview, Details, Usage Examples, and Related Links.  In this instance, 

Overview contains a one sentence overview of the Telephone, Details contains model 
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information about the specifics of the Telephone, Usage Examples contains 

procedural information regarding the Telephone system, and Related Links contains a 

list of hypertext links to related help files and web sites.  The subtopics element of the 

XML help file denotes the beginning of the subtopics section, which contains the 

subtopics of the help file. 

<subtopics>
… The subtopics go here…

</subtopics>

The writer of a help file creates individual subtopics using the subtopic element 

and the name attribute. 

<subtopic name=“Overview”>
This is the overview sentence.

</subtopic>

In the above example, the name attribute identifies the subtopic as the 

“Overview” subtopic.  The subtopics section can contain multiple unique subtopics.  

For example, the Telephone XML help file might have the following subtopics. 

<subtopics>

<subtopic name=“Overview”>
The telephone does foo.

</subtopic>

<subtopic name=“Details”>
The telephone does bar.

</subtopic>

<subtopic name=“Usage Examples”>
<ul>
<li>
To dial a phone number, say <think>Dial a number</think>.

</li>
<li>
To end the phone call, say <think>Hang up</think>.

</li>
</ul>

</subtopic>
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</subtopics>

4.1.2. The HelpFile Object represents a help file 
While AFAIK’s help files are written in XML, help files are passed within the 

AFAIK as serializable Java objects.  I created the HelpFile Java object to represent an 

XML help file in the Metaglue programming environment.  The HelpFile Java object is 

created from the Uniform Resource Locator of the source XML help file. 

4.1.2.1. The main methods of HelpFile 

• get() returns the textual information within the HelpFile’s current subtopic, 

getNext() returns the textual information within the next subtopic, and 

get(String) returns the textual information with the specified subtopic.  The 

AFAIKActionAgent (see Section 4.2.4) uses these methods to determine what 

text should be spoken by the speech system. 

• getKeywords() returns an ArrayList of this HelpFile’s keywords (see Section 

4.1.1.4). 

• getURL() returns the Uniform Resource Locator of this HelpFile’s 

corresponding HTML file.  The AFAIKNavigatorAgent (see Section 4.3.2) 

uses this method to determine which URL to display on the graphical user 

interface. 

• toHTML() generates an HTML equivalent of the XML help file.  Section 

4.1.2.3 explains why this transformation is useful. 

4.1.2.2. The HelpFileExtractor extracts information from XML 

I created the HelpFileExtractor java class to extract the information within an 

XML file, and store this information using standard Java utility classes, such as 

ArrayLists, Vectors, and Hashtables.  This enables other Java objects and Java agents 
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to efficiently access the information within a help file.  The HelpFileExtractor 

performs the following tasks. 

• Extracts the name of the help file, and stores it as a String object in the 

HelpFile. 

• Extracts and parses the comma-delimited keywords.  These keyword or key-

phrases are stored as individual String objects in an ArrayList.  Additionally, if 

the name of the help file is not listed as a keyword, it is added to the ArrayList 

as a keyword.  Storing keywords in a ArrayList provides convenient and 

efficient access to the keywords by other Java objects or agents. 

• Extracts the names of the subtopics in the help file.  These subtopic names, 

such as “Overview” and “Details” are stored as String objects in an ArrayList. 

• Creates Uniform Resource Locator objects for each subtopic section.  These 

URLs allow a user to quickly jump to each subtopic section. 

• Extracts the text within each subtopic, and stores the text as String objects in a 

Hashtable.  AFAIK uses the String name of the subtopic as the key of each 

subtopic Hashtable entry. 

• Saves the data within the XML help file as a Java Document Object Model 

structure.  This DOM structure is a hierarchical tree, and is used by the XML 

Translater (see Section 4.1.2.3) to translate XML into HTML. 

4.1.2.3. The XMLTranslator translates XML into HTML 

In addition to extracting information from a source XML help file, AFAIK 

also translates a source XML help file into an HTML file.  This translation is necessary 

because the design of AFAIK distinguishes the representation of information from the 
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presentation of information.  XML is meant to encapsulate information in a 

meaningful manner, and cannot be displayed by itself.  For example, in XML <li> 

could mean a list item element, or the atomic element Lithium.  HTML on the other 

hand, is the standard display formatting language on the Internet.5  HTML provides 

numerous text formatting capabilities, and is well suited to the visual presentation of 

information.  Therefore, AFAIK translates XML help files into HTML in order to 

properly display the information within a help file.  An additional benefit of using 

HTML to display help file information is the availability of third party HTML 

browsers.  If information is in HTML form, a user can use Microsoft’s Internet 

Explorer or Netscape’s Communicator, in addition to the AFAIK’s JavaHelp 

AFAIKNavigatorAgent (see Section 4.3.2), to view help files. 

I created the XMLTranslator to translate an XML help file into an HTML help 

file.  XMLTranslator obtains a DOM structure from the HelpFileExtractor (see 

Section 4.1.2.2) and transforms the DOM using XSLT.  XSLT, or eXtensible 

Stylesheet Language Transformations, is a World Wide Web Consortium standard, and 

is based on XSL style sheets.  XSL defines how XML elements will look in HTML, 

and is itself an XML file.  The following example illustrates how XSLT transforms an 

XML help file into its HTML equivalent; the full XSL used in AFAIK is in Appendix 

B. 

<xsl:template match=“/”>
<html>
<xsl:apply-templates select= “helpfile” />

</html>
</xsl:template>

The above code fragment is the first part of the help file XSL document.  

XSLT looks for the presence of the root element in the XML file, and when found, 

inserts the beginning <html> and ending </html> elements into the HTML 

                                                 
5 World Wide Web Consortium 
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document.  Between these two elements, the XSL document specifies that rules in the 

template with the name “helpfile” should be used if the <helpfile> element is 

present in the XML file.  This template is shown below. 

<xsl:template match=“helpfile”>
<head>
<title>
<xsl:apply-templates select=“name” />

</title>
</head>
…

</xsl:template>

XSLT looks for the element <helpfile> and replaces it with the HTML head 

and title elements.  Next, the XSL document specifies that the rules in the template 

with the name “name” should be used if the <name> element (see Section 4.1.1.3) is 

present in the XML file.  This template is shown below. 

<xsl:template match=“/name”>
<xsl:value-of select= “text()” />

</xsl:template>

The / before “name” specifies that only <name> elements that XSLT should 

only match <name> elements that are children of the root element.  Upon finding a 

<name> element in the XML file, XSLT adds the text within the <name> element to the 

HTML file.  For the example in Section 4.1.1.3, the following is added to the HTML 

file. 

<html>
<head>
<title>
Telephone

</title>
</head>
…

</html>

XSLT transforms the rest of the XML help file, including the subtopics, in a 

similar manner.  In most cases, the XSL transformations simply match XML elements 
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with their HTML equivalent.  For example, bold text marked by <b> elements in the 

XML file is transformed into bold text using <b> elements in HTML. 

Transforming XML into HTML can be computationally expensive, and can 

take on the order of seconds for a large help file.  Therefore, to avoid this 

computation, AFAIK first checks to see if the HTML equivalent of an XML help file 

exists.  If the HTML file exists and is up to date, then AFAIK will not regenerate it. 

4.2. AFAIK’S MAIN AGENTS 
4.2.1. The JavaHelpAgent interfaces AFAIK and JavaHelp 

AFAIK uses Sun’s JavaHelp system to visually display and navigate through 

help files.  I created the JavaHelpAgent to enable AFAIK to use Sun’s JavaHelp 

system.  This section gives an overview of JavaHelp, and describes how the 

JavaHelpAgent generates the files needed by JavaHelp to display help files.  Section 

4.3.2 describes how AFAIK uses JavaHelp to display and navigate help files. 

4.2.1.1. Overview of Sun’s JavaHelp system 

Sun Microsystems developed JavaHelp as an extensible help system.  It is 

similar to Microsoft’s Windows Help system, and is designed to display help files in 

HTML format.  JavaHelp is written completely in Java, and thus integrates well into 

the Java-based Metaglue Agent environment.  JavaHelp provides a platform 

independent and an easy to use front end for navigating through help files.  Platform 

independence is a necessary feature for AFAIK, because the Intelligent Room uses a 

mixture of Windows and Unix based computers.  JavaHelp enables a user to view help 

files from either operating system.   
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4.2.1.2. The main methods of JavaHelpAgent 

The JavaHelpAgent provides four methods, each of which generates a specific 

file needed by Sun’s JavaHelp System.  These four methods are called when AFAIK is 

started, or whenever a help file is added or removed from AFAIK. 

• generateHelpSet() generates the JavaHelp helpset file.  The helpset file is 

an XML file that specifies the overall look and organization of the JavaHelp 

AFAIKNavigatorAgent (see Section 4.3.2).  The helpset file typically specifies 

two adjacent windows, with the table of contents in the left window, and the 

content of help files in the right window. 

• generateTOC() generates the JavaHelp table of contents file.  The table of 

contents file is an XML file that lists all the help file topics and subtopics in 

AFAIK.  This file also specifies the ordering of the topics and subtopics listed 

in the JavaHelp navigator. 

• generateIndex() generates the JavaHelp index file.  The index file is similar 

to the table of contents file, for it contains the same list of help file topics as 

the table of contents files.  However, for convenience, the table of contents is 

alphabetized.  The alphabetical sorting is accomplished by storing the topics in 

a SortedTree container. 

• generateMap() generates the JavaHelp map file.  The map file is an XML file 

that specifies the correspondence between pages in the JavaHelp navigator 

with the HTML URLs of the help file topics.  AFAIK iterates through the all 

help files in AFAIK, and stores the URLs of all the topics and subtopics 

found. 
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4.2.2. The HelpFileManagerAgent manages the knowledge base 
The HelpFileManagerAgent is responsible for adding, maintaining, and 

removing help files in AFAIK.  The HelpFileManagerAgent is essentially a database of 

help files, and acts as the central knowledge base in AFAIK. 

When AFAIK starts, the HelpFileManagerAgent loads a predefined set of help 

files.  A programmer specifies these initial help files in a simple text list, and the 

HelpFileManagerAgent loads these help files into the knowledge base using the 

add(java.util.Container) method. 

4.2.2.1. The main methods of HelpFileManagerAgent 

• add(String) adds a help file to the knowledge base.  When the 

HelpFileManagerAgent adds a help file, it creates a HelpFile object from the 

source XML help file, stores the help file’s keywords, and adds the HelpFile 

object to a SmartVector container.  I wrote the SmartVector container as an 

extension of Java’s Vector container class.  SmartVector adds the ability to 

query the access times and access counts of the items in the container; this is 

useful for example for finding the last accessed HelpFile, or for finding the 

most popular HelpFile. 

• add(java.util.Container) adds multiple help files to the knowledge base.  

This is similar to add(String), and is used upon the startup of AFAIK to 

load the initial help files. 

• get(String) returns an ArrayList of all HelpFile objects that have a given 

keyword.  There could be no, one, or more than one HelpFile that has a given 

keyword.  This method will also retrieve HelpFiles with a specified name, 

because the name of a help file is also a keyword of that help file.  By storing 

loaded HelpFiles in a SmartVector container, the HelpFileManagerAgent can 
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also retrieve the previously requested HelpFile and the most requested 

HelpFile.  The getLast() and getMost() methods respectively perform 

these tasks. 

• contains(String) returns whether or not the HelpFileManagerAgent 

contains a HelpFile with the given keyword or name.   

• getKeywords() returns an ArrayList of all the known keywords in the 

HelpFileManagerAgent.  This set of keywords is the union of the keywords of 

all individual help files loaded into the HelpFileManagerAgent. 

• getSubtopicNames() method returns an ArrayList of all the subtopic names 

in the HelpFileManagerAgent.  The AFAIKSpeechAgent, described in section 

4.3.1, uses both getKeywords() and getSubtopicNames() for the speech 

system. 

4.2.3. The AFAIKAgent is the heart of AFAIK 
The AFAIKAgent bridges agents within AFAIK with agents not in AFAIK.  

For example, the Telephone agent can ask the AFAIKAgent to provide help for a 

certain feature of the telephone.  Or, the speech system hears a question from a person 

in the Intelligent Room, and asks the AFAIKAgent to respond to the question.  In 

each case, the AFAIKAgent queries the other agents in AFAIK, such as the 

HelpFileManagerAgent and the AFAIKActionAgent, to come up with a coherent 

response to the request for help. 

4.2.3.1. The main methods of AFAIK 

• ask(String) queries AFAIK for help about a given keyword.  For example, 

ask(“telephone”) will trigger AFAIK to respond with help for the 

Telephone.  This method returns the relevant information, and requests the 



 32

AFAIKActionAgent (see Section 4.2.4) to present the information to the user.  

In addition, the ask(String,String) method queries AFAIK about a given 

keyword and a given subtopic.  For example, ask(“telephone”,“usage

examples”) will trigger AFAIK to respond with usage examples for the topic 

of Telephone.  If there is more than one help file that corresponds with a 

given keyword, then the AFAIKAgent will ask the user to select from the 

matching help files.  For example, if the keyword “telephone” corresponds to 

both the Telephone and the CordlessTelephone, then the AFAIKAgent will 

prompt the user to select either of the two topics. 

4.2.4. The AFAIKActionAgent orchestrates the delivery of information 
The AFAIKActionAgent has two roles.  First, the AFAIKActionAgent 

distributes information in a HelpFile to agents that display the information to the user.  

When the AFAIKAgent needs to present information to the user, it instructs the 

AFAIKActionAgent to present a given HelpFile.  The AFAIKActionAgent in turn 

relies on output agents such as the AFAIKNavigatorAgent and the 

SpeechTextOutputAgent to display the information in the HelpFile.  The second role 

of the AFAIKActionAgent is interpreting the special action elements in a help file.  

These action elements, such as <do> and <say>, are described in section 4.1.1.2.   

4.2.4.1. The main methods of AFAIKActionAgent 

• present(agentland.help.helpfile.HelpFile,string) and 

present(agentland.help.helpfile.HelpFile) channel information 

within the specified HelpFile to a user.  Each of these methods in turn relies 

on various agents to output information in different forms.  For example, 

section 4.3.2 describes how AFAIK uses the AFAIKNavigatorAgent to 

graphically display the HTML version of a help file.  Section 4.3.3 describes 

how AFAIK outputs the spoken text to the user. 
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• interpretHyperlink(String) interprets the action elements described in 

section 4.1.1.2.  The AFAIKNavigatorAgent converts the XML action 

elements described in section 4.1.1.1 to HTML hyperlinks for display.  For 

example, <say>Hello World</say> becomes <a href=“say://Hello

World”>Hello World</a>.  This formatting allows the user to click and 

activate an action element in the AFAIKNavigatorAgent.  When an action 

element is selected, the AFAIKNavigatorAgent calls 

interpretHyperlink(String) with the text in the href field.  The 

AFAIKActionAgent then determines what type of action to take based on the 

text in the href field. 

4.3. AFAIK’S USER INTERFACE AGENTS 
4.3.1. The AFAIKSpeechAgent provides speech interaction 

The AFAIKSpeechAgent extends the AFAIKAgent by adding speech 

recognition capabilities.  The AFAIKSpeechAgent interfaces AFAIK with Metaglue’s 

speech system, and provides the user with a speech interface to AFAIK.  When a user 

verbally requests help, the Metaglue speech system passes the user’s spoken utterance 

to the AFAIKSpeechAgent.  The AFAIKSpeechAgent in turn determines whether this 

spoken command refers to querying a help topic, or navigating within a help topic.  

For example, a user can say “Please tell me about the telephone,” or “Tell me more 

about Metaglue.”  After processing the spoken utterance, the AFAIKSpeechAgent 

queries the appropriate agents in AFAIK to come up with a coherent response to the 

request for help. 

4.3.1.1. AFAIKSpeechAgent’s grammar specifies what the user can say 

An integral part of the AFAIKSpeechAgent is the associated JSGF grammar.  

A Java Speech Grammar Format compliant grammar file is similar to a context-free 

grammar, and specifies the verbal phrases that the AFAIKSpeechAgent understands.  
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This is in contrast to allowing the AFAIKSpeechAgent to understand any English 

phrase.  By limiting the phrases and words that the AFAIKSpeechAgent understands, 

the AFAIKSpeechAgent ignores irrelevant words and thus performs more accurately.  

The AFAIKSpeechAgent’s grammar file recognizes the following situations. 

• User requests general help: “I need assistance,” or “Please help me.” 

• User requests help about a specific topic: “Please tell me about the 

Telephone,” “What is the Telephone,” or “I want to know about the 

Telephone.” 

• User requests help about a specific subtopic of a specific topic: “Give me an 

overview of the Telephone,” or “Tell me about the usage example’s of the 

Telephone.” 

• User requests more information about the current topic: “Kindly tell me 

more.” 

The above situations are only a few examples of what the 

AFAIKSpeechAgent’s grammar recognizes.  The full JSGF grammar is given in 

appendix C. 

4.3.1.2. The main methods of AFAIKSpeechAgent 

• updateKeywords() updates the AFAIKSpeechAgent’s grammar file with the 

known keywords in AFAIK.  Whenever the knowledge base of AFAIK 

changes, such as when the HelpFileManagerAgent adds a help file, 

updateKeywords() ensures that any keyword in AFAIK can be recognized 

by the Metaglue speech system by adding any new keywords to the grammar 

file. 
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• updateSubtopicNames() updates the AFAIKSpeechAgent’s grammar file 

with the known subtopics in AFAIK.  This is similar to updateKeywords(), 

and allows the user to ask about any subtopic by voice.  For example, a user 

can say, “show me the details about Metaglue,” where “details” is a subtopic of 

the topic Metaglue. 

4.3.2. The AFAIKNavigatorAgent provides a graphical user interface 
The AFAIKNavigatorAgent is the graphical front end of AFAIK.  This agent 

uses Sun’s JavaHelp system (see Section 4.2.1), and creates a JavaHelp navigator to 

display help files.  In addition, the navigator enables a user to have AFAIK perform 

actions using special action elements (see Section 4.1.1.2).  For example, the user can 

click on the action link <do>Dial a number</do>, and AFAIK will dial a number on 

the telephone. 

4.3.2.1. The design of the AFAIKNavigatorAgent is similar to a standard web browser 

The AFAIKNavigatorAgent 

uses a JavaHelp navigator to display 

help files.  Figure 4.3.2.1.a shows a 

navigator displaying the help file for 

the Intelligent Room.  The left hand 

window displays either the table of 

contents or the index.  These two 

lists are generated by the 

JavaHelpAgent (see Section 4.2.1), 

and list the help file topics and 

subtopic available.   

When a user selects a topic from the left hand window, or when a user 

requests a help topic by voice (see Section 4.3.1), the AFAIKNavigatorAgent displays 

4.3.2.1.a – AFAIKNavigatorAgent showing help for the 
“Intelligent Room” 
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the relevant help file in HTML form 

on the right hand window of the 

JavaHelp navigator.  This window is 

a customized HTML browser, and 

can display plain text, formatted text, 

images, lists, and other standard 

HTML elements.  Figure 4.3.2.1.b 

shows that when a user selects a 

subtopic of a help file topic, the 

AFAIKNavigatorAgent focuses the 

navigator’s content window on the specific subtopic. 

4.3.2.2. The main methods of AFAIKNavigatorAgent 

• display(agentland.help.helpfile.HelpFile) displays the specified help 

file to the user via the JavaHelp navigator.  The JavaHelpNavigatorAgent gets 

the current subtopic of the HelpFile via the get() method (see Section 

4.1.2.1), and outputs the information in the right hand content window. 

• display(java.net.URL) displays any generic HTML page.  As mentioned in 

section 4.2.1, the JavaHelp browser is capable of displaying generic HTML 

pages.  This ability is useful for display third-party information, such as a 

manual from a manufacturer’s web site. 

4.3.3. SpeechTextOutput provides speech synthesis 
The SpeechTextOutputAgent is part of the Metaglue speech system, and is 

used as one of the primary means of conveying information to the user.  The 

SpeechTextOutputAgent receives text from other agents, and speaks this information 

to a user using Metaglue’s text-to-speech synthesizer.  As of the time of writing, 

4.3.2.1.b – AFAIKNavigatorAgent showing the 
Examples section of “Intelligent Room” 
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Metaglue’s text-to-speech synthesizer uses a combination of IBM’s ViaVoice text-to-

speech synthesizer and British Telecom’s Laureate text-to-speech synthesizer. 

The SpeechTextOutputAgent handles large amounts of text by periodically 

asking the user if he or she would like to continue.  If the user answers “no,” then the 

SpeechTextOutputAgent silences the speech synthesizer.  This feature is necessary 

because AFAIK sometimes outputs a large amount of information via speech.  While 

other modes of interaction, such as visual displays, are more appropriate for presenting 

large amounts of information, this feature allows AFAIK to use speech out without 

encumbering the user. 
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C h a p t e r  5  

HOW AFAIK WORKS 

5.1. SCENARIO: BOB USES THE INTELLIGENT ROOM TO MAKE A 

PHONE CALL 
[Bob walks into the Intelligent Room.] 

Bob: “What can I do in this Room?” 

[A projector turns on and projects a display on a wall in the Intelligent Room.  The 

display shows the following information, while the Intelligent Room speaks the same 

information through speakers in the Intelligent Room.] 

AFAIK: “You can ask about a help topic by saying, tell me about, and then the topic.  

For example, you can find out about the lights in the Intelligent Room by saying, tell 

me about the lights.  Or, you can find out about the telephone by saying, tell me about 

the telephone.” 

Bob: “Ok then, please tell me about the phone.” 

[The display on the wall changes, and shows the Telephone help file.  At the same 

time, the Intelligent Room speaks the following.] 

AFAIK: “The Telephone is located on the main desk in the Intelligent Room.  You 

can make phone calls using the touch pad or by using your voice.” 

Bob: “How do I use the telephone?” 
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[The display scrolls down the Telephone help file to a section called Examples.  At the 

same time, the Intelligent Room speaks the following.] 

AFAIK: “To make a phone call, say make a phone call, followed by the name of the 

person you want to call, or the phone number that you want to dial.  To end the phone 

call, say hang up.  If you would like, you can also click on these links, and I will show 

you.” 

[Bob clicks on the link that says “make a phone call,” and the speakers in the 

Intelligent Room play the sound of a dial tone.] 

5.2. WHAT HAPPENS IN AFAIK DURING BOB’S SCENARIO 
5.2.1. When the Metaglue system initializes 

• The agents in the AFAIK system start up.  This includes the AFAIKAgent, 

AFAIKSpeechAgent, HelpFileManagerAgent, JavaHelpAgent, 

AFAIKActionAgent, and the AFAIKNavigatorAgent. 

• The HelpFileManagerAgent loads the initial help files, which includes 

IntelligentRoom.xml and Telephone.xml.  AFAIK also translates the XML 

help files into HTML so that they are compatible with Sun’s JavaHelp 

navigator. 

• The AFAIKSpeechAgent obtains all the keywords in the help files from the 

HelpFileManagerAgent, and dynamically adds these keywords to the 

AFAIKSpeechAgent’s grammar.  This allows the user to verbally refer to any 

of the help files in AFAIK. 

• The HelpFileManagerAgent instructs the JavaHelpAgent to generate the index 

and table of contents files needed by Sun’s JavaHelp system. 
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5.2.2. When Bob asks, “What can I do in this Room?” 

• The HelpSpeechAgent receives the sentence, “What can I do in the room,” 

which matches one of the rules in the AFAIKSpeechAgent’s grammar.  This 

rule signals the AFAIKSpeechAgent to call the method get(“Intelligent

Room”) from the HelpFileManagerAgent. 

• The HelpFileManagerAgent passes the HelpFile object that has the keyword, 

“Intelligent Room,” to the AFAIKSpeechAgent.  The HelpFileManagerAgent 

notes that this HelpFile has just been accessed, and the AFAIKSpeechAgent 

notes that this HelpFile is the current help topic. 

• The AFAIKSpeechAgent sets the current subtopic to, “Usage Examples,” and 

instructs the AFAIKActionAgent to present this HelpFile. 

• The AFAIKActionAgent receives the HelpFile from the AFAIKSpeechAgent, 

and gets the text of the current subtopic.  The AFAIKActionAgent passes this 

text to the SpeechTextOutputAgent to verbally speak the text to the user.  In 

addition, the AFAIKActionAgent instructs the AFAIKNavigatorAgent to 

display the HelpFile. 

• The AFAIKNavigatorAgent starts a new JavaHelp navigator with the index 

files provided by the JavaHelpAgent.  After the navigator starts up, it displays 

the HelpFile for the “Intelligent Room,” and scrolls to the subtopic, “Usage 

Examples.” 

5.2.3. When Bob asks, “Ok then, please tell me about the phone.” 

• The AFAIKSpeechAgent receives the sentence, “Ok then, please tell me about 

the phone.”  This sentence matches a rule in the AFAIKSpeechAgent’s 
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grammar, and triggers the AFAIKSpeechAgent to call get(“phone”) from the 

HelpFileManagerAgent. 

• The HelpFileManagerAgent passes the HelpFile object that has the keyword, 

“Intelligent Room,” to the AFAIKSpeechAgent.  The HelpFileManagerAgent 

notes that this HelpFile has just been accessed, and the AFAIKSpeechAgent 

notes that this HelpFile is the current help topic. 

• The AFAIKSpeechAgent sets the current subtopic to, “Overview,” and 

instructs the AFAIKActionAgent to present this HelpFile. 

• The AFAIKActionAgent receives the HelpFile from the AFAIKSpeechAgent, 

and gets the text of the current subtopic.  The AFAIKActionAgent passes this 

text to the SpeechTextOutputAgent to verbally speak the text to the user.  In 

addition, the AFAIKActionAgent instructs the AFAIKNavigatorAgent to 

display the HelpFile. 

• The AFAIKNavigatorAgent displays the HelpFile for the “Intelligent Room,” 

on the current JavaHelp navigator, and scrolls to the subtopic, “Overview.” 

5.2.4. When Bob asks, “How do I use the telephone?” 

• The AFAIKSpeechAgent receives the sentence “How do I use the telephone,” 

from the Metaglue speech system.  This triggers the AFAIKSpeechAgent to 

instruct the AFAIKActionAgent to present the current help file with the 

subtopic “Examples.” 

• The AFAIKActionAgent receives the HelpFile from the AFAIKSpeechAgent, 

and gets the text of the “Examples,” subtopic.  The AFAIKActionAgent 

passes this text to the SpeechTextOutputAgent to verbally speak the text to 
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the user.  In addition, the AFAIKActionAgent instructs the 

AFAIKNavigatorAgent to display the HelpFile. 

• The AFAIKNavigatorAgent displays the HelpFile for the Telephone on the 

current JavaHelp navigator, and scrolls to the subtopic, “Examples.” 

5.2.5. When Bob clicks on the link, “Make a phone call.” 

• The AFAIKNavigatorAgent detects that the user clicked on a hyperlink, which 

in this case is do://Make a phone call.  The AFAIKNavigatorAgent sends 

this hyperlink to the AFAIKActionAgent. 

• The AFAIKActionAgent interprets the do command, and relies on other 

agents in the Metaglue system to perform the command “make a phone call.”  

Essentially, the Metaglue system “pretends” that the user actually said “make a 

phone call,” while the user only clicked on the link.  If another agent’s 

grammar understands “make a phone call,” then that agent will act upon the 

utterance. 

• The TelephoneAgent’s grammar has a rule that matches the utterance, and 

initiates a phone call. 
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C h a p t e r  6  

NEXT STEPS 

6.1. FROM A HELP SYSTEM TO A TUTORING SYSTEM 
AFAIK is an intelligent help system for the Intelligent Room.  It provides help 

to a user when the user requests help.  The next step is to evolve AFAIK into an 

intelligent tutoring system (see Section 2.3.2).  This involves not only providing 

information on request, but also proactively providing helpful information. 

This improvement will lead to the Intelligent Room becoming a better learning 

environment.  The Intelligent Room can attempt to predict the user’s goals, and when 

the user falters, provide assistance to the user.  However, intelligent tutoring systems 

involve numerous research issues such as user modeling and tutorial strategy.  It is 

difficult to determine the user’s goals [Carrol88], and especially difficult when the user 

is placed into a complex environment such as the Intelligent Room. 

6.2. A DEMONSTRATION SYSTEM TO DEMO THE INTELLIGENT 

ROOM 
During the development of AFAIK, the researches in the Intelligent Room 

project gave numerous demonstrations of the Intelligent Room to supporters and 

sponsors.  As a next step, AFAIK can be modified to give interactive and autonomous 

demonstrations of the Intelligent Room. 

For example, a number of help files can be combined to present various 

features of the Intelligent Room to users viewing the demonstration.  The Intelligent 
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Room can prompt the users to speak certain commands or select certain active links to 

trigger the Intelligent Room to perform certain actions. 

6.3. A USER STUDY TO VERIFY USABILITY 
One of the design goals of this project was ease of use (see Section 3.4).  The 

best method of determining AFAIK’s usability is to conduct a usability study.  

Depending on the results of the usability study, the AFAIK’s user interface and user 

interactions can be fine-tuned. 

A test group composed of researchers in the Artificial Intelligence Laboratory 

can give insight into how well AFAIK performs with its target audience.  On the other 

hand, a test group composed of random people from the general population can give 

insight into the suitability of the general concepts of AFAIK, such as interactivity and 

the use of multiple modalities. 

6.4. USING START TO ACCESS HELP FILES 
Infolab’s START system [Katz97] is a natural language query system that has a 

more powerful language model than the Metaglue speech system’s grammars.  

Incorporating START in the AFAIK can improve access to the information within 

help files.  For example, the user can ask a natural language query, as opposed to what 

is contained in AFAIKSpeechAgent’s grammar (see Section 4.3.1.1), to obtain help 

from AFAIK. 

6.5. LEARNING NEW INFORMATION 
AFAIK only knows about information within its XML help files.  Developers 

in the Intelligent Room Project write these help files, and AFAIK loads them upon 

starting.  However, AFAIK is not able to dynamically learn information like a system 



 45

such as Sally. [Groh99]  Therefore, a next step in the development of AFAIK is to 

enable it to learn new information.   New information would be categorized as model-

based or procedural-based, and dynamically entered into an XML help file.  This ability 

to dynamically learn information results in easier input of knowledge into a help 

system. 
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C h a p t e r  7  

CONTRIBUTIONS 

This thesis describes the development of a help system called AFAIK.  As of 

April 2001, AFAIK is operating in the Intelligent Room at MIT’s Artificial Intelligence 

Laboratory.  Within the Intelligent Room project, AFAIK provides autonomous, 

interactive, and multi-modal help to users of the Intelligent Room.   

As a result of this thesis, developers can add knowledge to AFAIK by writing 

simple XML files.  Users of the Intelligent Room can request and receive help using 

either a graphical user interface or a speech interface.  AFAIK was constructed using 

the Metaglue agent programming system and takes advantage of Metaglue’s software 

infrastructure.  In addition, AFAIK provides a foundation for the next help system for 

the Intelligent Room.  Much of the software written for AFAIK can be used for future 

software projects using XML or JavaHelp. 

Finally, the design ideas of this thesis extend beyond AFAIK and the 

Intelligent Room project.  Many software systems, including help and tutorial systems, 

can benefit from using multiple modalities to interface with a human user.  Software 

systems that focus on interactivity will improve the interface even further.  Add 

autonomy as a feature, and the resulting system will be more “intelligent” and bring the 

focus back on the human user. 
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C h a p t e r  8  

8.1. APPENDIX A: A SAMPLE XML HELP FILE 
<?xml version='1.0' encoding='utf-8'?>
<helpfile version="1.0">
<name>Intelligent Room</name>

<keywords>Intelligent Room, rufus, e 21, hal, you,
yourself</keywords>

<subtopics>
<subtopic name="Overview">The
<code>Intelligent Room</code>

is a highly interactive environment. It changes the way humans
interact with computers.</subtopic>

<subtopic name="Details">
<p>The Intelligent Room is a highly interactive environment
that uses embeded computation to observe and participate in
the normal, everyday events occuring in the world around
it.</p>

<p>We want to change what it means to use a computer. Rather
than view a computer as a stand-alone box good only for word
processing or e-mail, we are embedding computers in ordinary
environments so that people can interact with them the way
they do with other people, by speech, gesture, movement,
affect, and context. We are involving computers in ordinary
everyday tasks that they have historically had no connection
with.</p>

<p>We are working towards creating environments analogous to
those so familiar to Star Trek viewers - i.e. rooms that
listen to you and watch what you do; rooms you can speak
with, gesture to, and interact with in other complex
ways.</p>

</subtopic>

<subtopic name="Examples">
<ul>
<li>To use the map system, say
<think>Show me the United States</think>.
</li>

<li>You can learn about the START system by saying,
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<think>please tell me about the START system</think>.
</li>

<li>To begin using the Assist system, say
<think>start assist</think>.
</li>

</ul>
</subtopic>

<subtopic name="Related">
<ul>
<li>The <a href="http://oxygen.lcs.mit.edu">Oxygen

Project</a>.</li>
<li>The <a href="http://e21.ai.mit.edu">e21</a> web

site.</li>
</ul>

</subtopic>
</subtopics>

</helpfile>

8.2. APPENDIX B: A SAMPLE XSL DOCUMENT 
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html" omit-xml-declaration="yes" indent="yes"
doctype-public="-//W3C//DTD HTML 4.0 Transitional//EN" />

<!-- removes white space -->
<!-- <xsl:strip-space elements="*" /> -->

<!-- first template to be matched -->
<xsl:template match="/">
<html>
<xsl:apply-templates select="helpfile" />

</html>
</xsl:template>

<!-- root helpfile element match -->
<xsl:template match="helpfile">
<head>
<title>
<xsl:apply-templates select="name" />

</title>
</head>

<body>
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<h1>
<a name="name">
<xsl:apply-templates select="name" />

</a>
</h1>

<xsl:apply-templates select="keywords" />

<hr />

<xsl:apply-templates select="subtopics/*" />

<hr />
<a href="#name">top</a> || Intelligent Room Help System v1.1

</body>
</xsl:template>

<!-- match name element that is a child of helpfile -->
<xsl:template match="/name">
<xsl:value-of select="text()" />

</xsl:template>

<!-- match keywords element that is a child of helpfile -->
<xsl:template match="/keywords">
<p>Keywords:
<i>
<xsl:apply-templates />

</i>
</p>

</xsl:template>

<!-- match all subtopics -->
<xsl:template match="subtopics/*">
<p>
<h2>
<a name="{@name}">
<xsl:value-of select="@name" />

</a>
</h2>

<xsl:apply-templates />
</p>

</xsl:template>

<!-- match standard HTML tags -->
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<xsl:template match="p">
<p>
<xsl:apply-templates />

</p>
</xsl:template>

<xsl:template match="b">
<b>
<xsl:apply-templates />

</b>
</xsl:template>

<xsl:template match="i">
<i>
<xsl:apply-templates />

</i>
</xsl:template>

<xsl:template match="u">
<u>
<xsl:apply-templates />

</u>
</xsl:template>

<xsl:template match="image">
<center>
<img src="{@src}" />

<br />

<xsl:value-of select="text()" />
</center>

</xsl:template>

<xsl:template match="a">
<a href="{@href}">
<xsl:value-of select="text()" />

</a>
</xsl:template>

<xsl:template match="br">
<br>
<xsl:apply-templates />

</br>
</xsl:template>

<xsl:template match="pre">
<pre>
<xsl:apply-templates />

</pre>
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</xsl:template>

<xsl:template match="ul">
<ul>
<xsl:apply-templates />

</ul>
</xsl:template>

<xsl:template match="li">
<li>
<xsl:apply-templates />

</li>
</xsl:template>

<xsl:template match="code|tt">
<tt>
<xsl:apply-templates />

</tt>
</xsl:template>

<xsl:template match="table">
<table>
<xsl:apply-templates />

</table>
</xsl:template>

<xsl:template match="tr">
<tr>
<xsl:apply-templates />

</tr>
</xsl:template>

<xsl:template match="td">
<td>
<xsl:apply-templates />

</td>
</xsl:template>

<!-- match custom action elements -->
<xsl:template match="subtopics//think|subtopics//do">
<a href="think://{text()}"><xsl:value-of select="text()"/></a>

</xsl:template>

<xsl:template match="subtopics//print">
<a href="print://{text()}"><xsl:value-of select="text()"/></a>

</xsl:template>

<xsl:template match="subtopics//say">
<a href="say://{text()}"><xsl:value-of select="text()"/></a>
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</xsl:template>

</xsl:stylesheet>

 

8.3. APPENDIX C: A JSGF GRAMMAR FILE 
grammar agentland.help.AFAIK;

// import polite, articles, prepositions, etc
import <speech.lib.language.*>;
import <speech.lib.polite.*>;
import <speech.lib.verbs.*>;
import <speech.lib.states.*>;

// these will be dynamically updated by the HelpSpeech system
<subtopic> = overview | body;
<keyword> = help | tutorial;

// a wrapper to go around the keywords, so you can say "the lights"
<keywordWrapper> = ( [<preposition>] [<article>] ( <keyword>
{keyword} ));

// a wrapper to go around the subtopics, so you can say "an overview"
<subtopicWrapper> = ( [<preposition>] [<article>] (<subtopic>
{subtopic}));

// tell me about the lights
<searchByKeyword> = ( <queryVerb> <person> <keywordWrapper> ) {
keywordSearch };

// show me the overview
<searchBySubtopic> = ( <queryVerb> <person> <subtopicWrapper> ) {
subtopicSearch };

// show me examples of the lights
<searchByAll> = ( <queryVerb> <person> <subtopicWrapper>
<keywordWrapper>) { fullSearch };

<help> = ( help | assist | aid | assistance );

// tell me more
<moreInformation> = ( <queryVerb> <person> ( more ) ) { more };

// help me
// I need assistance
<helpSystem> = ( <help> me | <person> need <help> ) { helpSystem } ;
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// wrapper for all commands, so that you can say something polite
like please
public <politeWrapper> = [<polite>] ( <searchByKeyword> |
<searchBySubtopic> | <searchByAll> | <helpSystem> | <moreInformation>
| <how> | <what> | <where>) [<polite>];

// tell me how do I turn off the projector
// how can we activate the ESP
<how> = ( [<queryVerb> <person>] how ( ([<person>] ( do | can |
should | could | would | may ) [<person>]) | to) <actionVerb>
<keywordWrapper>) { how };

<actionVerb> = ( turn ( on | off) ) | activate | deactivate | play |
show | use | operate |engage | disable | kill | run | do | ask;

// what can I ask (note: what can I say is reserved)
<what> = ( what ( can | may ) <person> <actionVerb>) { what };

// where am I
// where is the projector
<where> = ( where ( am | are | is ) ( <person> | <keywordWrapper> ) )
{ where };
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