Situating a Natural L anguage System
in a Multimodal Environment

by

Katherine E. Koch

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology
May 17, 2001

© 2001 M.I.T. All rights reserved.

Author
Department of Electrical Engineering and Computer Science
May 17, 2001
Certified by
Howard E. Shrobe
Thesis Supervisor
Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Situating a Natural L anguage System
in a Multimodal Environment

by
Katherine E. Koch

Submitted to the
Department of Electrical Engineering and Computer Science

May 17, 2001

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In a human-centered computing environment, users interact with their computers in a
natural way, including use of speech and gestures. In order for the computers to
understand the user’s commands, sophisticated natural language processing is needed.
Natural language systems capable of analyzing sentences and answering questions have
been developed, but have typically been confined to computer terminals. By situating a
natural language system in a perceptually enabled environment, we begin to address the
need for better natural language processing. This project uses research technologies
developed at MIT’s Artificia Intelligence Laboratory, the START Natural Language
Question Answering System and the Intelligent Room, to demonstrate how a natural
language system can be embedded in a multimodal environment.

Thesis Supervisor: Howard E. Shrobe
Title: Principle Research Scientist

ACKNOWLEDGEMENTS

| would like to thank Dr. Howard Shrobe for his guidance on this project, Dr. Boris Katz
and Sue Felshin for their assistance with START, and Kalman Reti for his help with
JLinker. Thanksto Andy, Steven, Krzysztof and the rest of the Intelligent Room gang for

answering my questions and keeping me entertained.

Most especialy, | thank my parents for their support and for making my MIT education

possible, and | thank Dave for his friendship, patience, and encouragement.

TABLE OF CONTENTS

1 INTRODUCTION 5
2 RESEARCH TECHNOLOGIES 7
2.1 Inteligent Room 7
211 Metaglue Agent System 7
2.1.2 Resource Manager 7
213 Speech 8

22 START 9
3 MOTIVATION 11
4 SYSTEM OVERVIEW 12
4.1 Design Considerations 12
4.2 System Architecture 13
5 SYSTEM I MPLEMENTATION 15
5.1 START toMetaglueInterface 15
5.1.1 LisptoJava 15
51.2 JavatolLisp 15

5.2 Input to START 16
53 START 17
54 START Interface Agent 18
55 Reasoningin MESS 20
5.6 Output 23
5.7 ExampleInteraction 23
6 EVALUATIONOF | MPLEMENTATION 26
6.1 Errorsin Dictation 26
6.2 Robustness 26
6.3 Multiple Agent Responses 27
6.4 Uncertainty in Device States 27
7 FUTURE DIRECTIONS 28
7.1 Reasoningin START 28
7.2 Resolving Agent References 28
7.3 Troubleshooting Failures 29
7.4 Useof Language and Gestures 29
8 CONTRIBUTIONS 30
9 REFERENCES 31
10 APPENDIX 32

1 INTRODUCTION

Computers are in nearly every home and office in America and computing power is
doubling every eighteen months. Why then are users constantly struggling with the
machines on their desks to get them to do what they want? The image of someone
huddled in front of his monitor muttering in frustration is certainly not unfamiliar to most
computer users. If computers are becoming faster al the time, shouldn't users
productivity be increasing as well? Computing power is no longer the limiting resource.
The problem is that the computer cannot effectively listen to and communicate with the
user. Therefore humans are serving computers, learning the commands the computer
expects and sifting through screens of text to find the information they requested, when it
should be the computer who is serving the user. Users should be able to interact with the
computer as they would a colleague. Instead of typing and clicking, why shouldn’t he be

ableto tell the computer what he wants it to do?

Current research in human-centered computing and human-computer interaction are
working to change this paradigm using multimodal spaces. Instead of bringing the user
to the computer, the computers are embedded in the user’s environment. By creating a
perceptually enabled environment, the computer “sees’ and “hears’ the user’s speech and
gestures, alowing the user to interact in a more natural way. In addition, the computer
can choose visua or auditory modes of communication to most effectively present

information to the user.

This is the vision for the Intelligent Room, a multimodal space under development at
MIT’ s Artificial Intelligence Laboratory. A user who has never entered the Room should
be able to walk in and get any information he needs without knowing what menus to click
or what commands to type. To fully achieve this goal, sophisticated natural language

processing is needed to understand the user’s verbal commands.

Natural language systems with the ability to understand and answer a user’'s questions
have typically been confined to a computer terminal, but what if we sStuate this
technology in a multimodal environment to fill the need for language processing?

The focus of this project is demonstrating the use of START, a natural language query
system, in the Intelligent Room. By enabling these technologies to communicate and
share information, we can explore the possibility of doing better language processing,

thus bringing us closer to our vision.

Section 2 describes the Intelligent Room and START, the research technologies at the
focus of this project. Section 3 describes the motivation for this research. Sections 4 and
5 discuss the system design and implementation, in addition to a detailed example.
Section 6 evaluates the system, and possibilities for future work are presented in Section

7. Finaly, Section 8 presents the contributions of this project to the Intelligent Room.

2 RESEARCH TECHNOLOGIES

2.1 INTELLIGENT ROOM

The Intelligent Room is a multimodal environment for studying human-computer
interaction and human-centered computing. Our current research space is a conference
room equipped with computer-controllable projectors, audio equipment, lights, cameras,
and microphones. However, there are no computers visible inside the Room. By
embedding the computers in the walls, we can create an Intelligent space in which the
user interacts with the computer naturally and focuses on what he would like to do rather

than how to make the computer do it.
2.1.1 METAGLUE AGENT SYSTEM

Metaglue [1, 2] is the Room’'s system of distributed software agents, written in Java.
These agents act on behaf of the devices, services, and people available in the Room.
For example, there are agents for controlling lights, recognizing speech input, and
interfacing with a web browser. Because the agents are all interconnected, they exchange
information and provide the user with control over the Room’ s operation.

Agents also broadcast information about themselves. Any agent interested in those
messages registers with the notification system to be informed when this information is
broadcast. In this way, agents share information with anyone who is interested.

This project uses devices in the Room to illustrate how START can be used to query and
control agents. Device agents represent devices in the Room, such as lights and
projectors. Devices use the notification system to broadcast information about their state.
In addition, device managers are device agents that represent several similar devices. For
example, a room may contain multiple lamps, so a Light Manager is used to control the

lamps individually or as a group.
2.1.2 RESOURCE MANAGER

In order to intelligently handle a user’s request, the Room needs to be able to effectively

manage the available resources. Agents may request services, and the resource manager

provides the agent with the best resource available to fulfill the request [3]. For example,
an agent that wants to give the user a brief message will request a resource that will
display a short text message. Based on the resources that are in use and what the user is
doing, the resource manager determines whether the message should be spoken or sent to

avisua display such asthe LED sign.
213 SPEECH

Agents are controlled via speech by providing a rule grammar specifying the phrases the
user may say. When the speech system hears the user say a phrase from a grammar, the
agent is notified and responds accordingly. One of the limitations of this approach is that
the user is limited to the set of commands that has been included in the grammar. If the
programmer wants to make interaction easier for the user, he can include a variety of
ways to say each command, but it is impossible to predict every way a user will say

something.

Below is an excerpt from a grammar for the lights:

<nearPrep> = by | near | in front of | adjacent to | next to;

<l anpPhrase> = [the] <lanpN> <nearPrep> [the] <location> |
[the] <location> <l anpN>;

<| anpRef erence> = <l anpPhrase> | <all Phrase>;

<turnOn> = (illum nate | turn on) {verb-turnOn};
<turnOff> = (extinguish | turn off) {verb-turnOif};
<brighten> = (brighten) {verb-brighten};

<dinm> = (dim {verb-din};

<verb> = <turnOn> | <turnOif> | <brighten> | <dinp;
public <sentenceOne> = <verb> <| anpRef erence>;

This grammar would allow the user to say “Turn on the lamp by the window.” However,
additional rules are required to alow “Turn the lamp by the window on.” As the phrases

become more complicated, the grammars become more difficult to write and understand.

The speech recognition system that we use in the Room also provides a free dictation
mode. Here, the user is not constrained to a set of phrases, so he can say virtualy
anything in the recognizer's vocabulary. However, because the system needs to

understand many more words, it is more difficult for the recognizer to accurately

transcribe speech in dictation mode, and therefore dictation is more error-prone than

using rule grammars.

2.2 START

START, or SynTanctic Analysis using Reversible Transformations [4], is a naturad
language system that provides users with answers to English questions. By visiting
START' s web dite [5], users can ask a variety of questions including: “Who directed
Gone with the Wind?” “How far is Boston from San Jose?” and “Who works on robots at
the Al Lab?’

START analyzes single sentences and converts them into subject-relation-object-triples.

For example, “The light by the door is on,” would be trandated into:

(light is on)

(light related-to door)
Now when the user asks “Which light is on?’ this is translated into similar expressions,
with which substituted for the missing information:

(l'ight is on)
(l'ight related-to which)

START then retrieves the correct answer by matching expressions, using which as a

matching variable.

In addition to retrieving information about single sentences, START provides other types
of information (including showing web pages, playing video clips, and executing
functions) by using natural language annotations which summarize the information in a
source. We create these annotations by writing schemata that associate the sentences
with some information. The following schema is for accessing information about the
MIT Al Lab:

(def -schema
: phrases
" (" ANY- Al LAB- GROUP' s nenbers")
. sentences
" (" ANY- Al LAB- PERSON wor ks i n ANY- Al LAB- GROUP"
" ANY- Al LAB- PERSON r emai ns a nenber of ANY- Al LAB- GROUP")
:long-text ' ((show-ail ab-group-nenbers 'any-ail ab-group
"any-ail ab-person)))

Thephr ases are used to answer queries like “Tell me about x.” Matching symbols are
used in the schema to match values from a database. The above example recognizes the
request “Tell me about the Infolab group’s members,” since “Infolab group” is listed in

the database as a match for ANY- Al LAB- GROUP.

START analyzes the sent ences in the schema, so users can ask “Who works in the
Infolab group?” Whenever START receives a question that matches these phrases or
sentences, it will reply with the information designated in | ong-t ext. In this casg, it
executes the function show- ai | ab- gr oup- nenber s, which displays information about

the members of a group.

It is possible to have more than one schema that matches a particular sentence, so asingle
guery may generate multiple replies. For example, the question “Who is Sean Connery?’
will be answered by a schema for the Internet Movie Database, which gives information
about movies and actors, and also by a schema that accesses biographies of well-known
people.

There are several ways START could be used in the Intelligent Room. We could use it to
ask questions about the Room (*Is the lamp on the desk on?’) or to control agents (“Turn
on the light by the door.”). In addition, START could be used to do other types of
linguistic processing. For example, by keeping track of the dialog with the user, START
could handle pronoun disambiguation. If START knows that the user just asked about
the lamp on the desk, then said “Turn it on,” START should know which light the user is
talking about. This project deals only with querying and controlling agents through
START, but lays the foundation for future work to address other uses of this system.

10

3 MOTIVATION

In order to come closer to our vision of an environment that alows natura human-
computer interaction, we require better natural language processing. This project lays the
foundation for our vision by enabling START and the Intelligent Room to communicate
and share information about agents, illustrated by the ability to pose queries and issue

commands to agents in natural language.

If a user isto be allowed to speak naturally to the computer, he should not be constrained
to only use commands in a grammar. By using free dictation and a system like START
to parse and understand the speech we come closer to this goal. Although speech
recognition through free dictation is more error-prone than using rule grammars, in the
future we may be able to use the linguistic knowledge from the natural language system

to improve the performance of the speech recognition tools.

Query systems, such as START, process questions expressed in natural language, but
these systems typically have been confined to a computer terminal. By situating START
in the Intelligent Room, we not only gain the ability to answer a wide variety of questions
via START, but we can also take advantage of the linguistic information that START
contains. With knowledge about how language works it is possible to move away from a

system with constraining grammars to allow users to give commands in their own natural

ways.

Not only can the Room access the information provided by START, but since it has the
ability to gather information about what it “sees’ and “hears,” the Room can offer this to
START's knowledge base. For example, the Room can provide START with the
knowledge that the lights have been turned on or that someone has entered the Room.
Therefore, the immediate benefit of integrating START and the Intelligent Room is the
ability to use START to ask questions about the Room. In addition, by embedding a
powerful natural language system in the Room, better language processing is possible in
the future.

11

4 SYSTEM OVERVIEW

Imagine a person sitting in the Room says to the computer, “ Show me the world map.”
This seems like a smple enough task, but the system needs to know a great dea to
accomplish this. First, the Room needs to hear the user’s request and parse it to figure
out what the user has said. Once the system has figured out that the speaker has
requested to see a map, the Room finds the Map Agent; however, before it is ready to
show the user, the system needs to figure out how to display the map. Using cameras and
microphones, the Room determines where the user is sitting, then figures out which
displays are appropriate for the map, available, and convenient for the user from his
location. Therefore, even a simple request may require a great deal of reasoning to
respond in a way that best serves the user.

In the current system we use rule grammars to listen for the phrase “ Show me the map,”
but what if the user wants the Room to show his colleague, Alice, the map instead? Then
the grammar would have to contain Alice's name as well as every other person that we
might want to show the map to. Therefore this is not an ideal solution. By using
dictation to capture the speech and a natural language system that parses the sentence, the
Room will handle “Show Alice the map.” Even if the Room has never seen Alice before,
the system still understands the sentence and, if needed, asks the user to show the camera
who Alice is. Therefore, to handle even simple requests, the Room needs to

communicate with a system such as START to understand and reason about requests.

4.1 DESIGN CONSIDERATIONS

The Room's existing START Agent communicates with START by routing queries
through a web browser to START's web interface. However, for this system | needed a
more direct way to communicate with START. Sending commands through a browser is
dow since query requests are competing with requests from Internet users who also have
accessto START s web interface. In addition, the web interface does not allow users to

assert knowledge or obtain information about the sentence structure. For these reasons, |

12

needed a direct connection to START. This is challenging because START operates in
Lisp while the agents use Java.

Another important design consideration is where the knowledge in the system is stored.
In the existing system, agents store their state internally. For example a Light Agent
stores information about the light intensity level and whether it is on or off. This alows
the light to easily reason about its own state, but using information from multiple agents
is more difficult. For example, if the Room should dim the lights whenever it is empty,
then it needs knowledge from the Light Agent and from the agent that keeps track of the
number of people in the room. By having knowledge available in a central place, any
agent who knows how to interpret the information will be able to reason about it. It
would also be possible to store this information in a format that START could access
directly.

4.2 SYSTEM ARCHITECTURE

Figure 1 shows a diagram of the system. All communications with START go through a
single agent, the START Interface Agent. When START receives a query or command,
it contacts this agent which dispatches the requests and passes back the responses.
Within the START Interface Agent is a central repository for storing knowledge and a

rule-based system for reasoning about the information.

13

]
Lisp :
4 : Input

Text or Speech

START Interface
Agent

MESS

Agant -
=Cnpls]

Ouput

Text or Speech

Java

Figurel. Diagram of START Interface System

Agents

Broadeast
Iessage

14

5 SYSTEM IMPLEMENTATION

5.1 START TOMETAGLUE INTERFACE

Enabling START and Metaglue to communicate is challenging because START operates
in Lisp while Metaglue agents are written in Java. Since the existing START Agent
communicates with START only through a web browser, the Intelligent Room group has
not had to address this issue until now. However, JLinker [6], a tool made by Franz Inc.,
allows developers to dynamically link Lisp and Java applications. Therefore, JLinker
removes the barrier between START and Metaglue by enabling invocation of methods in

ether environment.

JLinker creates a socket connection between two ports through which Lisp and Java
communicate. Lisp will advertise on a port and wait for Java to connect or vice versa. In

this way the connection can be initiated from either side.
511 LISPTOJAVA

START functions must communicate with Metaglue agents and, therefore, call Java
methods. For example, the following Lisp expression calls the doCommand method in

thesi a object:

(jcall "doCommand" sia device state)

This evaluates to the return value of the equivalent Java code:

si a. doCommand(devi ce, state);

Therefore, using j cal I and other JLinker methods, programmers are able to manipulate
Java objectsin Lisp.
512 JavATOLISP
Lisp methods are invoked from Java in order to send input to START from Metaglue

agents. The Javali nkD st class, part of the JLinker tool, provides the interface to

Lisp. For example:

JavalLi nkDi st . i nvokel nLi sp(2,
“(initialize-start :server “ailab)");

15

executes the Lisp expression (initialize-start :server "ailab) and returns a
copy of the result (indicated by the integer 2). i nvokel nLi sp returns an array of

TransSt ruct objects (remote references to Java objects).

| built a layer on top of the low level functions provided by JLinker to abstract some of
these operations. The JavaToli sp class provides methods to open a connection
between Java and Lisp and send expressions to Lisp. JavaToLi sp may be used by any
agent that needs to communicate with Lisp. St art Connect i on is another layer on top
of JavaToLi sp. This class will launch a Lisp process, run START, and load files
needed by START.

In this system, Java normally initiates the connection to START. Therefore, when
JavaToli sp starts the Lisp process, it dso tells Lisp the port on which to advertise:

(jl:jlinker-init :lisp-advertises :lisp-port |lisp_port)

wherel i sp_port isset to an available port number. Java may then connect by calling:

JavalLi nkDi st. connect ("Il ocal host", lisp_port,
"l ocal host", java_port,
poll _interval, poll_count);

Once Java connects on its port, function calls are made across this channel.

5.2 INPUT TOSTART

Various Metaglue agents can provide users with an interface to START. An agent could
provide a graphical interface into which the user types sentences or the system could
listen for speech input through dictation, transcribe it into text, then pass the request to
START through a St ar t Connect i on.

Allowing continuous speech input to START required some modifications to the speech
system in the Room. Currently when an application uses dictation, it requires the user to
say a specific command from a grammar before it will listen for free dictation. For
example, a user might have to say “Query START” and wait for acknowledgement
before asking his question. If al speech will be processed through START, forcing the
user to say “Query START” each time would be unacceptable.

16

To address this issue, | enabled the speech system to listen continuoudly for dictation
input. When the speech system processes the dictation, it broadcasts a message
containing the spoken text. An agent listens for these broadcasts and sends the spoken
text to START. In this way, the speech system listens to everything the user says and
passes it to START. START determines if the sentence was a query, a command, or

another type of utterance.

5.3 START

While START can be accessed via the web, this project requires a more direct connection
to the START servers. Therefore, START is run in Allegro Lisp, and cals are made
directly to START. Accessing START directly alows the Room to choose a server by
launching a Lisp process using the appropriate START image file, indicating which

sources of information to access.

Additional schemata and functionsare loaded to tell START about the Room. When the
user asks a question, START attempts to match the sentence with one of its schemata as
described in Section 2.2. The matched schema will call a function which forwards the
user’s question to the START Interface Agent in Metaglue.

The following is a sample schema for the Intelligent Room:

(make- neut er - nouns
(| CENTER LI GHT| :gens (light))
(| CENTER ROW :gens (center)))

(def - schena
: sentences
"("turn on the center |ight"
"turn on the center row s light in center row'
"turn on the center row of all lights")
;1 ong-text
"((change-devi ce-state "center lights" "on")))

The function make- neut er - nouns tells START that “center light” is a noun phrase and
a type of “light.” When this schema is loaded, START analyzes the sentences and

creates the following expressions:

17

(*YOU* | TURN ON| | CENTER LI GHT-1|)

(LI GHT- 1 RELATED- TO | CENTER ROM 1|)
(*YOU* | TURN ON| LI GHT-1)

(LI GHTS-1 QUANTI FI ER ALL)
(| CENTER ROM 2| RELATED- TO LI GHTS- 1)
(*YOU* | TURN ON| | CENTER ROW 2|)

The schema defined above will respond to requests including “Turn on the center light,”
“Turn on the light in the center,” and “Turn the center row of lights on.” Notice that
separate schema are not needed for sentences of the form “Turn the light on,” because
START understands that this means the same as “Turn on the light.” When any of these
sentences trigger the schema, the pair of functions change- devi ce-state ad

change- devi ce- st at e- aux’ are executed:

(defun change-devi ce-state (device state)
(change-devi ce- st ate-aux device state))

(defun change-devi ce-state-aux (device state)
(if (jl::jcall "doCommand" sia device state)

(recording-query-reply (t)

(format t "<P>The ~A device is now ~A."
(gen-np devi ce)
(gen-np state)))

(recording-query-reply (t)

(format t "<P>Changing the state ~A of device ~A failed."
(gen-np state)
(gen-np device)))))

This function forwards the command to the START Interface Agent (si a) through

JLinker and formulates areply to the user based on the value returned by the agent.

5.4 START INTERFACE AGENT
The START Interface Agent uses St art Connect i on to establish communication with

START. As described above, this includes starting Allegro Lisp, running START,

connecting through JLinker, and loading the necessary schemata and functions.

When START receives a request from the user, it analyzes the sentence, then passes the
request to the START Interface Agent. The agent then asserts a fact to MESS (see

! The aux function exists because START stores the actual function definition with the schema, not just the
function name. Therefore, by having an aux function, functions can be redefined without reloading the
schema.

18

Section 5.5), the reasoning component of the system. For commands, the fact contains a
list of arguments, the time the fact was asserted, a flag indicating whether the command
has been executed, and the time the command finished. The st art Do fact template for

commands is shown below:

(deftenpl ate start Do
(mul tislot args)
(slot tinmestanmp
(default-dynamic (call (new java.util.Date) getTine)))
(sl ot done (default FALSE))
(slot finish-tine))

Thest ar t Ask template for queries contains the same dots, plus a slot for the answer to
the query:

(deftenpl ate startAsk
(rmul tislot args)
(slot tinmestanp
(default-dynanmic (call (new java.util.Date) getTine)))
(sl ot done (default FALSE))
(slot finish-timne)
(sl ot answer))

When the rule engine runs, MESS sends a table of return values to the START Interface
Agent. The agent checks this table for the result of the request and returns the result to
START.

The agent also registers to receive notification of various events, such as device state
changes. When the START Interface Agent receives notification of these events, it
asserts this information to MESS. For device state change messages, the START
Interface Agent assertsadevi ce-f act containing the Agent ID of the device agent, the
name of the state that has changed, the state’s new value, the confidence of the value, the
time the fact was asserted, and a flag indicating if this is the latest information about the

device:

(deftenpl ate device-fact
(sl ot device)
(slot state (type STRING)
(sl ot val ue)
(sl ot confidence
(type | NTEGER)
(default (get-nmenber util.UncertainValue UNKNOW)))
(slot tinmestanp
(default-dynamic (call (new java.util.Date) getTine)))
(sl ot most-recent (default TRUE)))

19

The confidence indicates how certain the device is of its state. For example, when the
device agent is created, it cannot tell what state it is in, so the confidence will have the
value GUESS. Once the device agent changes the device's state, it knows what the state
is, so the confidence value is CERTAI N. If no confidence is given, the fact uses UNKNOVWN

as the default value.

When a device's state changes, anew devi ce-f act is asserted without deleting other
devi ce- f act s about that state. By keeping a record of all the state changes for a fact,
we can use this information for historical or statistical reasoning. As a result, there can
be more than one fact about a given device and state. However, when the user asks about
a device's sate, sfting through al the facts to find the latest one would be time
consuming. The nost - recent flag helps aleviate this problem. When the devi ce-

fact isassated the flag is set to TRUE. If there is another fact for the same device and
state, initiadly, its flag may also be TRUE. The system contains rules for maintaining the
nmost - r ecent flag, so if two facts indicate they have the most recent information for the

device, the rule updates the older fact to indicate that it is no longer the newest data

One of the implementation issues for this system was whether START should poll agents
directly for information or whether the agents should broadcast information about
themselves. For this initial version of the system, | chose to use the latter approach for
severa reasons. First, START only has to know about the START Interface Agent and
not al the agents in the system, so it simplifies interactions with START. Secondly, by

having the agents broadcast information, knowledge is collected in a central place.

5.5 REASONING IN MESS

The START Interface Agent uses a rule-based system called MESS, or the Metaglue
Expert System Shell, to store and reason about the system’'s knowledge. MESS,

developed by the Intelligent Room group, is an addition to JESS, the Java Expert System
Shell [7].

As mentioned above, the START Interface Agent asserts afact to MESS when it receives
aquery or command from START. These requests may be answered by any agent that

20

has registered with the START Interface Agent. Agents register themselves by giving
MESS a script describing the requests the agent will handle. In this script the agent
introduces itself by indicating its class. MESS takes this information and asserts a fact
about the agent. For each agent that registers there is one agent - i nf o fact that gives

the agent’s class (occupat i on), agent ID, and a pointer to the agent:

(deftenpl ate agent-info
(sl ot occupation (type STRING))
(slot agentID (type STRING)
(sl ot agent))

Named agents, such as devices, store their names internally. For example, the user may
refer to one lamp in the Room as both the “red lamp” and the “light on the desk.” The
agent that represents that light would store both of these names. When this agent
introduces itself to MESS, it also gives its names, so START can refer to the agent by
these names. Therefore, for each named agent, there may be several agent - nane facts

which associate a name with an agent 1D:

(deftenpl at e agent - nane
(slot name (type STRING))
(slot agentID (type STRING)))

The agent’s script also contains rules for handling requests. Any agent can volunteer to
handle a request from START by providing rules like the one shown below. The light

script contains the following rule for handling requests to turn on the lights:

=

(defrul e doLi ght On
?command <- (startDo (args ?nane on) (done FALSE))
(name- agent - mat ch (nanme ?nane)
(interface "agentl and. device.light.Light")
(agent | D ?agent1 D) (agent ?agent))
=
(bind ?did-it (call ?agent turnOn))
(rmodi fy ?command
(done ?did-it)
0 (finish-time (call (new java.util.Date) getTine)))
1 (addRet urnVal ue (str-cat ?nane " on") ?did-it))

P P OO0 ~NO O wWNN

Lines 2-5 of the above rule are the conditions for the rule to fire. There must be a
st art Do fact whose ar gs contain any name and the word “on” (line 2). MESS will

then backchain to find a nane- agent - mat ch fact for an agent with the given name and

interface (lines 3-5). Because more than one agent can have the same name, the

i nterface dot provides a way to ensure the rule only fires for the intended devices.

21

For example, there could be a command asserted with (args “tape player” on). If
both the VCR and cassette tape player have the name “tape player,” then just fetching the
agent with that name is not sufficient. The methods that turn on the VCR and cassette
tape player may not have the same name, so the agents for these devices will have to
provide rules that handle these commands differently. By using both the name and
interface, the rule will retrieve the agent for the correct device. In addition, the
i nt er f ace dot inthe name- agent - mat ch facts takes advantage of the agent system’s
inheritance hierarchy. Therefore the rule above will look for agents with the given name
and class, but also for agents that implement subclasses of Light such as

D mmabl eLi ght and X10Li ght .

If the conditions for the rule are met, the consequences (lines 7-11 above) will be
evaluated. In the sample rule shown, line 7 calls the t ur non method for the appropriate
light. The origina st art Do fact is modified to indicate that the command has been
executed and the time the command was finished (lines 8-10). Finally, MESS creates a
return value using the command arguments as the key (line 11). After the rule engine
runs, the START Interface Agent looks for this return value and passes it back to
START.

Rules that query devices work in a similar vein. Instead of a st art Do fact, queries use

thest art Ask fact. Rulesfor queries may have a condition requiring a fact that contains

the answer:

(defrul e askLi ght State
?query <- (startAsk (args ?nanme ?state) (done FALSE))
(name- agent - mat ch (nanme ?nane)
(interface "agentl and. device.light.Light")
(agent | D ?agent1 D))
(device-fact (device ?agentlD) (state ?state)
(val ue ?value) (nost-recent TRUE))
=>
(nodi fy ?query
(answer ?val ue)
(done TRUE)
(finish-time (call (new java.util.Date) getTine)))
(addReturnVal ue (str-cat ?nane " " ?state) ?val ue))

Similar rules handle the case where there does not exist a devi ce-f act containing the

answer, and the agent must be asked directly.

22

While these examples illustrate commands and queries intended for a single device, rules

can trigger more complex behaviors or perform more sophisticated queries.

5.6 OUTPUT

Once START receives a response from the START Interface Agent, it formats the answer
as dictated by the START function that handled the request. START’S responses are
presented to the user with speech synthesis or visual display. The Room's Resource
Manager can be used to direct the information to an appropriate output device based on
the information to be displayed and the available output devices.

5.7 EXAMPLE INTERACTION

Figure 2 shows how a user’s request is processed by the system. Even before the user
talks to START, agents such as the Light Manager register with the START Interface
Agent. The Light Manager introduces itself and the Lights it manages by asserting:

(i ntroduce- manager - devi ce
(occupation "agentl and. devi ce. | ight.Li ght Manager"))

Lisp : Java

" "Tum the Bights In the center on.™ Speech

i

START Interface

doCnmmhhdF ,,
TocomterBghta’ | — Agent
fG/ L1 =]
- |" args “cemter lhis” anj)
5 MESS ow sboud Light1 and . CiReE
ight2 We will anewer "] 1 1] Lig anager
[aperit-rise 0 - ot
(mame *center lights®) : e and “urm off k4

{apental “Light-2¥) e

o M

=
) Light-1
L |
. _"The center lights dewice is now on.” HTML
: Display
|

Brosdeast:
Light-2 iz an

Figure2. START Interface Example

23

MESS has rules that will handle the introductions and assert agent -i nf o and agent -

nane facts for the Lights. The following isthe agent - i nf o fact for the Light Manager:

(agent-info
(agent <External - Address: agent| and. devi ce. | i ght. Li ght Manager EHA>)
(agent | D <Ext er nal - Addr ess: net agl ue. Agent | D>)
(occupation "agentl and. devi ce. i ght.Li ght Manager"))

For each Light and Light Manager, there are also one or more agent - nane facts,
including:

(agent -name (nane "all |ights")
(agent | D <Ext ernal - Addr ess: net agl ue. Agent | D>))

(agent-nane (name "lights in the center")
(agent | D <Ext ernal - Addr ess: net agl ue. Agent | D>))

(agent-nane (nanme "center |ights")
(agent | D <Ext er nal - Addr ess: et agl ue. Agent |1 D>))

(agent - nane (name "back |ights")
(agent | D <Ext ernal - Addr ess: et agl ue. Agent | D>))

The script aso contains rules for handling requests including doLi ght On described in
Section 5.5. In effect, the Light Manager’s script says that it manages Light-1 and Light-
2 and that all lights will respond to “turn on” and “turn off” requests (®).

Now, when the user says “Turn the lights in the center on” the speech system converts
the spoken phrase into text and passes the request to START (@). START has a schema
that tells it what to do with sentences with this meaning, so it follows the instructions in
that schema by executing a function. START has identified that the user’'s sentence was
a command intended for the center lights requesting them to turn on. The function passes
these key parts of the user’ s request to the START Interface Agent (®) by calling:

doCommand("center lights", "on")

The START Interface Agent tells MESS about the command by asserting (®):
(startDo (args "center lights" on) (timestanp 989687533523))

MESS finds a nane- agent - mat ch fact indicating “center lights’ implement the Light
interface, so the doLi ght On rule fires. MESS calls the turnOn method for Light-2 (®),

creates a return value for “center lights on,” and modifies the st ar t Do fact:

24

(startDo (args "center lights" on)
(tinmestanp 989687533523)
(done TRUE)
(finish-time 989687533619))

The START Interface Agent retrieves the value for “center lights on” and tells START
the command has been completed (®). START tells the user the results of his request, in
this case by displaying confirmation in the user’s browser window (@):

The center lights device is now on.

In the meantime, Light-2 has sent a notification that it has been turned on (®) and the

START Interface Agent records this information in its knowledge base:

(device-fact
(devi ce "e2l: agentl| and. devi ce. | i ght. X10Di nmabl eLi ght-center™)
(state on) (value true) (confidence 50)
(tinmestanp 989771927511))

25

6 EVALUATION OF IMPLEMENTATION

As described in the previous section, this system stores all the knowledge about the
Room in a central location, so any agent can access the information. Because facts are
stored with timestamps, there is arecord of when events occur, and therefore, users could
query the system for this information. In addition, no changes are required to existing
agents to provide access via START. Programmers only need to write a script for the

agent to handle appropriate requests.

Although this system provides the desired ability to control agents from START, there

are severa ways in which the system can be improved.

6.1 ERRORSIN DICTATION

One of the problems with speech input to START is that dictation is error-prone. Often
the speech recognizer will mishear the user or recognize a word when the user has not
spoken due to noise. When all of the speech input is directed to START, these errors
result in many phrases that START does not understand. Therefore, the user will often
hear or see “Sorry, | don't understand” from START, depending on whether speech or
text output is used.

Improving performance of dictation is a hard task, but this issue can be addressed in a
different way. Every reply from START has a reply quality value, which may indicate
that START is certain of the answer, has no information about the question, or did not
understand the question. By checking the reply quality, responses that were likely to
have been generated by errors in dictation may be filtered.

6.2 ROBUSTNESS

The Metaglue agent system was designed to be robust, so that if one agent or the catalog
fals, it does not bring down other agents. If an agent fails and is restarted, it will resume
its interactions with other agents. Through JLinker, START communicates with these
agents and the catalog. However, if START relies on an agent that dies, and the agent is
restarted, START is not able to find the agent again. Therefore, it is necessary to

26

investigate whether JLinker can reconnect to an agent that has restarted or detect this
condition and handle it automatically.

6.3 MULTIPLE AGENT RESPONSES

Currently the system allows only one response for each query or command. In other

words, if more than one agent has provided a rule that will handle the same request, only
one will fire. In some cases it may be desirable to allow multiple answers to a query. For
example, if the user asks “Which lights are on?’ the system may choose to handle this

with arule that would be triggered for each devi ce-f act for lights that are on. In this
case, the rule should add the light to a list of return values. However, in the current

implementation, queries are marked completed when one answer has been given.

Therefore, this decision should be revisited to allow multiple agents to respond to a
request.

6.4 UNCERTAINTY IN DEVICE STATES

Device agents, such as the lights, maintain their state internally, but get no feedback from
the physical device. When the agent is created, it is not certain of its initial state.
Therefore, if the user asks about the state, the answer may only be a guess. In addition, if
the user manually turns off the lights, the agent’s state will not reflect these changes.
This issue can be addressed by instaling sensors in the Room to provide additional

information about device state.

27

7 FUTURE DIRECTIONS

While this project primarily demonstrates the use of START to query and control
devices, START and the reasoning in the system can be used in other interesting ways.

7.1 REASONING IN START

| chose to place most of the knowledge and reasoning on the Java side, because Metaglue
agents already use MESS for some reasoning. However, some of the reasoning could be
done by START. For example, notifications broadcast by agents could be asserted
directly to START instead of usng MESS to answer queries. With this method, the
notifications would be formed into English sentences and analyzed by START. Then,
gueries would be answered by matching against the knowledge in START as described in
Section 2.2.

7.2 RESOLVING AGENT REFERENCES

Currently the system only uses names to resolve references to agents. Therefore, either
START or the agent itself needs to know what names the user is likely to use to refer to a
device. Most of thisis done by START, since it recognizes that several phrases refer to
the same object. As shown in the schemain Section 5.3, START can then use just one
name for the device. Therefore, even if the device has only one name, START alows the

user to refer to the device in other ways as well.

A better way to resolve references to agents would be to use descriptions of the devices
rather than fixed names. Work is currently being done in the Intelligent Room on
investigating ways to achieve this using a rule-based system. Given a description of the
object, the system would apply a set of rules and find the agent that represents the object.
The description could be expressed as a fact including the type of device and its location
relative to other objects in the Room. Since START parses the user’s input, it will

provide away to fill in the description dots.

28

7.3 TROUBLESHOOTING FAILURES

This system uses MESS extensively for reasoning about requests from START. An
interesting extension to this reasoning would be to provide the ability to troubleshoot
faillures of requests. If the user says, “turn on the center lights’ and is told that the system
is not able to complete the command, it would be useful to trace back and figure out what

conditions were not met.

7.4 USE OF LANGUAGE AND GESTURES

Since the goal of human-centered computing is to provide natural interfaces for the user,
this should include combined use of language and gestures to communicate with the
computer. This project deals only with language, but it is feasible to expand this work to
take gestures into consideration. If the user says, “Show me the map there,” the word
“there’” could refer to something he previousy said or something he is pointing at.
Therefore START would need to keep track of its dialog with the user in addition to

being able to communicate with the vision system to watch the user’s gestures.

29

8 CONTRIBUTIONS

This project contributes to the Intelligent Room a process for easily creating a connection
to START from Metaglue, allowing START to communicate with any agent. Based on
this, reasoning about users requests can be done on the Java side as | have shown, or

alternatively the reasoning could occur in START.

This system illustrates how a natural language system such as START can be embedded
in the Intelligent Room. This alows us to take advantage of the Room’s perceptua
abilities to provide information and START’s linguistic knowledge to process users
speech. | have demonstrated this interaction by controlling agents through START.
However, there is potential to do much more by utilizing more of START’ s knowledge of
language. For example, START could be used to reinforce speech recognition. The
speech recognizer provides a ranked list of possible ways to interpret what the user said.
If START analyzes the sentences, it could determine which of these options are correct

English sentences, and therefore are more likely to be the right interpretation.

While speech recognition through dictation is currently not as reliable as using rule
grammars, this project gives us an idea what the whole system would look like with
improved speech recognition. By using dictation to allow users to speak to the Room
naturally and START to analyze the sentences, we can now investigate ways to use these

technologies to perform better natural language processing in the Room.

30

9 REFERENCES

[1]

[2]

[3]

[4]

[3]

[6]

[7]

Phillips, Brenton. Metaglue: A Programming Language for Multi Agent Systems.
M.Eng. Thesis. Massachusetts Institute of Technology, Cambridge, MA, 1999.

Warshawsky, Nimrod. Extending the Metaglue Multi Agent System. M.Eng. Thesis.
Massachusetts Ingtitute of Technology, Cambridge, MA, 1999.

Ggos, Krzysztof. A Knowledge-Based Resource Management System for the
Intelligent Room. M.Eng. Thesis. Massachusetts Institute of Technology,
Cambridge, MA, 2000.

Katz, Boris. "From Sentence Processing to Information Access on the World Wide
Web," AAAI Spring Symposium on Natural Language Processing for the World
Wide Web, Stanford University, Stanford, CA, 1997.

START Natural Language Question Answering System.
http://www.al.mit.edu/projects/infol ab/

JLinker: A Dynamic Link between Lisp and Java.
http://www.ai.mit.edu/projects/infol ab/

JESS:. The Java Expert System Shell. http://herzberg.ca.sandia.gov/jess/

31

10 APPENDI X

START schemata for the Room (room- schemata.lisp)

START functions for the Room (room- functions.lisp)

Communicate with Lisp from Java (JavaToLisp.java)

Javato Lisp connection for START (StartConnection.java)

Interface for START from Java (StartInterface.java)

Agent for interfacing with START (StartinterfaceAgent.java)

Basic facts and rules for handling requests (startInterface.clp)

Agent scripts loaded by Start Interface Agent (knownAgents.clp)
Facts and rules for devices (device.clp)

Script for lights (light.clp)

Script for sending messages to the LED sign (messenger.clp)

Script for projectors (projector.clp)

Script for agent to remind user of events (scheduler.clp)
Script to give user the weather (weather.clp)

32

33
38

41
50
52

61
64
65
67
70
72
74
76

room-schemata.lisp

;.5 -*- Mdde: LISP; Syntax: ANSI-Conmon-Lisp; Package: START -*-

(in-package :start)

;5 roomschemata.lisp

(make- neut er - nouns

(| CENTER LI GHT| :gens (light))
(| CENTER ROW :gens (center))
(| FRONT LI GHT| :gens (light))
(| FRONT ROW :gens (front))

(| BACK LI GHT| :gens (light))
(| BACK ROW :gens (back))

| MUX|

(| VIDEO MUX| :gens (nux))

(| VGA MJX| :gens (nux))

(| AUDI O MJX|] :gens (nux)))

(mapc #' smart-anal yze- np-usi ng- cache

"((the center row's light in the center row)
(the front rowts light in the front row)
(the back row's light in the back row)))

;; LIGHTS ON

v, Answers:
o Turn the center lights on.

(def - schena

: sentences
"("turn on the center |ight”
"turn on the center row s light in center row'
"turn on the center row of all lights")
:long-text '((change-device-state-sinple "center lights" "on"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

;. Answers:

; Turn the front |ights on.

(def-schema

: sent ences
"("turn on the front light"
“turn on the front rows light in front row'
“turn on the front row of all |ights"
“turn on front light by the wall"
“turn on front light by the board")
:long-text '((change-device-state-sinple "front |ights" "on"))
:sons ' (*no-db-1inks*)
cliza ' ()

33

:function-call T)

Answer s:
Turn the back |ights on.

(def-schema

: sent ences
"("turn on the back |ight"
“turn on back row s |ight in back row
“turn on back row of all lights")
:long-text '((change-device-state-sinple "back lights" "on"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

Answer s:
Turn all the lights on.

(def - schena

:sentences

"("turn on all the lights")

:long-text ' ((change-device-state-sinple "all lights" "on"))
:sons ' (*no-db-1inks*)

cliza ' ()

:supersedes-others T
:function-call T)
LI GHTS OFF

Answer s:
Turn the center lights off.

(def-schema

: sent ences
"("turn off the center light"
"turn off the center rows light in center row'
“turn off the center row of all |ights")
:long-text '((change-device-state-sinple "center lights" "off"))
:sons ' (*no-db-1inks*)
tliza ' ()
:function-call T)

Answer s:
Turn the front lights off.

(def - schena

: sentences
"("turn off the front |ight"
“"turn off the front rows light in front row'
"turn off the front row of all Iights"
"turn off the front |ight by the wall"
"turn off the front |ight by the board")
:long-text '((change-device-state-sinple “"front |ights" "off"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

Answer s:
Turn the back lights off.

(def -schem

:sentences

"("turn off the back light"
"turn off the back row s |ight

"turn off the back row of

;1 ong-text

:sons ' (*no-db-1inks*)

cliza ' ()

:function-call T)

;5 Answers:
- Turn al
(def - schem
: sent ences
"("turn off
;1 ong-text

the lights off.

all the |

' ((change-devi ce-state-sinple

:sons ' (*no-db-1inks*)

cliza ' ()

:supersedes-others T
:function-call T)

75 1S LI GHT ON OFF?

ghts")

n back row'

lights™)
((change- devi ce-state-sinple "back |ights”

all lights" "

in the center row remins on"

in the center row remains off"

row renmmi ns on

7, Answers:
- Are the center |ights on?
;; Are the center lights off?
(def - schena
: phrases
"("center row s light in the center row
"center row of all lights")
: sent ences
"("center row s |ight

"center light remains on"

"center row of all lights renmains on"

"center row s |ight

"center light remains off"

"center row of all lights remains off")
:long-text ' ((show-device-state-sinple "center |ights”
:sons ' (*no-db-1inks*)
cliza ' ()

:function-call T)
v, Answers:
o Are the front |ights on?
- Are the front lights off?
(def - schema
: phrases
"("front rows light in front row'
"front row of all lights")
: sent ences
"("front rows light in the front

“front light remains on"

“front row of all lights remains on"

"front light by the wall remains on"

"front light by the board renmins on"

"front row s light in the front

35

row remai ns of f"

"of f"))

of f"))

"on"))

"front row of all lights remains off"
"front light by the wall remains off"
"front light by the board remnins off")
:long-text '((showdevice-state-sinple "front lights" "on"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

;7 Answers:
- Are the back lights on?
- Are the back lights off?
(def - schem

. phrases
"("back row s light in the back row'
"back row of all |ights")
: sent ences

"("back row s light in the back row remai ns on"
"back light remains on"
"back row of all Iights remains on"
"back row s light in the back row renmains of f"
"back light remains off"
"back row of all lights remains off")
:long-text '((show-device-state-sinple "back lights" "on"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

vy, Answers:
v Turn the projector on.
(def - schena
: sentences
"("Turn on the first projector")
:long-text '((change-device-state-sinple "projector 1" "on"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

vy, Answers:
D Turn of f the projector.
(def - schena
: sentences
"("Turn off the first projector™)
:long-text '((change-device-state-sinple "projector 1" "off"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

7o, Answers:
v Is the projector on?
(def -schem

36

: sentences
"("First projector remai ns on"
"First projector remains off")
:long-text '((show device-state-sinple "projector 1" "on"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

vy, Answers:
D Send a nessage.
(def - schenma
: sentences
'("send a nessage")
:long-text '((send-command "sendMessage"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

D SCHEDULER ; ;

iy Answers:
v Send a rem nder in 4 mnutes.
(def-schema
: sent ences
"("send a reminder to ne in any-nunber any-l|egacy-tine"
"remind nme in any-nunber any-legacy-tine")
:long-text '((send-rem nder "any-nunber "any-l|egacy-tine))
:sons ' (*no-db-1inks*)
tliza ' ()
:function-call T)

vy Answers:
D Tell me today's weat her
(def - schema
: phrases
"("today's weat her")
: sent ences
"("read today's weather to ne")
:long-text '((send-command "readWather"))
:sons ' (*no-db-1inks*)
cliza ' ()
:function-call T)

37

room-functions.lisp

7., -*- Mode: LISP; Syntax: ANSI-Comon-Lisp; Package: START -*-

(in-package :start)

77, roomfunctions.lisp

(setq society (jl::jcall "getSociety" (cl-user::get-m)))
(setqg sia (jl::jcall "findAgent" (cl-user::get-nma)
(j1::jnew "netagl ue. Agent| D' society

"agentland.info.Startlnterface")))

(defun nake-| ower-case (str)
(map “string # char-downcase str))

;; Use this when asking about a device and using matching synbol s

(defun show- devi ce-state (device-matching-synmbol state)
(show devi ce- st at e- aux devi ce- mat chi ng- synbol state))

(defun show- devi ce- st at e-aux (devi ce-matchi ng-synbol state)
(let ((device (synbol -nane (get-matching-val ue-root
devi ce- mat chi ng-synbol))))
(when device
(let ((answer (jl::jcall "doQuery" sia (make-|ower-case device)
state)))
(i f answer
(recording-query-reply (t)
(format t "<P>The state of device ~Ais ~A"
(gen-np devi ce)
answer))
(recording-query-reply (" know dont know)
(format t "<P>l don't know about the state of device ~A."

(gen-np device))))))))

;; Use this when changing the state of a device and using matching
7, synbol s

kaefun change-devi ce-state (devi ce-matchi ng-synbol state & est args)
(change-devi ce- st at e- aux devi ce- mat chi ng-synbol state args))

(def un change-devi ce- st ate-aux (device-matching-synmbol state
&rest args)
(let ((device (synbol-name (get-nmatching-val ue-root
devi ce- mat chi ng- synbol))))
(when device
(recording-query-reply (t)
(if (jl::jcall "doCommand" sia (nmake-|ower-case device) state)
(format t "<P>The state ~A of device ~A has successfully been
changed. "
(gen-np state)
(gen-np device))
(format t "<P>Changing the state ~A of device ~A failed.”
(gen-np state)

38

(gen-np device)))))))

;; Use this when asking about a device and not using matching synbols
(defun show-devi ce-state-sinple (device state)
(show devi ce- st at e-si npl e-aux device state))

(defun show- devi ce- st ate-sinpl e-aux (device state)
(let ((answer (jl::jcall "doQuery" sia device state)))
(i f answer
(recording-query-reply (t)
(format t "<P>The state of device ~Ais ~A"
(gen-np devi ce)
answer))
(recording-query-reply (" know dont-know)
(format t "<P>l don't know about the state of device ~A."

(gen-np device))))))

;; Use this when changing the state of a device and not using matching
; synbol s

def un change-devi ce-state-sinple (device state & est args)
(change-devi ce- st at e-si npl e-aux device state args))

P

(defun change-devi ce-state-sinple-aux (device state & est args)
(if (jl::jcall "doCommand" sia device state)
(recording-query-reply (t)
(format t "<P>The state ~A of device ~A has successfully been
changed. "
(gen-np state)
(gen-np device)))
(recording-query-reply (t)
(format t "<P>Changing the state ~A of device ~A failed."
(gen-np state)
(gen-np device)))))

; Use this to send a command that is not for any particul ar agent.
; For exanple, "start the demp" will make a bunch of things happen
; but it does not correspond to a particular function in some agent.

def un send- command (comand)
(send- comand- aux comand))

P\ wa w oas owa

(def un send- command- aux (conmmand)
(let ((answer (jl::jcall "doConmand" sia "" command)))
(i f answer
(recording-query-reply (t)
(format t "Command successful."))
(recording-query-reply (t)

39

(format t "Command failed.")))))

;; Use this to send a renminder. Checks the units and puts themin the
;; formthat the agent expects.

&aefun send-remn nder (nunber-nmatch units-natch)
(send-rem nder -aux numnber-match units-match))

(defun send-rem nder-aux (nunber-match units-nmatch)
(let ((nunmber (get-nmatching-val ue-root nunber-match))
(units (get-matching-val ue-root-singular units-nmatch)))
(case units
((SEC SECOND) (setq unit "sec"))
((MN MNUTE) (setq unit "min"))
((HOUR) (setq unit "hours"))
((DAY) (setq unit "days"))
(otherwi se (setq unit nil)))
(if (and nunber unit)
(let ((answer

(jl::jcall "doConmand" sia ""
(concatenate “string "sendRem nder "
(synbol - name nunber) " " unit))))

(i f answer
(recording-query-reply (t)

(format t "I will send a rem nder in ~A ~A."
nunber
unit))
(recording-query-reply (t)
(format t "I"msorry, | can't send your rem nder."))))

"Please tell me when you would like to send a remi nder. For
exanple: \"Send a reninder in 4 hours.\"")))

40

JavaToLisp.java

package util

/

nport comfranz.jlinker.*;

nport java.io.| OException;

nport java.io.File;

nport java. net. Server Socket ;

nport java.text.StringCharacterlterator
nport java.util.LinkedList;

nport java.util.List;

nmport javax.sw ng. JOpti onPane;
nport metagl ue. LogStream

nport metagl ue. Port abl eFi | eSyst em
nport java. net. Server Socket ;

* %

* This is a tool for connecting to Lisp through JLinker. Use the

* <code>connect ToLi sp() </ code> nethod to nake the connection. Then
* other nethods such as <code>runl nLi sp</code> and

* <code>| oadFi | e</ code> may be used. The <code>mmi n</ code> net hod
* will pop up a dialog box into which expressions may be typed and
* eval uat ed.

*

* Created: Fri Jan 26 12:36:44 2001

*

* @uthor M chael O tmns
* @ut hor Katherine Koch

* @ersion

*

~

public class JavaToLisp {

/1 time between poll attenpts, neasured in mlliseconds

private static int JLINK POLL | NTERVAL = 40;

/1l nunmber of poll attenpts to be nade, nmeasured in mlliseconds
private static int JLINK POLL_COUNT = 600;

/1 command to begin lisp application
private static final String LISP_EXE = "alisp";

/1 name of file to | oad when starting Li
private static final String LOAD_FILE
private static final String LOAD_PORT

sp
"l oad-lisp-file.lsp";
"l oad-1isp-port.lsp";

/1 directory containing the above files
protected static final String PROGRAMDATA DIR =

"hal / ProgranDat a/ JLi nker/";

/1 name of file used to advertise ports
private static final String ADVERTISE FILE = "java-to-lisp.trp"

// store the absolute file nane

private String m.l oadFil ePat h;
private String madvertFil ePat h;

41

/] absolute file path for files
protected String m.lispRoot;

private Process mlispProcess;

/1l port for Lisp to advertise on
private static int mlispPort = 5127;

/1 if false, connects on the port indicated by mlispPort.
/1 otherwi se uses file ADVERTI SE FILE to advertise ports
private bool ean mconnectWthFile = fal se;

/**

* Creates a new <code>JavaToli sp</code> instance.

*

*/

public JavaToLisp (){
this(fal se);

}

/**

* Creates a new <code>JavaToli sp</code> instance.
*
* @aram useFi | eToConnect if true, uses a file to advertise ports.
* otherw se, connects directly on an open port
*/
publ i ¢ JavaTolLi sp(bool ean useFi | eToConnect) ({
m connect WthFil e = useFil eToConnect;

m | i spRoot = new Fil e(Portabl eFil eSystem honeFi | eSystem(),
PROGRAMDATA DI R). get Absol ut ePat h() ;

if (mconnectWthFile) {
m | coadFi |l ePath = new File(m. i spRoot,
LOAD FI LE). get Absol utePat h();

m advertFil ePath = new Fil e(m_|ispRoot,
ADVERTI SE_FI LE) . get Absol ut ePat h() ;
}

el se {
m | coadFi |l ePath = new File(m. i spRoot,
LOAD_PORT) . get Absol ut ePat h() ;

try {
/1 find an open port
Server Socket tenpSocket = new Server Socket (0);
m | ispPort = tenpSocket. getlLocal Port();
t empSocket . cl ose();
} catch (1 OException e) {

}
}

42

/**

* Start a lisp process.

* @aram conmand to run on startup
* @aramfile to load on startup
* @eturn <code>true</code> if lisp is started without error
*/
bool ean startLisp(String command, String file) {
String[] args = {LISP_EXE, "-e", command, "-L", file};

return startlLisp(args);

}
/**
* Start a |lisp process using an inage.
*
* @aram comuand to run on startup
* @aramfile to load on startup
* @aramimge to | oad on startup
* @eturn <code>true</code> if lisp is started w thout error
*/

bool ean startLisp(String command, String file, String i mage) {

String[] args = {LISP_EXE, "-1", inmmge, "-e", command, "-L", file};
return startLisp(args);

}

/**

* Start a Lisp process using the given argunents.

*

* @aram args conmand line args to use

* @eturn <code>true</code> if lisp is started without error
*/

protected bool ean startLisp(String[] args) {

try {
m | i spProcess = Runtine. get Runti ne().exec(args);
}

catch (1 Oexception e) {
e.printStackTrace();
return false;

}

return true;

}

/**

* Start a Lisp process using the given imge.

* @araminmge the inage to use to load lisp. Ignored if inmage is

* nul | .

* @eturn <code>true</code> if connected, <code>fal se</code> if the
* Li sp process or JLinker could not be started.

*/

43

publ i ¢ bool ean connect ToLi sp(String i mage) {

bool ean result;
String command;

if (mconnectWthFile) {

command = "(defvar *jlinker-advertise-file* \"" +
escapeBacksl ashes(m advertFil ePath) + "\")";
if (imge == null) {
result = startlLisp(conmand, m_| oadFil ePath);
} else {
result = startlLisp(conmand, m| oadFil ePath, image);
}
}
el se {
command = "(defparameter *lisp-port* " + mlispPort + ")";
if (imge == null) {
result = startLisp(conmand, m.| oadFil ePath);
} else {
result = startLisp(conmand, m.| oadFil ePath, inmage);
}
}

if (result) {
LogStream | og(LogStream | NFO, "Lisp process started");

}

el se {
LogStream | og(LogStream ERROR, "Trouble starting Lisp process");

}

if (mconnectWthFile) {
Javali nkDi st. connect (m advertFi |l ePath, "l ocal host", 0,
JLI NK_POLL_I NTERVAL, JLI NK_POLL_CQOUNT)

}
el se {
Javali nkDi st. connect ("l ocal host", m.lispPort, "local host", O,
JLI NK_POLL_I NTERVAL, JLI NK_POLL_COUNT) ;
}

i f (JavalLi nkDi st. query(true)) {
LogStream | og(LogStream | NFO, "JLi nk established to |lisp");
return true;

}

el se {
LogStream | og(LogStream ERROR, "Trouble starting JLi nker");
return false;

Start a Lisp process (if one is not already running) and connect
to JLinker. (Note: If you have trouble connecting to JLinker
check that old alisp processes have been killed (nicely) or wait
several minutes til they die on their owm. |If you still have

44

* trouble, try using a file to connect by using the constructor that
* takes a bool ean val ue.)

*

* @eturn <code>true</code> if connected, <code>fal se</code> if the
* Li sp process or JLinker could not be started.

*/

publ i ¢ bool ean connect ToLi sp() {
if (mconnectWthFile) {

Javali nkDi st. connect (m advertFil ePath, "local host", 0, 10, 2);
}
el se {
JavalLi nkDi st. connect ("l ocal host”, m.ispPort,
"l ocal host", 0, 10, 2);
}

i f (JavalLi nkDi st. query(true)) {
LogStream | og(LogStream | NFO, "Lisp already connected");
return true;

}

return connect ToLi sp(null);

/**

* Di sconnect from JLinker, and kill the Lisp process if it was
* started.
*/
public void shutdown()
{
i f (JavaLi nkDi st. query()) {
JavalLi nkDi st . di sconnect () ;
}

/1 we started it so we should kill it...
if (mlispProcess != null) {

m | i spProcess. destroy();
}

FHEELEEErrr i irn
/1

/1 Methods for Talking to Lisp
/1
FEEEPEEErrr i rrnn

public String readEval Print(String forn)

{
Systemout.println(form;

Li spObj obj = runlnLisp("read-eval-to-string", form;
return obj.toString();
}

public LispObj readEval (String form

45

{
Systemout.println(form;

Li spObj obj = runlnLisp("read-eval”, form;

return obj;

}

public LispObj runlnLisp(String conmand)

{
TranStruct[] result = Javali nkDi st.invokel nLisp(2, command);
return processResult(result, JavalLi nkDi st. newbi st Ob(command),

nul 1);
}

public LispObj runlnLisp(String commnd, String arg) {
TranStruct[] args = new TranStruct[1];
args[0] = JavaLi nkDi st. newDi st Ob(arg);
TranStruct cnd = Javali nkDi st. newbDi st Cb(command) ;
return runlnLisp(cnd, args);

}

public LispQbj runlnLisp(String conmand, String argl, String arg2) {
TranStruct[] args = new TranStruct][2];
args[0] = Javali nkDi st. newbDi st Ob(argl);
args[1] = Javali nkDi st. newbDi st Ob(arg2);
TranStruct cnd = Javali nkDi st. newbDi st Ob(command) ;
return runlnLisp(cnd, args);
}

public LispQbj runlnLisp(String conmand, String argl, String arg2,
String arg3)
{

TranStruct[] args = new TranStruct[3];

args[0] = Javali nkDi st. newbDi st Ob(argl);
args[1] = Javali nkDi st. newbDi st Ob(arg2);
args[2] = Javali nkDi st. newDi st Ob(arg3);

TranStruct cnd = Javali nkDi st. newbDi st Ob(comand) ;
return runlnLisp(cnd, args);
}

public LispObj runlnLisp(String conmand, TranStruct[] args)

{
TranStruct cnd = Javali nkDi st. newbDi st Ob(comand) ;
return runlnLisp(cnd, args);

}

public LispObj runlnLisp(TranStruct cnd, TranStruct[] args) {
TranStruct[] result = JavalLi nkDi st.invokel nLisp(2, cnd, args);
return processResult(result, cnd, args);

}

public void runlnLi spNoReturn(String cnd) {
Javali nkDi st . i nvokel nLi sp(-1, cnd);

}

public void setq(String var, TranStruct val ue)

{

runl nLi sp("java-setq”,

46

new TranStruct[] {JavaLi nkDi st.newDi st Ob(var), val ue});

}

public bool ean | oadFile(String path, String file)

{ return | oadFil e(path + (path.endsWth("/") 2 "" : "/") + file);
}

public bool ean |oadFile(String file)

{ return readEvaI(:(Ioa?l\"" + escapeBacksl ashes(file) + "\")")

\ I'= null;

LEErrrrrrrrrr bbb rrri b
FEErrrrrrr bbb rrrrn

public static String list(List list)
{

return list(list, false);

}

public static String list(List list, bool ean isQuoted)
{

String[] array = new String[list.size()];
return list((String[])list.toArray(array), isQuoted);

}

public static String list(String[] itens)

{
return list(itens, false);
}
public static String list(String[] itens, bool ean isQuoted)
{
StringBuffer result = new StringBuffer(isQoted ? "' (" : "(");

for (int i=0; i<itens.length; i++) {
resul t.append(itenms[i]).append(” ");

}
return result.append(")").toString();
}
public static String quotes(String string)
{
return "\"" + string + "\"";
}
static bool ean isLispError(TranStruct[] result) {
return (result.length == 1 && JavaLinkDist.errorP(result[0]));
}
/**

* Returns input with backsl ashes escaped. ('\' becones "\\')

*

* @araminput a <code>String</code> val ue

47

* @eturn a <code>String</code> val ue

*/

public String escapeBacksl ashes(String input) {
String output = "";

int index = input.indexOf("\\");

if (index == -1) {
/1 no \ are used
out put = input;
} else {
StringCharacterlterator sci = new StringCharacterlterator(input);
for (char ¢ = sci.first(); c !'= StringCharacterlterator.DONE

c = sci.next()) {

/1l go through string one char at a tine
out put += c;
if (c =="\\") {

/1 add an extra \

out put += c;
}
}

}

return output;

}

/**

* Pops up a dialog box for evaluating expressions in Lisp.

*

* @aram args (no arguments required)

*/
public static void main(String[] args){
JavaTolLi sp | = new JavaTolLi sp();

| . connect ToLi sp();

bool ean done = fal se;
whil e (!done) {
String inputValue =
JOpt i onPane. show nput Di al og("Enter a value to " +
"eval or \"quit\" to quit");
if (inputvalue == null |
i nput Val ue. t oLower Case().equal s("q") ||
i nput Val ue. t oLower Case().equal s("quit") ||
i nput Val ue. t oLower Case().equal s("exit"))

{
done = true;
}
el se {
String result = 1|.readEval Print (i nputVal ue);

Systemout.println("eval:
Systemout.printlin(result);

}

+ inputValue + ":\n");

}

try {
| . shutdown();

48

catch (Except
}

System exit (0)
}

protected void f
shut down() ;

}

private LispQObj

{
if (isLispErro
LogStream |l o

String print

if (args !'=
for (int i

print +="

} /1 end o
} /1 end of
Systemout.p
return null

}
return Li spObj

}

}// JavaToli sp

on e){

inalize() {

processResul t(TranStruct[] result,
TranStruct command,
TranStruct[] args)

r(result)) {
g(LogStream ERROR, "Error evaling:
Li spCbj .toString(result[0]));
=" (" + LispQObj.toString(command);

null) {
=0; i<args.length; i++) {
+ LispObj.toString(args[i]);
f for ()
0
rintln(print + ")");

. mkeResul t (result);

49

+

StartConnection.java

package util

i mport java.io.File;
i mport netagl ue. LogSt r eam
i mport netagl ue. Port abl eFi | eSyst em

/**
* This is a tool for connecting to START. Use the
* <code>connect ToStart () </code> method to make the connection. Then
* other nmethods such as <code>fread</code> and <code>| oadFi | e</ code>
* may be used.
*
* Created: Mon Mar 12 05:58:05 2001
* @ee JavaTolisp
*
* @ut hor Kat herine Koch
* @ersion
*/

public class StartConnection extends JavaTolLisp {

private static final String | MAGE FILE = "start/start-inages/start-
ail ab-all egro”;
private String m.i magePat h;

/**

* Creates a new <code>Start Connecti on</code> instance. You nust
* call <code>connectToStart()</code> to open the connection
*
*/
public StartConnection () {
m_i magePath = new File(m.lispRoot, | MAGE_FILE). get Absol utePath();

/**

* Opens a connection to START
*
* @eturn <code>true</code> if successful, <code>fal se</code>
* ot herwi se
*/
publ i ¢ bool ean connect ToStart () {
bool ean success = connect ToLi sp(m_i magePat h) ;
if (!success) {
LogStream | og(LogSt r eam ERROR
"Coul d not open connection to Lisp.");
return success;

}

return success;

50

/**

* The <code>fread</code> function in START.

*

* @araminput a string to give to <code>fread</code>

* @eturn START' s response

*/

public String fread(String input) {

return readEval ("(wi th-output-to-string (out) " +

"(let ((*standard-output* out)) " +
"(With-input-fromstring (in \"" +
input + "\") (start::fread in))))").toString();

public static void main(String[] args){
Start Connection start = new Start Connection();
start.connect ToStart();
Systemout.println(start.fread("john loves mary"));
Systemout.println(start.fread("who does john |ove"));

}// StartConnection

51

Startlnterfacejava

package agentl| and. i nfo;

i mport netaglue. *;

i mport java.rm.*;

i mport agentland. util. Secret;
i mport ness.*;

*

/
Interface for <code>StartlnterfaceAgent </ code>.

@ut hor Kat heri ne Koch
@ee Mess

/
public interface Startlnterface extends Mess {

* % F X X X X

*

/
Execute a conmmmand.

@ar am obj ect the object you are asking about
@aram args other parts of the command
@eturn true if successful, false otherw se
@xception RenoteException if an error occurs

* % kX X X X X

~

publ i ¢ bool ean doConmand(String object, String args)
t hr ows Renot eExcepti on;

*

Execute a query and return the result.

@ar am obj ect the object you are asking about

@aram args other parts of the query

@eturn the answer to the query if successful, null otherw se
@xception RenoteException if an error occurs

E I

*

*/
public String doQuery(String object, String args)
t hrows Renpt eException;

/**

Make an assertion

* @aram assertion the fact to be asserted

* @eturn true if successful, false otherw se

* @xception RenpoteException if an error occurs

*/

publ i ¢ bool ean doAssert(String assertion) throws RenoteException

public void hear St at eChange(Secret s) throws RenoteException

52

/**

* Prints the queries and commands that this agent can handl e on
System out .

*

* @xception RenoteException if an error occurs
*/
public void help() throws RenoteException;

/**

* Prints the facts in the system on System out

*

* @xception RenoteException if an error occurs
*/
public void showrFacts() throws RenpteException;

/**

* Call this to set up connection to START

*

* @eturn <code>true</code> if successful

* @xception RenoteException if an error occurs

*/

publ i ¢ bool ean connect ToStart () throws RenpteException;

/**

* Call START's <code>fread</code> function.

*

* @araminput a string to give to <code>fread</code>

* @eturn START' s response

*/

public String fread(String input) throws RenpteException;

/**

* Close the connection to START.

*

* @xception RenoteException if an error occurs
*/
public void cl oseConnectionToStart() throws RenpteException;

publ i ¢ bool ean i sConnected() throws RenoteException;

} /1 Startinterface

53

StartlnterfaceAgent.java

package agentl| and. i nfo;

i mport agentland.util.*;

i mport agentl and. devi ce. *;

i mport java.io.File;

i mport java.rm.*;

i mport java.util.x*;

i mport jess.*;

i nport ness. *;

i nport netagl ue. *;

i mport util.StartConnection

/**

This is the agent that START should comunicate with.
<code>Start | nterfaceAgent </ code> handl es commands, queries, and
assertions issued by START. This agent also |listens for state
change notification from <code>Devi ceAgent </ code>s, and records the
state changes in Jess. Scripts for agents that support START
queries and commands should be added to the script

agentl and. i nfo.scripts. knownAgents. Use <code>fread</code> to send
qgqueries or assertions to START. Be sure to cal
<code>connect ToStart </ code> to open the connection first.

* %

*

@ut hor Kat heri ne Koch

* % ok X X X X X X

*

@ee Agent Agent
@ee Startlnterface

*

*/

public class StartlnterfaceAgent extends MessAgent inplenents
Startinterface {

protected Notifier notifier

private java.util.List validCommands;
private java.util.List validQueries,;

private StartConnection start;

private static final String PROGRAMDATA DIR =
“hal / ProgranDat a/ JLi nker/";

private String fileDirectory;

private bool ean connected = fal se;

/**

* Creates a new <code>StartlnterfaceAgent </ code> instance.
*
* @xception RenoteException if an error occurs
*/
public StartlnterfaceAgent() throws RenoteException {
| oadScri pt ("agentl and.info.scripts.startlnterface");

notifier = (Notifier) reliesOn("agentland.util.Notifier");
notifier.addSpy(get AgentlD(), "hearStateChange",

"devi ce. *. st at eChange") ;
start = new StartConnection();

fileDirectory = new Fil e(Portabl eFil eSystem honmeFi | eSystem(),
PROGRAMDATA DI R). get Absol ut ePat h();

| og(LogStream | NFO, "Done initializing StartlnterfaceAgent");

}
/**
* Execute a command.
*
* @aram obj ect the object you are aski ng about
* @aram args other parts of the command
* @eturn true if successful, false otherw se
* @xception RenoteException if an error occurs
*

~

publ i ¢ bool ean doConmand(String object, String args)
t hrows Renpt eException
{

| og(LogStream | NFO, "START told ne to: " + object + " " + args);

bool ean success = fal se;
String strFact = "(startDo (args "“;
String strReturnKey;
bool ean noObj ect = object.equal s("");
bool ean noArgs = args.equal s("");
if ('noCbject && !noArgs) {
strFact = strFact + "\"" + object + "\" " + args;
strReturnKey = object + " " + args;
}
else if (noOhject && !noArgs) {
strFact = strFact + args;
strReturnKey = args;
}
else if (I noObject && noArgs) {
strFact = strFact + "\"" + object + "\"";
strReturnKey = object;
}
el se {
return false;

}
strFact += ") (tinestanp " + (new Date()).getTime() + "))";

doAssert (strFact);
Cbj ect retVal ue = get ReturnVal ue(strReturnKey);

| og(LogStream | NFO, "Return value is : + retVal ue);

if (retvalue == null) {
success = fal se;
} else {

if (retValue instanceof Vector) {
/1 got multiple replies
Vector replies = (Vector) retVal ue;

55

}

/*

*
*
*
*

*

success = fal se;
for (int i=0; i<replies.size(); i++) {

success = success || ((Boolean) replies.get(i)).bool eanVal ue();
}
} else {
success = ((Bool ean) retVal ue). bool eanVal ue();
}

}

if (success) {

| og(LogStream | NFO, "Command successful .");
} else {

| og(LogStream | NFO, "Command failed.");
}

return success;

*

Execute a query and return the result.

@ar am obj ect the object you are asking about
@aram args ot her parts of the query
@eturn the answer to the query if successful, null otherw se
@xcepti on Renot eException if an error occurs
/

public String doQuery(String object, String args)

{

/*

*

t hr ows Renot eExcepti on
| og(LogStream | NFO, "START aked nme about: " + object + " " + args);

bool ean success = fal se;

doAssert ("(startAsk (args \"" + object + "\" " + args + ")" +
" (timestanmp " + (new Date()).getTine() + "))");
bj ect answer = get ReturnVal ue(object + " " + args);
if (answer == null) {
| og(LogStream I NFO, "1 could not answer your query.");
return null;
} else {

| og(LogStream | NFO, "The answer is:
success = true;
return answer.toString();

+ answer.toString());

*

Make an assertion.

@aram assertion the fact to be asserted

@eturn true if successful, false otherw se

@xception RenoteException if an error occurs
/

public bool ean doAssert(String assertion) throws RenpteException {

56

bool ean success = fal se;
/1l process anything that already there
run();

/] assert the fact in Jess

| og(LogStream | NFO, "Asserting fact: " + assertion);
if (assertStringFact(assertion) == null) {
| og(LogStream ERROR, "Problem asserting fact: " + assertion);
el se {
success = true;
}
run();

return success;

public void hear St at eChange(Secret s) throws RenoteException {
/'l assert what you heard in the database
//1og(LogStream I NFO, "Got a secret!");
String source = s.getSource().toString();
DeviceState state = (DeviceState) s.details();

String fact = "(device-fact (device \"" + source + "\") (state " +
state.getNanme() + ") (value " +
state.getStringValue() + ") (confidence " +
st at e. get Confi dence() + ") (timestanp " +
(new Date()).getTime() + "))";

| og(LogStream | NFO, "Asserting fact: " + fact);
assert(fact);

/**

* Prints the queries and commands that this agent can handl e on
* System out .
*
* @xception RenpoteException if an error occurs
*/
public void help() throws RenoteException {
if ((validCommands == null) || (validQueries == null)) {
if (doAssert("(getValidStatenents)")) {
val idQueries = (java.util.List)getReturnValue("validQueries");
val i dCommands = (java.util.List)getReturnVal ue(
"val i dCommands") ;
}
}

if (validQueries !'= null) {
Systemout.printin("Valid queries are:");
Iterator querylter = validQueries.iterator();
while (querylter.hasNext()) {
Systemout.println(" " + querylter.next());

57

} else {
Systemout.println("There are no valid queries.\n");
}

if (validCommands != null) {
Systemout.println("Valid conmands are:");
Iterator comter = validCommnds.iterator();
while (comriter.hasNext()) {
Systemout.printin(" " + conmter.next());

} else {
Systemout. println("There are no valid commands.\n");
}

Systemout.println("Any fact is a valid assertion.\n");

/**

* Prints the facts in the system on System out
*
* @xception RenoteException if an error occurs
*/
public void showrFacts() throws RenoteException {
Vector facts = facts();
Systemout.println("\nJust the facts:\n");
for (int i=0; i<facts.size(); i++) {
Systemout.println(facts.get(i).toString());
}

Systemout.println("\'n");

[HEEErr i rririrrri
/1

/'l For talking to START
/1
FHEErrrrrrrrrirrirrrrni

/**

* Call this to set up connection to START

*
* @eturn <code>true</code> if successfu
* @xception RenoteException if an error occurs
*/
publ i ¢ bool ean connect ToStart() throws RenpteException {
String functions = new File(fileDirectory,
"roomfunctions.lisp").getAbsol utePath();
String schemata = new File(fileDirectory,
"room schemata.lisp").get Absol utePat h();

/1 Open connection

58

bool ean success = start.connectToStart();

if (!success) {
| og(LogSt ream ERROR, "Probl em connecting to START");
return success;

}

/1 load netaglue.lisp
String file = new File(fileDirectory,
"met agl ue. i sp"). get Absol ut ePat h() ;
success = start.loadFile(file);
if (!success) {
LogStream | og(LogStream ERROR, "Error loading " + file);
return success;

}

/1l start a nmetaglue agent for lisp
String society = getAgentlD().getSociety();
String catal og = getCatal og().whereAreYou().getHost Nane();
start.readEval ("(start-nmetagl ue-agent \"" + society +
"\" \"" + catalog + "\" \"\")");

/1l load the schemata and functions

success = start.|loadFil e(functions);

if (!success) {
| og(LogStream ERROR, "Problem | oading " + functions);
return success;

}

success = start.l|oadFil e(schemata);

if (!success) {
| og(LogSt ream ERROR, " Probl em | oadi ng
return success;

}

| og(LogStream | NFO, "Connected to START.");
connected = true;
return success;

+ schemat a) ;

/**
* Call START's <code>fread</code> function
*
* @araminput a string to give to <code>fread</code>
* @eturn START's response
*/
public String fread(String input) throws RenoteException {
String reply = start.fread(input);
Systemout.printin(reply);
return reply;

}

/**

Cl ose the connection to START.

*

* @xception RenoteException if an error occurs
*/

59

public void cl oseConnectionToStart() throws RenpteException {
connected = fal se;
start. shutdown();

}

publ i c bool ean i sConnected() throws RenoteException {
return connect ed;

}

} /1 StartlnterfaceAgent

60

startinterface.clp

;; agentland.info.scripts.startlnterface
;(watch all)

(deftenpl ate startAsk
"Represents a question posed to START. args gives the query. answer
will be the answer to the query. done will be true when the question
has been answered. finish-time will tell when the query was
answered. "
(mul tislot args)
(sl ot answer)
(sl ot done (default FALSE))
(slot finish-tine)
(slot tinmestanp (default-dynamc
(call (new java.util.Date) getTine))))

(deftenpl ate start Do
"Represents a command i ssued to START. args gives the command. done
will be true when the conmand has been conpleted. finish-tine wll
tell when the conmand was done.”
(mul tislot args)
(sl ot done (default FALSE))
(slot finish-tine)
(slot tinmestanp (default-dynamc
(call (new java.util.Date) getTine))))

(deftenpl ate agent-info
"Informati on about an agent. agent is the Agent object. agentlDis
the agent's AgentlD. occupation is the occupation part of the
agent| D. "
(sl ot agent)
(slot agentID (type STRING)
(sl ot occupation (type STRING)))

(deftenpl at e agent - nane
"I ndi cates a name an agent goes by. One agent may have several
names, so there will be an agent-name fact for each name.”
(slot nanme (type STRING))
(slot agentID (type STRING)))

(deftenplate is-a
"I ndicates that an agent with the given occupation inplenments the
given interface."
(slot occupation (type STRING))
(slot interface (type STRING)))
(do- backwar d- chai ning is-a)

(deftenpl ate name-agent-match
"Used to find information about an agent."”
(slot name (type STRING))
(slot interface (type STRING)
(slot agentID (type STRING))
(sl ot agent))
(do- backwar d- chai ni ng name- agent - mat ch)

61

(deftenpl ate i ntroduce-agent
"Used to introduce an agent to the system using the given nane”
(sl ot occupation (type STRING))
(slot name (type STRING)))

(deftenplate user-info
“Informati on about the users."
(sl ot name (type STRING))
(slot initials (type STRING)))

(deftenpl ate current-speaker
"Tells us who is currently speaking. There should be only one of
these facts present."
(sl ot nane))

(def gl oba
?*val i dQueri es* = (create$)
?*val i dConmands* = (create$))

(deffunction addVval i dQueries ($?newQueri es)
"Adds the newQueries to the list of valid queries."”
(bind ?*validQueries* (create$?*validQueries* $?newQueries))
(set ReturnVal ue "validQueries"
(call java.util.Arrays asList ?*validQueries*)))

(deffunction addVal i dConmands ($?newConmmands)
"Adds the newCommands to the list of valid comrands."”
(bi nd ?*val i dConmands* (create$?*val i dCommands* $?newCommuands))
(set ReturnVal ue "val i dCommands”
(call java.util.Arrays asList ?*validCommands*)))

(run) ; run so we can use the tenplates in the follow ng rules

(defrule nmake-is-a-1
"If Ais-aBand Bis-a C, then Ais-a C"
?f <- (need-is-a (occupation ?A) (interface ?C&7?A))
(is-a (occupation ?A) (interface ?B))
(is-a (occupation ?B) (interface ?0Q))
=
(retract ?f)
(assert (is-a (occupation ?A) (interface ?0))))

(defrul e nake-is-a-2
"Asserts Ais-a B facts for the given A"
(need-is-a (occupation ?A) (interface ?B&-A))
=
(bind ?class (call Class forNane ?A))
(bind ?interfaces (call ?class getlnterfaces))
(foreach ?x ?interfaces
(assert (is-a (occupation ?A) (interface (call ?x getNane))))))

(defrule make-is-a-3

62

"Asserts Ais-a A"

?f <- (need-is-a (occupation ?A) (interface ?A))
=>

(retract ?f)

(assert (is-a (occupation ?A) (interface ?A))))

(defrul e make-nane- agent - match
"Finds agent| D and agent for the given nane and interface."
?f <- (need-nane-agent-match (nane ?nane) (interface ?int))
(agent - name (nane ?name) (agentl D ?agentl D))
(agent-info (agentl D ?agent|D) (agent ?agent) (occupation ?occ))
(is-a (occupation ?occ) (interface ?int))
=
(retract ?f)
(assert (nane-agent-match (nanme ?nanme) (agentl D ?agent| D)
(agent ?agent) (interface ?int))))

(defrul e set-up-agent
"Asserts agent-info and agent-nane facts about the agent."
?f <- (introduce-agent (occupation ?occ) (nane ?nane))
=
(bi nd ?agent (reliesOn ?occ))
(bind ?agentID (call (call ?agent getAgentlD) toString))
(assert (agent-info (agent ?agent) (agentlD ?agentl| D)

(occupation ?occ)))

(assert (agent-nane (nanme ?nane) (agentlD ?agentID)))
(retract ?f))

(defrule clean-up-need-is-a
"Renmoves ol d need-is-a rules if not needed."
(not (exists (startDo (done FALSE))))
(not (exists (startAsk (done FALSE))))
?f <- (need-is-a)
=>
(retract ?f))

;; include scripts for agents we know about

(includeScript "agentland.info.scripts.knownAgents")

(run)

63

knownAgents.clp

;; agentland.info.scripts. knownAgents

;7 Include the scripts for all the agents that we want
;7 START to be able to get information from
(includeScript "agentl and. devi ce. scripts. device")

(includeScript "agentland. device.scripts.light")

(includeScript "agentland. device. scripts.projector")
(includeScript "agentland.util.scripts.nmessenger")
(includeScript "agentland.util.schedul er.scripts.scheduler")

—~

i ncludeScri pt "agentl and.info.scripts.weather™)

device.clp

(deftenpl ate device-fact
"Informati on about a device. device is the agent's agentlD. The
state called state has the indicated value with the given confidence.
timestanmp tells when the fact was asserted. npst-recent is true if
this is the newest fact about this device.”
(sl ot device)
(slot state (type STRING)
(sl ot val ue)
(sl ot confidence (type | NTEGER)
(default (get-nmenber util.UncertainVal ue UNKNOW)))
(slot tinmestanp (default-dynamc
(call (new java.util.Date) getTine)))
(slot nost-recent (default TRUE)))

(deftenpl ate device-state
“"Mat ches an integer indicating device state to a string describing
the state. CQCccupation indicates what type of device this is for
State indicates what type of state these val ues describe."
(slot state (type STRING)
(slot intvalue (type | NTEGER))
(slot strvalue (type STRING))
(slot occupation (type STRING))
(slot foo))

(deftenpl ate i ntroduce-device
"Used to introduce a device to the system"”
(sl ot occupation (type STRING))
(slot agentID (default "not-specified")))

(deftenpl ate introduce- manager-devi ce
"Used to introduce a device that manages other devices."
(sl ot occupation (type STRING)))

(run) ; run so we can use the tenplates

(defrul e nmaintai n-devi ce-fact-npst-recent

"If two facts for the sane device indicate they are both the npst

recent fact asserted about that device, change the flag for the ol der

fact™”

?f1 <- (device-fact (device ?d) (state ?s) (mpst-recent TRUE)
(timestanp ?t1))

?f2 <- (device-fact (device ?d) (state ?s) (nmpst-recent TRUE)
(tinmestanmp ?t2&7?t1l))

=>
(if (<?2t1 ?t2)
t hen
(rmodify ?f1 (nmost-recent FALSE))
el se

(rmodify ?f2 (nmost-recent FALSE))))

(defrule set-up-device-w th-occupation
"Finds the agent|ID for the agent with the given occupation."

65

?f <- (introduce-device (occupation ?occ) (agentlD "not-specified"))
=>

;; add the agentID to the introduce-device fact

(bi nd ?agent (reliesOn ?occ))

(bind ?agentI D (call 7?agent getAgentlD))

(nmodi fy ?f (agentlD ?agentlD))

(defrule set-up-device-wth-agentlD
"Asserts agent-info and agent-nanme facts about this agent.”
?f <- (introduce-device (occupation ?occ)
(agent | D ?agent | D&" not - speci fied"))
=
(bi nd ?agent (reliesOn ?agentlD))
;; assert the agent-info fact
(assert
(agent-info (agent ?agent) (agentlD ?agentlD) (occupation ?occ)))
;; assert agent-name facts
(bind ?nanmes (call (call ?agent getNanes) toArray))
(foreach ?nane ?nanmes
(assert (agent-nane (nane ?nane) (agentlD ?agentlD))))
;; retract the introduce-device fact
(retract ?f)

(defrul e set-up-nmnager-device
"I ntroduce the manager device and all the devices it nmanages."
?f <- (introduce-manager-device (occupation ?occ))
=
;; introduce manager
(bi nd ?agent (reliesOn ?occ))
(assert (introduce-device (occupation ?occ)))
;; introduce managed devi ces
(bind ?devices (call (call ?agent getDevices) toArray))
(foreach ?agent| D ?devi ces
(assert
(i ntroduce-device (agentlD ?agent| D)
(occupation (call ?agentlD getCccupation)))))
;; retract the introduce-device fact
(retract ?f))

66

light.clp

;; Describes queries expected by Light Manager Agent

(def gl obal ?*addedLi ght St at enent s* = FALSE)

(deffacts light-state-info
"Define sonme things we know about Lights."
(i ntroduce- manager - devi ce
(occupation "agentl and. devi ce. | i ght.Li ght Manager")))

(reset) ; reset to |load these facts

;; handl e queries

(defrul e askLi ghtState
"We want to know the brightness |evel or whether the light is
on/of f, and we have a fact that tells us the answer."
?query <- (startAsk (args ?nanme ?state) (done FALSE))
(nane-agent-match (name ?nane)
(interface "agentl and. devi ce.light.Light")
(agent | D ?agent1 D))
(device-fact (device ?agentlD) (state ?state)
(val ue ?value) (nost-recent TRUE))
=>
(modi fy ?query
(answer ?val ue)
(done TRUE)
(finish-time (call (new java.util.Date) getTine)))
(addReturnVal ue (str-cat ?nane " " ?state) ?val ue))

(defrul e assertlLightLeve
"We want to know the brightness |evel, but we have no facts about the
device. Ask the device and assert a fact."
(start Ask (args ?name di nmLevel) (done FALSE))
(nane-agent - mat ch
(nane ?nane) (agentlD ?agentl D) (agent ?agent)
(interface "agentl and. devi ce. | i ght. X10Di mnmabl eLi ght"))
(not (exists (device-fact (device ?agentID) (state dinLevel)
(nmost-recent TRUE))))
=>
(bind ?state (call ?agent getState dinLevel))
(assert (device-fact (device ?agentlID) (state dimevel)
(value (call ?state getlntValue))
(confidence (call ?state getConfidence)))))

(defrul e assertLightOnOrf
"W want to know if the light is on or off, but we have no facts
about the device. Ask the device and assert a fact."
(start Ask (args ?nanme on) (done FALSE))

67

(nane- agent - mat ch
(nane ?nane) (agentlD ?agentl D) (agent 7?agent)
(interface "agent!l and. device. | ight. X10Li ght"))
(not (exists (device-fact (device ?agentlD) (state on)
(nmost-recent TRUE))))
=
(bind ?state (call ?agent getState on))
(assert (device-fact (device ?agentlD) (state on)
(value (call ?state getStringValue))
(confidence (call 7?state getConfidence)))))

(defrul e doLi ght On
"Turn the light on"
?conmmand <- (startDo (args ?nane on) (done FALSE))
(nane-agent-match (name ?nane) (agentl D ?agent| D) (agent ?agent)
(interface "agentl and. device.light.Light"))
=>
(bind ?2did-it (call ?agent turnOn))
(rmodi fy ?conmand
(done ?did-it)
(finish-time (call (new java.util.Date) getTine)))
(addReturnVal ue (str-cat ?nane " on") ?2did-it))

(defrul e doLi ght O f
"Turn the light off"
?command <- (startDo (args ?nanme off) (done FALSE))
(nanme-agent-match (nanme ?nane) (agent|D ?agentl| D) (agent ?agent)
(interface "agentl and. device.light.Light"))
=
(bind ?did-it (call ?agent turnCff))
(rodi fy ?command
(done ?did-it)
(finish-time (call (new java.util.Date) getTine)))
(addRet urnVal ue (str-cat ?nane " off") ?did-it))

(defrul e doLi ght Set Leve
"Set the light to a certain brightness"
?command <- (startDo (args ?nane setlLevel ?level) (done FALSE))
(test (and (>= ?level 0) (<= ?level 100)))
(nane-agent-match (name ?nane) (agentl D ?agent| D) (agent ?agent)
(interface "agentl and. device.light. D mrabl eLi ght"))
=>
(bind ?2did-it (call ?agent setlLevel ?level))
(rmodi fy ?conmand
(done ?did-it)
(finish-time (call (new java.util.Date) getTine)))
(addReturnVal ue (str-cat ?nane " setlLevel " ?level) ?2did-it))

68

(defrul e updateVal i dSt at ement s-1i ght
(test (neq ?*addedLi ght St at ement s* TRUE))
(getVal i dSt at enent s)

=>
(addVval i dQueries (create$ "light on" "light dinlLevel"))
(addVal i dConmands

(create$ "light on" "light off" "light setLevel <level>"))

(bi nd ?*addedLi ght St at enent s* TRUE))

69

messenger .clp

;; agentland.util.scripts. messenger
;; Describes queries expected by Messenger Agent

(def gl oba
?*addedMessenger St at ement s* = FALSE
?*SpeechText Qutput* = (reliesOn "agentl and.text. SpeechText Qut put")
?*GranmarCenter* = (reliesOn "speech. Gammar Center"))

(deffacts nmessenger-state-info
"Define some things we know about Messengers."
(i ntroduce-agent (occupation "agentland.util.Messenger")
(nane "nessenger")))

(reset) ; reset to load these facts

(defrul e doSendMessage
"Send a nessage"
?conmand <- (startDo (args sendMessage) (done FALSE))
(nane-agent-match (name "nmessenger") (agent ?agent)
(interface "agentland. util.Messenger"))
(current -speaker (nane ?nane))
(user-info (name ?nane) (initials ?who))
=
(bind ?priority 3) ; set a default priority val ue
; get text of nessage
(call ?*SpeechText Qut put* out put Text
"What nmessage would you |like to send?")
(bind ?nessage (call ?*G ammarCenter* getDictation))
(printout t ?message crlf)
(bind ?2did-it (call ?agent deliver ?who ?nessage ?priority))
(if 2did-it
t hen
(printout t "Delivered nessage:
" " ?priority crlf)

?message " " ?who

el se
(printout t "Message not delivered:
"t ?priority crlf))

?nmessage " " ?who
(nodi fy ?command
(done ?2did-it)

(finish-time (call (new java.util.Date) getTine)))
(addRet urnVal ue "sendMessage" ?did-it))

(defrul e updat eVal i dSt at enent s- nessenger

70

(test (neq ?*addedMessenger St at enent s* TRUE))
(get Val i dSt at enent s)
=>
(addval i dQueries (create$))
(addVval i dCommands

(create$ "sendMessage"))
(bi nd ?*addedMessenger St at enent s* TRUE))

71

projector.clp

;; Describes queries expected by ProjectorAgent

(def gl oba
?*addedPr oj ect or St at ement s* = FALSE
?*asker* = (reliesOn "speech.tools. Asker"))

(deffacts projector-state-info
"Define sonme things we know about Projectors.”
(i ntroduce- manager - devi ce
(occupation "agentl and. devi ce. Proj ect or Manager")))

(reset) ; reset to |load these facts

(defrul e askProjectorState
"W want to know whether the projector is on/off,
and we have a fact that tells us the answer."
?query <- (startAsk (args ?nane ?state) (done FALSE))
(name- agent - match (name ?nane)
(interface "agentl and. devi ce. Proj ector")
(agent | D ?agent1 D))
(device-fact (device ?agentlID) (state ?state)
(val ue ?value) (nost-recent TRUE))
=
(nodi fy ?query
(answer ?val ue)
(done TRUE)
(finish-time (call (new java.util.Date) getTine)))
(addReturnVal ue (str-cat ?nane " " ?state) ?value))

(defrul e assertProjectorOnO f

"W want to know if the projector is on or off, but we have no facts

about the device. Ask the device and assert a fact."

(start Ask (args ?nanme on) (done FALSE))

(nane-agent-match (name ?nane) (agentlD ?agent| D) (agent ?agent)

(interface "agentl and. devi ce. Projector"))
(not (exists (device-fact (device ?agentlD) (state on)
(nost-recent TRUE))))

=

(bind ?state (call ?agent getState on))

(assert (device-fact (device ?agentlD) (state on)
(value (call ?state getStringVal ue))
(confidence (call ?state getConfidence)))))

;. handl e conmands

72

(defrul e doProjectorOn
"Turn the projector on"
?command <- (startDo (args ?nanme on) (done FALSE))
(name- agent - mat ch (nanme ?nane) (agentl D ?agentl D) (agent 7?agent)
(interface "agentl and. devi ce. Projector"))
=
(bind ?did-it (call ?agent turnOn))
(rodi fy ?command
(done ?did-it)
(finish-time (call (new java.util.Date) getTine)))
(addRet urnVal ue (str-cat ?nane " on") ?did-it))

(defrul e doProjectorCOf
"Turn the projector off"
?conmmand <- (startDo (args ?nane off) (done FALSE))
(nane-agent-match (name ?nane) (agentlD ?agent| D) (agent ?agent)
(interface "agentl and. devi ce. Projector"))
(test (eq? (get-nenber "speech.tools.Asker" "YES")
(call ?*asker* ask
(str-cat "Are you sure you want to turn off " ?name)

5)))
=>

(bind ?2did-it (call ?agent turnCff))
(rodi fy ?command

(done ?did-it)

(finish-time (call (new java.util.Date) getTine)))
(addRet urnVal ue (str-cat ?nane " off") ?2did-it))

(defrul e updat eVal i dSt at ement s- pr oj ect or
(test (neq ?*addedProj ector St at enents* TRUE))
(get Val i dSt at enent s)
=>
(addVval i dQueries (create$ "projector on"))
(addVal i dConmands

(create$ "projector on" "projector off"))

(bi nd ?*addedLi ght St at enment s* TRUE))

73

scheduler.clp

;; agentland.util.schedul er.scripts.schedul er
;; Describes queries expected by Schedul erl nterfaceAgent

(def gl oba
?*addedSchedul er St at ement s* = FALSE
?*SpeechText Qutput* = (reliesOn "agentl and.text. SpeechText Qut put")
?*GranmarCenter* = (reliesOn "speech. Gammar Center"))

(deffacts schedul er-state-info
"Define some things we know about Schedul ers.”
(i ntroduce-agent (occupation "agentland. util.schedul er.Schedul er")
(nane "scheduler")))

(reset) ; reset to load these facts

(defrul e doSendReni nder
"Send a reninder"
?command <- (startDo (args sendRem nder ?tinme ?unit) (done FALSE))
(nane-agent-match (name "schedul er") (agent ?agent)
(interface "agentland. util.schedul er. Schedul er"))
=>
; get text of message
(call ?*SpeechText Qut put* out put Text "What should the rem nder say?")
(bi nd ?nessage (call ?*GranmarCenter* getDictation))
(printout t ?nmessage " " ?tine " " ?unit crlf)
(bind ?did-it TRUE)
(bind ?rem nder (new agentland. util.schedul er. OneTi meReni nder
(call ?*SpeechText Qut put* get Agent | D)
out put Text

?nmessage
?tinme
2unit))
(bind ?rem nderlD (call ?agent addRenm nder ?reni nder))
(printout t "Rem nder set: " ?nessage " " ?tinme " " 2unit crlf)
(call ?*SpeechText Qut put* out put Text
(str-cat "OK, | will remnd you in" ?time " " ?unit))

(nodi fy ?command

(done TRUE)

(finish-time (call (new java.util.Date) getTine)))
(addReturnVal ue (str-cat "sendRem nder " ?tinme " " ?unit) TRUE))

(defrul e updat eVal i dSt at ement s-r emni nder
(test (neq ?*addedSchedul er St at enent s* TRUE))

74

(get Val i dSt at ement s)
=>
(addVal i dQueries (create$))
(addVval i dCommands
(create$ "sendReni nder <time>"))
(bi nd ?*addedSchedul er St at enent s* TRUE))

75

weather.clp

;; agentland.info.scripts.weather

(def gl oba
?*addedWeat her St at ement s* = FALSE
?*SpeechText Qutput* = (reliesOn "agentl and.text. SpeechText Qut put"))

(reset) ; reset to load these facts

;; handl e conmands

(defrul e doReadWeat her
"Read today's weather"
?conmand <- (startDo (args readWather) (done FALSE))
=>
(bi nd ?weat her
(call (new agentl and. i nfo.weat her. \Wat her Fet cher) get Wat her))

(call ?*SpeechText Qutput* outputText (call ?weather tinyWather))
(modi fy ?conmmand

(done TRUE)

(finish-time (call (new java.util.Date) getTine)))
(addRet urnVal ue "readWeat her" TRUE))

(defrul e updat eVal i dSt at enent s- weat her
(test (neq ?*addedWeat her St at enent s* TRUE))
(get Val i dSt at enent s)
=>
(addVal i dQueries (create$))
(addVval i dCommands
(create$ "readWeather"))
(bi nd ?*addedWeat her St at enent s* TRUE))

76

