
Rascal – A Resource Manager For E21

Krzysztof Gajos KGAJOS@AI .MIT.EDU

Luke Weisman LUKE@AI .MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology sq. Rm 832, Cambridge, MA 02139, USA

Abstract

Rascal, a system for managing resources in a
smart space, is presented. Rascal contributes
to improvement of the software architecture for
smart spaces in two major ways: it adds a level
of indirection – by referring to resources in terms
of services they provide rather than devices they
represent – that allows the creation of device-
independent applications and it arbitrates among
resource requests, thus allowing independently
created applications to run together in a single
environment.

1. Introduction

It is a goal of Oxygen to build an adaptive software in-
frastructure that allows software components to be assem-
bled and configured dynamically (Oxygen, 2000). The in-
frastructure will allow the components to be arranged dy-
namically in a variety of ways to ensure that goals can be
achieved. Such infrastructure works well, as long as the
majority of the components exist solely as software. If it
is to be used in a smart environment, such as in Oxygen’s
E21, where many of the software components are merely
proxies for real, tangible objects, care needs to be taken to
ensure that the scarce physical resources are used well.

Moreover, smart space technology is becoming increas-
ingly more robust and accessible. But still one of the major
obstacles preventing this technology from spreading is the
fact that different smart spaces are equipped with very dif-
ferent kinds of devices. This lack of consistency makes it
very difficult to write portable applications for intelligent
spaces. It is thus necessary to provide an extra layer of ab-
straction to enable the creation of device-independent ap-
plications.

Furthermore, as the work on smart spaces progresses, the
number of applications that can run independently in such
environments is steadily increasing. When several applica-
tions run concurrently in an environment, a problem is cre-
ated when they inevitably vie for scarce shared resources.

These problems can be solved by a resource management
system. A properly built resource management system will
provide the necessary level of indirection thus making the
writing of applications simpler. It will also provide an arbi-
tration mechanism to ensure that scarce resources are used
well.

In this paper we present Rascal–a novel resource manage-
ment system for the Intelligent Room (Coen, 1998). Rascal
is currently being tested in the Room.

1.1 What Is a Resource Manager For an Intelligent
Space

What we mean by a resource manager is a system capa-
ble of performing two fundamental tasks:resource map-
ping andarbitration . By resource mapping (a.k.a. match-
making) we mean the process of finding out what actual
resources can be taken into consideration given a specific
request. By arbitration we mean a process of making sure
that, at a minimum, resources are not being used beyond
their capacities. At best, arbitration ensures–via appropri-
ate allocation of resources to requests–optimal, or nearly
optimal, use of scarce resources.

2. Rascal

As explained before, Rascal performs two major func-
tions: service mapping and arbitration among requests for
services. Rascal is composed of three major parts: the
knowledge base, the constraint satisfactions engine and the
framework for interacting with other software components
in the Room. The motivation for major design decisions is
discussed in detail in (Gajos et al., 2001). Below we present
Rascal by describing its typical uses.

Making A RequestWhen an agent needs resources to pro-
vide a service, it contacts Rascal requesting all the re-
sources it needs. If the resources are available, Rascal re-
turns a “resource bundle” containing pointers to all of the
allocated resources. If some of the requested resources
could not be allocated to the request, Rascal returns an
empty bundle and the agent is prevented from providing
its service.



Requesting Startup NeedsWhen an agent with startup
needs is being brought to life, it contacts Rascal while ex-
ecuting its constructor, and makes a request. If the request
could not be satisfied, the agent abandons startup.

Withdrawing Or Re-allocating Previously Granted Re-
questsIf a new request is allocated a resource that was
previously allocated to a different request, two things may
happen: either the resource is taken away completely from
the previous requester or a different resource is given to
replace the lost one. In either case, Rascal contacts the
“victim” agent and notifies it of loss or change of resource.

2.1 The Knowledge Base

Upon startup, information about all available resources is
loaded into Rascal’s knowledge base (if more resources be-
come available later on, they can be added dynamically).
Rascal relies on all resources having the descriptions of
their needs and capabilities separate from the actual code.
Those external descriptions provide a list of services that
the agent or other resource can provide. For each ser-
vice provided agents may in addition specify what other
resources they will need in order to provide the service. For
example theMessengerAgent that provides a message
delivery service will need one or more resources capable
of providing text output service. Agents may also specify
their startup needs, i.e. a list of requests that need to be
fulfilled for the agent to exist.

Hence, when Rascal considers candidates for a request it
not only needs to make sure that those candidates are ad-
equate and available – it also needs to make sure that the
needs of those candidates can be satisfied and that the needs
of the resources satisfying the needs of the candidates can
be satisfied as well, and so on. This request chaining proves
to be extremely valuable: when the email alert agent, for
example, requests a text output service, several different
agents are considered: for example the LED sign and the
speech output. The email alert agent may have its own
preference as to what kind of rendition of the text output
service it prefers. However if the communication link with
the actual LED sign is broken, the needs of the agent con-
trolling the LED sign will not be satisfied and so it will not
be assigned to the request.

2.2 Cost-Benefit Analysis

When resources are scarce, part of the arbitration process
is deciding which requests are more important. In Rascal
self-assigned need levels are used in conjunction with the
concept of utility of a service to the requester and the cost to
others. This is a very simple and arbitrary scheme. It could
easily be replaced by a different system should there be a
need for that (again, see (Gajos et al., 2001) for motivation
and (Gajos, 2000) for details).

The arbiter has to make sure that whenever it awards a re-
source to a new request, the cost of doing so should never
exceed the utility of the awarded resources to the new re-
quester.

2.3 Finding The Right Solution – The Constraint
Satisfaction Engine

When the knowledge-based subsystem selects and rates
all candidates for requests, a constraint satisfaction engine
(CSE) is invoked to find the optimal or nearly optimal
configuration that would, hopefully, fulfill the new request
without breaking any of the previous assignments.

In order to find the right solution, a number of constraints
and heuristics are involved of which the two most impor-
tant are:
- respecting limits – there are limits on how many requests
can share a service.
- preference to local solutions – as explained in (Gajos
et al., 2001), it is sometimes necessary to change the as-
signment to a previously satisfied request. However, it is
necessary to minimize such changes to the absolute mini-
mum. By controlling the cost incurred, Rascal’s CSE has
been set up in such a way that changes to old requests are
only made as a last resort and have to be limited in scope.
That is, it should not be possible for a new request to cause
changes to a large number of other assignments.

2.4 Rascal-Metaglue Connection

There are two major components to the Rascal-Metaglue
connection mechanism: theRascalAgent and theMan-
agedAgent . The former makes Rascal’s methods avail-
able to the rest of the Metaglue agents. The latter is an sim-
ple implementation of a Metaglue agent that all other “man-
aged” agents inherit from. That is, all agents that want to
make their services available through Rascal, or that wish
to make requests through it.

References

Coen, M. (1998). Design principles for intelligent envi-
ronments. Fifteenth National Conference on Artificial
Intelligence (AAAI98). Madison, WI.

Gajos, K. (2000). A knowledge-based resource manage-
ment system for the intelligent room. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA.

Gajos, K., Weisman, L., & Shrobe, H. (2001). Design prin-
ciples for resource management systems for intelligent
spaces. in submission.

Oxygen (2000). Mit project oxygen - software environ-
ment. http://oxygen.ai.mit.edu/Software.html.


