A Knowledge-Based Resour ce M anagement System For

The Inteligent Room

by
Krzysztof Gajos

Submitted to the Department of Electrical Engineering and Computer Science
August 11, 2000
in Partid Fulfillment of the Reguirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Ingtitute of Technology

Abstract

As computers become cheaper, smaller and more powerful, they begin to appear in places
where until recently we did not expect to find them. The idea of ubiquitous computing and smart
environmentsis no longer adream and has long become a serious area of research and soon this
technology will start entering our every day lives. One of the major obstacles preventing this
technology from spreading is the fact that different smart spaceswill have very different kinds of
devicesavailable. Thislack of consistency will make it very difficult to write portable applications
for intelligent spaces. In thisthesis| present a set of requirements for a resource management
system for intelligent spaces that will make writing portable applications for such environments
possible. One of the main requirements for such resource manager isthat it represents devicesin
terms of abstract servicesthey provide thus making applications for smart spaces independent of the
kind of equipment present in the space. | also present an actual resource management system called
Realm, built according to the design reguirements derived, that was implemented to solve the
resource management problem in the Intelligent Room — a smart space developed at the Artificial
Intelligence Laboratory at MIT. By evaluating the usefulness of Realm, | also evaluate the proposed
set of design requirements for such asystems.

Thesis Supervisor: Patrick H. Winston
Title: Professor, Department of Electrical Engineering and Computer Science

Thesis Supervisor: Howard E. Shrobe
Title: Associate Director, MIT Artificial Intelligence Laboratory

Table of Contents

1 Introduction 6
11 The Intelligent Room 7
111 Metaglue 8

12 Problem 8
13 Why thisisan important problem to solve 8
14 What this problem is not 9
141 Classical OSresource alocation problem 10
142 Job shop scheduling 10

15 Solution 10
16 Examples 11
161 Showing amovie 11
16.2 Short Text Message 12

17 Concepts and vocabulary 13
18 Organization of thisthesis 14

2 The Problem 15
21 Initial requirements 15
2.2 Resour ce M anagement and the Intelligent Room 15
23 Design Requirements 18

3 Design Overview 20
31 Main design decisions 20
311 Structure 20
312 Reactive 21
313 Choice of tools 21

3.2 Quick look at Realm

22

33 The Knowledge-Based Part

23

331 Metacontrol

24

332 Knowledge expressed

26

333 Ontology

334 Reasoning

34 The Constraint Satisfaction Engine

31

34.1 Constraints

31

34.2 Heuristics

32

35 Cost and Utility

32

351 Other approachesto cost and utility

36 Connecting with Metaglue

35

36.1 Ream Agent—making Realm accessibleto Metaglue

36.2 Managed Agent —making Metaglue accessible to Realm

36.3 Handling Nested Requests

37

3.64 Connections

I mplementation

39

4.1 The Knowledge Part

39

4.2 The Constraint Satisfaction Engine

39

421 Constraints

41

422 Heuristics

42

4.3 M etaglue I ntegration

42

Realm at work

43

51 System startup

43

511 Readingintheinfo about available agents

5.1.2 First request — “short text output” service (with interference)

-3-

6

9

Comparison With Related Systems 48
6.1 Jini 48
6.2 Open Agent Architecture (OAA) 48
6.3 Hive 49
6.4 Resour ce Description Framework (RDF) 49

Evaluation of Realm 51
7.1 Compliance with Requirements 51
7.2 Impact of Realm on the Intelligent Room 52
73 L essons L ear ned 53

Contributions 55
8.1 Within the Intelligent Room 55
8.2 Design Principlesfor Resource Management Systemsfor Intelligent Spaces _ 55
8.3 New paradigm — user asaresource 56

Bibliography 58

Acknowledgements

| would like to thank my thesis supervisors: Prof. Patrick Winston for making merealize
that | have done something of significance, and Dr. Howard Shrobe for guiding me through the
process. | would also like to thank Luke and Stephen for their comments, Andy for the cookies and

Michael for not bothering me much.

1 Introduction

As computers become cheaper, smaller and more powerful, they begin to appear in places
where until recently we did not expect to find them. The idea of ubiquitous computing isno longer a
dream and has long become a serious area of research. Some of that research is directed towards
harnessing the computational power surrounding us into creating smart spaces. Smart spaces, such
asintelligent houses, offices, command posts will be there to assist usin our work, help us manage

and share information and facilitate communication with other people.

To betruly useful, those spaces will have to be affordable, which impliesthat it should be
possible to build them out of mass produced, interconnected components. Thisincludes both the
hardware and the software. Hence we can imagine that in the future we will be getting software for
our rooms and offices just as today we get it for out desktop computers. By that time, the “ Office
Suite” of programs will mean something very different from what it meanstoday. Creating such

programs, however, may prove very difficult.

Itisaready difficult to keep desktop computers similar enough to make it possible for the
same software to run on all of them. It will certainly be even more difficult when it comesto smart
spaces. People take great pridein how they arrange their work and living environments and so
creators of software for smart spaces cannot impose how those spaces should be arranged or
equipped. While software creators can require that a computer should be equipped with adisplay, a
CD-Rom and a soundcard, they certainly cannot require the same level of uniformity amongliving
spaces. Thuswe have to make it possible for applicationsto run in avariety of spaceswith diverse

devices and configurations.

The differences among desktop computers have been minimized by the use of software
driversfor various devicesinstalled in those computers. Hence, it does not matter what kind of a
video card or amonitor one has— the drivers are going to make all cards and monitors “ speak the

same language” and provide the same servicesto all applications.

In the intelligent spaces the situation will be even more difficult: not only will spaces have
different kinds of displays, ranging from little TVsto large plasmadisplays, but some spaces may
not have displays at all. Thus we have to express the abilities of various devicesin smart

environments in more abstract terms.

Instead of providing uniform interfacesto devices, asis done on desktop computers, |
propose providing uniform interfaces to services provided by those devices. Thisdistinction is more
profound than it may at first appear. It comes from the fact that each service can, in principle, be
provided by a number of conceptually different devices and each device can provide a number of
distinct services. The “ short-text-output” service may be rendered by a computer display device, a
speech output device or by aoneline LED display. If absolutely necessary, it could even be

provided by alight device, which may flash the message in Morse code.

To achieve the above-mentioned goal, | present in thisthesis a set of design requirements
for aresource management for an intelligent space. | then present an actual system, called Realm,
built to satisfy those requirements. Realm has been built to solve resource management problems of

the Intelligent Room — a smart space devel oped at the Artificial Intelligence Laboratory at MIT.

1.1 Thelntelligent Room

The Intelligent Room is an experiment in human-computer interaction (HCI). The goal of the
project isto experiment with new kinds of applications when the traditional computer communication
channels such as mouse, keyboard and monitor are replaced by new kinds of input and output devices such
as speech recognition, speech generation, control of everyday electrical devices, on-wall displays and other
exotic means of communication. The applications tested in the Room range from living room automation,
to disaster command center to applications that help test and debug Room'’ s other applications (thus making
the Room atool for debugging itself). The Intelligent Room project focuses on the interactions between
humans and computers embedded in smart spaces, and on devel oping the software infrastructure necessary

to implement such interactions easily and efficiently.

111 Metaglue

Metaglue [Phi99, War99, Coen99] is the software foundation of the Intelligent Room project.
Metaglueis an agent platform built as an extension of the Java programming language. It provides the
individual agents with numerous capabilities regarding inter-agent communication, persistent storage,

execution context and management of the namespace.

1.2 Problem

The problem, which | attempt to solve here, isthat of assigning abstract services provided
by various devices (physical and computational) to requestors. Each device can provide a number of
services. Each kind of abstract service can potentially be provided by a number of different devices
with some variation of quality. The problemisto find the right devices for the requests while

keeping conflictsto a minimum.

Another aspect of the problem is that we would like the Room to make “intelligent”
decisions about which devices are better providers of certain services. For example, when the user is
just sitting reading a book, a speech output device can be avery good candidate for rendering the
“short text message” service. However, if the user is on the phone, using speech output would be too
distracting; in that situation the LED sign controller would be a better candidate for providing the

short text message service.

Finally, any resource manager should arbitrate among requestors making sure that no
resourceis being used by too many reguestors at any given time while still satisfying as many

reguests as possible.

1.3 Why thisisan important problem to solve

The purpose of this particular system isto impose alayer of abstraction in the systemin
order to make the applications for intelligent environments independent of the particular
environment in which they run. For example, until now amovie showing applications relied directly

on aparticular agent controlling a particular projector. With the resource manager in place, the

-8-

movie showing application will only have to request a display and will not need to worry about what
display is going to be used or what particular piece of software isresponsible for controlling it. The
power of thislayer of abstraction becomes apparent if we take into account the fact that certain
abstract services can be provided by anumber of devices and each device can potentially provide a
number of services. Hence, for example, if an agent needsto communicate a short message to the
user, it may be granted access to the speech generator, overhead LED display, acomputer display
connected to a projector or, in extreme cases, a beeper agent or a printer controller. Each of those
devices can provide the “ short text output” service needed. It will be the role of the resource

manager to decide which of those devices would best perform the service.

Resource conflicts are also a serious problem in the Intelligent Room. By now alarge
number of applications have been developed for the Room and when they run concurrently, they
often end up trying to use the same resources at the same time. For example, information agent often

takes adisplay away from the video showing agent.

Finally, the knowledge-based aspect of the resource manger will alow it to interact with
other knowledge-based components of the smart space. Thusif the user is having a meeting with
somebody, the resource manager will be advised to be discrete and to prefer visual devices over
those using sound. Conversely, if the user might be relaxing or dozing off and an important message

arrives, auditory clues may work better.

1.4 What this problemisnot

Terms such as resource management, agent system, intelligent environment areused in a
large variety of contexts. Thus people coming from various backgrounds may have various
expectations of what the problem | am trying to solve might be. Below | present afew examples of

problems that this system is not trying to address.

1.4.1 Classca OS resource alocation problem

The problem of resource allocation is one of optimization in a context of simple
descriptions of resources. In contrast, the problem addressed in this thesis hasto do with intelligent
actionsin acontext of richly described capabilities. In OS resource allocation the requests are made
for particular devices and the system has to make sure that all requests are satisfied in an expedient
manner. In resource management in an intelligent space, requests are made for certain services and

itisthe role of the resource manger to decide how the job could be done best.

1.4.2 Job shop scheduling

Job shop scheduling deals with the allocation of resources over time to perform a collection
of tasks. While this problem in the end also boils down to a constraint satisfaction problem, itis
somewhat different in nature from the problem presented in this thesis. Job shop scheduling is about
maximizing throughput over certain period of time. The problem being studied hereis about finding
the best possible configuration of resources at a particular point in time as well as deciding who are

the best candidates for any request.

15 Solution

Inthisthesis| present an actual system that satisfies the design requirements derived in
chapter 2. This system, called Realm, performs the resource management tasks for the Intelligent

Room.

Realm is composed of three major components: the knowledge part, the constraint-

satisfaction engine and infrastructure for integrating with Metaglue.

The knowledge part is mostly composed of templates for describing agents, services and
requests. It also contains a number of rules and functions for matching services to requests and a set
of meta control rules. The knowledge part stores information about the environment and is

responsible for suggesting candidate servicesfor all requests.

-10-

The constraint satisfaction engine uses information from the knowledge part about the
current state of the room and about requests and the corresponding candidate services. On the basis
of thisinformation, it produces amodel of the world with as many requests satisfied as possible and
hands it back to the knowledge part. The engine uses depth-first search method with local constraint

propagation.

The Metaglue interface is responsible for mediating service andinformation requests

between Metaglue agents and Realm.

1.6 Examples

Below are some scenarios of interactions within the Intelligent Room. | first present how
those scenarios were handled in the pre-Realm Room and then show how they are handled with

Redm.

1.6.1 Showingamovie

In the pre-Realm Intelligent Room, an agent wishing to show amovie to the Room’'s

occupants, had to
- bringto life the agent controlling one of the two projectors,
- bring to life the agent controlling the VCR, and

- bring to life the agent controlling the multiplexer to which both the VCR and the projector

are connected,
- turnonthe projector and change itsinput to video,
- set theinputs and outputs on the multiplexer,
- startthe VCR.

Moreover, the movie agent written for one office, will not work without some

modificationsin the next office even if they both use similar devices. And it will require even more

-11-

modificationsif, instead of a projector, the other office used a different device requiring a different

piece of software to control it.

With Realm in place, the movie showing agent has to include description of the servicesit needs
in order to provide the movie service. Those will include: aVCR service, adisplay serviceand a
connection between the two. Those three requests should be put in a single request bundle named, for

example, “movie needs’. Now, the agent has to do the following:

- makearequest passing the name of the request bundle to be activated (here “movie needs”)

—itwill get al three services requested in the bunch or nothing,

- ask the connection to set itself up— thiswill set the multiplexer inputs and outputs correctly

and switch the projector to video input turning it on first,

- askthe VCRto play the movie.

1.6.2 Short Text Message

Interactionsin the Intelligent Room are communications intensive. The Room often needs to
communicate short messages to the user. At the moment it is up the applications to decide how to
communicate with the user. At the same time, applications have no knowledge of other applications that
might also be trying to get user’ s attention. Most agents choose to communicate with the user via speech
out interface. Y et, several other agents provide Short Text Output service, athough they are rarely used.
For instance, controlled computer display agent can display short text messages. The agent controlling the
LED display can place a short message on the LED display above the projected displays. The speech
generator has already been mentioned. In extreme cases, the pager service or the printer service could be

used to get the message to the user.

In the pre-Realm Room, most applications defaulted to speech out agent. Thiswas
inconvenient at times, for example if ameeting was going on in the Room or if the user was on the
phone. With Realm in place, the Room can exert influence over what particular agents should
provide what services. Realizing that the user is on the phone, Room concludes that all sound
producing activity should be kept to the minimum. Hence it turns down the volume on the CD

-12-

player and it also inspects all the service requests arriving at Realm. Whenever several services
match areguest, the Room can reduce the likelihood of sound intensive services being used. Thus

LED display or computer display will be preferred over the speech out insuch situations.

1.7 Concepts and vocabulary

For clarity, | present here all the special vocabulary used in thisthesis. All of the terms
listed below | also explained in other parts of the thesis. | present and explain them together to

enable quick reference.

Smart space, intelligent environment — a space, such as aroom, house or an office,
augmented with computational and communicational devices. A smart space should be aware of its

inhabitants and should be designed to explicitly interact with them.

TheIntelligent Room, the Room — a smart space developed at the Artificial Intelligence

Laboratory at MIT.

M etaglue — an agent language based on Java; M etaglue is the software foundation of the

Intelligent Room project.
Agent — abasic software unit in Metaglue.

JESS — Java Expert System Shell [Fri0Q], arule-based system written in Java; syntactically

based on CLIPS.

MESS — Metaglue Expert System Shell, an extension of JESS that has built-in primitives
for communicating with Metaglue; MESS is used to capture alot of “common sense” knowledgein

the Intelligent Room.

Realm — a resource management system built for the Intelligent Room. It’ s a multi-
component system: its reasoning engine iswritten in MESS, the constraint satisfaction engineis

written in Java and the Metaglue interface is written as a M etaglue agent.

-13-

1.8 Organization of thisthesis

| begin by defining the design requirement for a resource manager for an intelligent
environment. | present the experiences and insights gained in working with the Intelligent Room and
show how they affected the definition of those requirements. In the next chapter | present the design
overview of Realm — a particular instance of aresource manager for a smart space. The fourth
chapter contains some implementation detail s of Realm. Next chapter provides some more
information about the inner workings of Realm by walking through some examples. Then | compare
Realm to other related systems. Finally, | evaluate Realm and conclude with by laying down the

contributions of thisthesis.

-14-

2 TheProblem

In this chapter | derive a set of design requirements for a resource management system for an
intelligent space. | base my derivation on my experience of working with and designing the Intelligent
Room’ s software infrastructure. | begin by reiterating the main assumptions mentioned in the Introduction.
I then present more detailed requirements derived from my experiences with the Intelligent Room. |
conclude by presenting the full set of requirements for aresource manager to fulfill. Those requirements

will be the basis for designing Realm and the measure against which Realm will be judged later.

2.1 Initial requirements
Below | present the main requirements for aresource management system.

- Describeresourcesin terms of abstract servicesthey provide
Thiswill provide a powerful layer of abstraction that will make applications |ess dependant

on particular devices and software.

- Allow the host systemto contribute to the process of choosing services for requests
Which resource isthe best provider of a given service depends not only on the needs of a
particular requestor but also on the current context in the space (asin the “ short text

output” examplein section 1.6.2)

- Arbitrate among all the requestors needing services
Thisisabasic requirement for any resource management system. Here we particularly
want to acknowledge the fact that many of the services provided by devices are not point-
likein time (assumption the designers of OAA seem to have made [Mar99]). Instead, many

services will be assigned to requestors for extended periods of time.

2.2 Resource Management and the I ntelligent Room

Below | present some likely interactions observed in the Room and some aspects of Metaglue that

shed some light on what may be required of a resource management system in a smart environment.

-15-

?? Many resourceintensive interactionsrequire services with little state
For example, movie showing agent uses adisplay. Thereislittle or no state maintained by an
agent controlling the display. The consequence of thisfact isvery important to the design. It
means that if necessary, previously assigned service can be replaced with another service
without too much cost connected with recreating the state. Consequently, it should be possible
to resort to reallocating services if a new request cannot be satisfied otherwise. There will, of
course, be situations where reall ocating a new service to arequest would cause alot of

disruption — requestors should be able to specify how well they can tolerate reall ocations.

?? Information about most servicesis known at startup time.
This an important feature that distinguishes Metaglue from many other systemslike Jini
[Arn99], OAA [Mar99] or Hive [Min99]. In Metaglue agents (and thus services they provide)
are started on demand and the underlying system explicitly supportsit. Metaglue offersa
r el i esOn primitive that allows one agent get a handle to another agent, starting it if
necessary. It isthusimplied that agents have some prior knowledge of each what other agents
they can expect in the system. In other systems agents are not available until they are started.
On one hand it provides the system with greater flexibility because agents can be added and
removed on the fly and the system makes no assumptions about them. On the other hand, the
system will not function properly unless all of its components are somehow started first. | will
argue that in complex environments with alarge number of applications and servicesit would
undesirable to have all components running all the time. Thus the moment a permanent
component is added to the system, it should register itself with the resource manager to let it
know that it is available. Any resource manager should, of course, support dynamic addition
and removal of available services. But it should also know about and be able to start inactive

services.

?? Agentsin the Room may have to run on the same computer as a particular piece of hardware or
software.
Thisistruefor all systems— software components controlling particular pieces of hardware

have to reside on computers to which this hardware is attached. Thisisatrivial issuein systems

-16-

where software components are started by hand or in some contrived manner. It becomes more
difficult in systemslike M etaglue where an agent needing to control amodem gets started by
another agent. The modem controlling agent has to make sure that it ends up running on the
right machine regardless of what computer the other agent is running on. Metaglue has a

t i edTo primitive that agents can use during construction time to specify the name of the
machine they have to run on. Because | argue for on-demand startup of agents, | also argue that
aresource manager should know about such startup requirement of agents as hardware or
software components they need to be tied to. Of course with aresource manager in place,
agentswill rarely regquest to be tied to particular machines— instead they will request to be put
inaUNIX-like environment or on a machine with avoice modem that is connected to a phone
line.

This also means that a resource manager should know not only about services provided by
agents but also about hardware and low level software (such as amodem or an operating
system).

Some system may use agent mobility (rather than the “tied to” concept) to deal with the

problem of agents being started on a different machine from the one they should run on.

New kinds of devices and interactions have to be accommodated by the Room on regular basis
Given that smart spaces are still in aresearch stage, new kinds of ideas, devices and interactions
have to be incorporated on regular basis. Thus any vital component of software infrastructure
controlling such a space has to be easily extensible. In the case of resource management it

means that it should be possible to easily extend the representation so that new kinds of devices

can be described and so that new kinds of choice strategies can be incorporated.

Physical connections between devices may go through a number of multiplexers.

As aconsequence of thisfact, pre-Realm agentsin the Intelligent Room had to not only find the
right pieces of software to control right devices, but they also needed to find right pieces of
software to control multiplexersto set up all the necessary connections. For example, the movie
showing agent had to find aVVCR controller, aprojector controller and a controller for the

multiplexer in between. It a so had to know which input on the multiplexer corresponded to the

-17 -

V CR and which output to the projector. In addition, the movie showing agent had to make sure
that the projector input was set to video and not computer. Realizing that thisinformation
should not be present explicitly in the movie showing agent, | decided to incorporateit in
Realm. Thus Realm now stores all the information about connections among devices and about

al the input-output settings on all devices with multiple inputs or outputs.

2.3 Design Requirements

In conclusion of this chapter | present alist of high-level requirementsfor aresource
management system for an intelligent environment. For each requirement | provide a slogan (for

easier reference) and a short description.

1. Servicesnot devices

Describe resources in terms of servicesthey provide;

2. Dynamic knowledge cooper ation
Allow the host system and the agents to dynamically affect candidate service selection

process.

3. On-demand agent startup

Support and take advantage of on-demand agent startup.

4. Machinereguirements
Be able to describe such requirements as living on the same machine as another

service (rendered in hardware or software);

5. Extenshbility

Representation should be extensible.

6. Local toglobal approach
Strive for alocal solution resorting to global changes only if necessary; but consider

reall ocations and withdrawal s when other solutions fail.

-18-

Resour ce conflict reduction

Reduce resource conflicts; take into account the fact that services are owned over time.

Hide connections
Hide connections from the agents— forcing the agent to know about all the
connections among various components would contradict the requirement that agents

should see services rather than devices.

-19-

3 Design Overview

This chapter provides a design overview of Realm — aresource management system for the
Intelligent Room. | will first outline the major components of the system and then proceed with
detailed descriptions of how those components are structured and how they function and how they

interact with one another.

3.1 Main design decisions

3.1.1 Structure

In order to put as few constraints on the reasoning process within Realm, | decided to keep
all the knowledge Realm acquires about the all the agentsin asingle place. Another reason for
keeping the knowledge separate from the actual agentsis so that the knowledge can be expressed in
away that is best for that purpose while agents can be written in alanguage that is most appropriate
for them. Finally, separating knowledge from agents allows the system to reason about agents that

arenot aiveyet.

Realm functions within Metaglue as asingle agent and it runsin asingle place. It isa centralized
system. Metaglue, however, is adistributed system. Making Realm an integral part of Metaglue may
severely reduce the robustness of the whole system. At this stage distributing Realm is out of question for
two reasons: first, the complexity of the possible solution makes it a separate research topic; second, the
resulting system would be very communication intensive and, likely, significantly slower. Because Realm

isto control areal-time system, it hasto run quickly and efficiently.
Realm can be still robust and mostly crash-proof thanksto two features of Metaglue:

1. persistent storage — Metaglue can store any kind of data on behalf of agents and

keep the data even in case of agent or Metaglue crash;

2. automtic restarting of agents— if an agent in Metaglue crashes and any other
agent triesto communicate with that dead agent, Metaglue will restart the dead

agent. If necessary, it will even restart it on adifferent computer.

Hence, areasonable level of robustness can be achieved if Realm storesits state frequently
enough. Then, in case of acrash, it will automatically be restarted whenever any of the agents needs

itand it will restoreits state from Metaglue' s persistent storage.

Other possible structures could include direct negotiation or environment marking [Fer99,
Huh99] but all of them would require al participating partiesto be present. Thiswould violate the
“on-demand startup” design requirement. Having a single knowledge repository allows the system

to reason about all components regardless of whether they are active or not.

3.1.2 Reactive

It issufficient for Realm to reason only about the current situation. If arequest is denied,
the requestor should wait and try again later or try to issue a more modest request. | argue that the
state of the system changes continuously and without warning. It would be impossibleto give
requestor guarantees as to when they would be awarded desired services because services could
suddenly become unavailable or a higher priority requests may arrive thus upsetting the order in the
gueue. If there can be no guarantees then maintaining a queue of requests would not benefit the

system significantly.

3.1.3 Choiceof tools

Given that Metaglue is an extension of Java programming language, and that Realm has to
interact with Metaglue, it was desirable to use Java as a base for Realm. Java, however, is not well
suited for expressing knowledge hence Java Expert System Shell (JESS) was chosen for the
knowledge part of the project. JESSis arule based language interpreter written in Java. It wasa
good candidate for the task because it provided adequate tools for expressing knowledge and good

connectivity with programs written in Java. Integration of Javainto the system was almost seamless.

-21-

A tool derived from JESS, called MESS (Metaglue Expert System Shell), was created and is now a
part of Metaglue and some of Room’s knowledge infrastructure is already written in MESS. Use of
MESS for the knowledge part of Realm also allows for easy integration with Room'’ s knowledge

base.

The constraint-satisfaction engine is based on the JSolver' library [Chun99]. JSolver isa
generic constraint-satisfaction engine that triesto find a solution by depth-first search with local
constraint propagation after every assignment of value to variable. JSolver is easily extendible

making it aconvenient base for this part of Realm.

3.2 Quick look at Realm

The system is composed of three major elements:

Theknowledge-based part
Thisiswhere the knowledge about all agents, services and requestsis stored. Thisincludes
static, descriptive, knowledge of all the services and their corresponding needs, as well as
the rules supplied by agents or the system whose role isto modify the default behavior of
the system. Also, the Room’'s common-sense system can influence the behavior of the
Resource Manager through the knowledge-based part. The Room’s common-sense system
may, for example, know that because of the sunlight glare, during the day users usually
prefer to use the right projector display.
When arequest is made by an agent, the knowledge-based part of the system generates
plausible candidates for all requests and sets up all the necessary constraints, which are

later solved by the constraint satisfaction engine.

#& Theconstraint satisfaction engine
As said above, the constraint satisfaction engine takes the requests, candidate services and

constraints from the knowledge-based part of the system and triesto find the best global

! JSolver version 2.0.4 distributed by AOTL (Advanced Object Technologies Ltd.); http://www.aotl.com

-22-

solution. This global approach guaranteesthat a configuration will be found if one exists. It
also impliesthat sometimes previously satisfied requests may be reallocated to new
services. Too much reallocation is clearly undesirable (e.g. the display for the movie
showing application should not change unless really necessary) hence the engine uses
heuristics minimizing reallocations (or, to be more specific, the engine triesto minimize

the cost of the assignment and each reall ocation comes at a cost; more about it later).

The engine will also make sure that needs of services allocated to satisfy requests can also
be satisfied. To take an example, there would be no point in allocating the pager service to

send amessage to the user if there was no modem availablein the system.

Interface with the Metaglue agent system

This component allows Metaglue agents to make requests an query and modify information
about themselves. It also allows Realm to communicate its solutions back to the host
system. The interface is composed mostly of two elements: the Real mAgent , whichis
the representative of Realm to Metaglue. The second component isthe ManagedAgent

class, which is used as a base for each Metaglue agent that wishes to provide or request

services through Realm.

3.3 TheKnowledge-Based Part

The knowledge part of the system stores the information about all agents, their needs and

servicesthey provide. It also enables various entities to reason about available resources and

influence their allocation. During the process of generating candidates for requests, the candidates

may be reviewed by a number of parties, namely the requestor, the service provider and the system.

While scrutinizing a candidate, the parties can alter the match level of acandidate. The match level

indicates how well aservice corresponds to the needs expressed in the request.

It is not necessary for all those partiesto scrutinize all candidates but they can do so if they

so desire. Reguestors may need to go over the candidatesif there was some piece of logic they could

not express in the syntax of arequest. Services may want to review themselves as candidates to

-23-

some requestsif they have reasons to believe that they may be particularly good or bad at providing
the requested service or they need to check if the new request will interfere with the requests they
are already serving. We can imagine that the provider of adisplay service, who is already serving
two other requestors, may need to review its candidacy in order to try to predict if the new requestor
would demand so much space that it would obstruct the objects displayed by the previous
requestors. Finally, the system may want to inspect the candidates if it has some special knowledge
about the state of the space or the interactions within it. It may, for example, know that the left

projector isalittle bit brighter than the right one and thus it would always bump its score allittle.

The agents can participate in the reasoning process by submitting custom rules when they
submit the description of themselves. Thusit is not actual agent code doing the reasoning but the

special knowledge-oriented code that gets shipped to the resource manager.

The actual agents remain in contact with the resource manager and their own description
contained within Realm. At any time they can (through Realm’ s Metaglue interface) query and

modify values of any of their properties or submit requests.

3.3.1 Meacontrol

Assaid before, one of the goals of Realm is extensibility and making it possible for other
modules in the Room to interact with Realm. Realm allows other software componentsto interact
with it at any stage of the reasoning process. In order to clearly demarcate individual stages of the
reasoning process, Realm uses the notion of context. Realm can control what kind of processes

happen when by making context specification one of the predicates of each rule.

Within each context, however, not all components are always required to act. Realm uses
another meta control tool — commands— to control who needs to run when. Commands are
implemented as facts and rules can be guided by commands if they have command specification as

one of their predicates.

-24-

To be clear, both context and commands are only guidelines for the components. It is
possible, though not encouraged, for various componentsto act on the system without using the
guidance provided by context and commands.

Both context and commands are explained in more detail below.

3.311 Context management

Structured and organized reasoning within Realm is possible due to the use of strict context
management. Sets of rules get activated only in certain contexts and thus order isimposed. The
system allows for nested contexts, such as
newAgent . gener at eSol ut i on. engi ne. cr eat e, where dots are used as context |evel
separators. Rules can match based on the full global context
(newAgent . gener at eSol uti on. engi ne. cr eat e), subset of global context
(newAgent . gener at eSol uti on or justnewAgent) or on subset of local context
(engi ne. creat e orjustcr eat e). Inaway, the name of the most local context could be
compared to the name of a procedure and the full context to the scope of execution. By giving rules
access not only to the local context but also to the global context, execution of rules can proceed
differently depending on how a particular point in the execution of a system has been reached. For
example, local contextgener at eCandi dat es could be reached when information about a new
agent isloaded and the system pre-computes the candidates for all of the new agent’ srequests. The
same local context can also be reached when an on-the-fly request is created and submitted. In the
first case, the system will create candidates for the requests within the newly registered agent and
will return to the idle state. In the second case, the system will generate candidates and then will

proceed to run the constraint-satisfaction engine and return a solution.

The use of context is especially useful when allowing agents to provide custom rules with
their descriptions. Appropriately specified context in the rule ensures that the rule becomes relevant

only when it is supposed to.

-25-

3.3.1.2 Commands

Commands allow the system to regulate which agents’ rules should be active during a
given context. While context regulates the kinds of actions that should be taken, commands regulate
which agents should participate and which should not. Commands are objects with fields: subject,
action, object and details. These fields specify who should do what and to whom, and provide some

extra context information.

For example, within thelocal contextgener at eCandi dat es afollowing command can be

issued:

subj ect : proj ector request of the novie show ng agent,
action: gener ate candi dat es,

obj ect : al |

details: none

This command calls on the projector request of the movie showing agent to find potential

candidatesto fill that request.

3.3.2 Knowledge expressed

The knowledge about each Realm-enabled agent in the system is represented as a nested
structure. Thereis an object representing an agent with service family objectslinked to it. Service
families are composed of individual services. Those services, in turn have properties and needs.
Needs are represented as request bunches. Each request bunch, of course, has a number of requests
linked to it and each request has its properties. Request bunches can also exist independently of
services. The conceptual structure of those objectsisillustrated in Figure 3-1. More detailed

information on what various components of the representation meansis presented below.

On top of the static knowledge, each agent can also provide rules and functions that will do
any special-case handling on its behalf. The rules should use appropriate context as one of its

predicates to ensure that they get fired at right time of execution.

-26-

Agents—inthe
knowledge part an agent object
represents an entity capable of
providing or requesting services.
Those entities can correspond to
actual agents or to abstract
packages. Abstract packages
cannot have any needs— they
can only contain services. Those
abstract “agents” are useful for
representing services provided
by actual devices or software
that are external to Metaglue.
Examples of such services may
include a computer, an operating
system or aphysical projector.

In addition, each agent object in
the knowledge part can be
marked with any of the

following flags:

Agent
- active, generic, instance

Service Family A
-shareability

Servicel
-shareability , abstract flag, names

Propertyl = value
Propertv2 = value

Request Bunch
- need. active,

Requestl
- service types

Propertyl = value
Property2 = value

Request2 ...

Service?2 ...

Agent Need A (Request Bunch) ...

Figure 3-1 Hierarchy of elementsin Realm's knowledge base.

- Active—true by default; set to false only when for some reason the underlying agent

becomes unavailable and should not be considered.

- Generic — some descriptions will refer to entities that can have multiple instances, e.g.

abrowser. In those cases the generic flag will be set to true. In cases where the

description pertainsto only one possible instance the generic flag should be set to

false.

-27 -

- Instance - indicates whether the description pertains to an instance of an agent that is

actually running or one that could potentially be brought to life.

Agent needs— expressed as arequest bunch (see below), lists al the needs that have to be
satisfied during agent’ s startup. These needs have to be satisfied regardless of whether or not the

agent is providing any service.

Service Families — Services have to belong to service families. The main reason for the
service familiesto exist is so that shareability constraints could be put on groups of services and not
just onindividual services. Thisis especially useful if a device can provide the same service at
several grades of quality. For example, acomputer display could provide display service at three
different resolutions. If we represent them as three different services without tying them into the
same family, various other agents might request each of the three services at the same time while
only one of them can be used at any given time. Hence imposing shareability constraints on the
whole collection aswell as on theindividual serviceswill solve the problem. The problem could
also be solved by introducing an internal service that all three grades of display service would need.
The shareability constraint on the commonly needed service would impose alimit of usage on the
group of displays. The service family, however, appears to be an easier solution. Also, in the future,

service families could hold requests for things that are common to all services within the family.

Services — for each service, Realm needs such information as:

- Shareability constraints, i.e. the number of requests that the service can serve

concurrently; thisinformation may be updated dynamically as the conditions change.

- Abstract vs. non-abstract — some services may be available even without running an
agent — such services should be marked as abstract. Services provided by abstract

“agents’ should be declared as abstract.

- Name or names — names of services are expressed using Javainterface name syntax. A

single service can have more than one name.

-28-

Also, each service can have properties associated with it that contain information specific to this
specific rendition of aservice. Services may also have needs represented asrequest bunches (see below).
Associating arequest bunch with a service indicates that the requests contained in the bunch will be

reguired by the servicein order to function properly.

Request Bunches — requests are put in bunches to allow agents to make all-or-none type of
requests. In most situations agents need combinations of other servicesin order to provide their
service. For example a movie showing service needs both a source of amovie (aVCR or acomputer
capable of streaming video) and adisplay (aTV or aprojector). For each request bunch Realm

specifies how badly it is needed (or would be needed if it were requested).

Requests— for every request, Realm hasflagsthat indicateif it is currently active and if it
isanew request, i.e. one that has just been submitted. Active requests are those that have been
satisfied already and are currently in use. New requests are yet to be satisfied. Each request also
specifies the names of functionsto be used for matching the request against a service and for
calculating the utility. Request description also includes aflag that indicates if the requesting agent

istied to (that is has to be on the same machine as) the serviceit is requesting.

Requests may also have properties associated with them. Those properties will be matched

against the properties present in the descriptions of candidate services.

Properties— Realm provides an abstract template for properties. Properties can be of any
kind depending on what kind of information needs to be conveyed about a service. The property
template includes two main fields: the name of the property and, in case of request properties, the
name of afunction that should be used for matching. Properties can have one or more values or can
be expressed in any other manner that is appropriate. Realm provides afew standard property types
and functions for matching them: single value property (for both numeric and symbolic values),

multiple value property (also fir any kind of values) and range properties (only for numeric values).

Connections— as explained before, Realm needs to know about physical connections used
by the devicesin the system. It needs to know what devices are at the end of each connection and

what inputs/outputs each connection is attached to. Connections can also be created on the fly.

-29-

Special agents — some agents are treated specially within Realm. Most of them are abstract
agents representing physical resources such as computers or other physical devicesthat can be used,
explicitly or implicitly, by the system. The only other kind of special agentsisthe Metaglue agent
representing the substrate necessary for any other agent to exist. No other agent can run on a

computer unlessthere is a Metaglue agent running there already.

3.3.3 Ontology

Realm relies on all agentsto use the same interface names for names of services and the
same property names for the semantically equivalent attributes. The problem of ensuring that all
agents use the same language for describing their needs and servicesis called the ontology problem.
Realm imposes no ontology of its own. Hence it must rely on ontologies constructed during the

incremental development of a body of agents.

Leaving creation of the ontology to the future devel opers |eaves these programmers with
more freedom at the expense of guidance. Producing a consistent and complete ontology for
expressing the names of all services availableinintelligent spacesis a challenging task and could be

asubject of aseparate research project.

3.34 Reasoning

Realm by itself does not do much reasoning. It does, however, provide means for other
knowledge-based components of the Room to reason about what it knows and to influence its
decisions. The strict meta control imposed internally on Realm’s components allows other systems
to add themselves to the pipeline at any stage of reasoning. It is expected that normally other
knowl edge-based systems will try to affect Realm during the candidate generation process. They

can, however, query and reason about the state of the services at any time

3.4 The Constraint Satisfaction Engine

This part of the system is based on the JSolver library . As explained before, JSolver isa
generic constraint-satisfaction engine that triesto find a solution by depth-first search with local

constraint propagation after every assignment of value to variable.

3.4.1 Condraints

Cost constraint — the cost of obtaining a new resource cannot exceed the utility of that

resource; more about cost and utility in one of the following sections.

TiedTo constraints — some services have to be on the same computer or on the same virtual
machine as another service; it isactually avery important concept overlooked by most other
systems. In other systems (e.g. Hive) it is assumed that agents controlling certain hardware devices
first cometo life on an appropriate computer and then announce themselves to the system. The
system, however, has no way of starting them in the right place because it does now know what the
right place for them is. REALM, on the other hand, has enough knowledge about the hardware

availablein the system and about the agents and their servicesto start services on right machines.

The same owner constraint — services owned by the same owner have to reside on the same
virtual machine hence if the services provided by this owner aretied to other services, the resource

manager has to make sure that all of them end up together on the same VM;

Activate if assigned — if aservice gets assigned to arequest, the system has to make sure
that all of the services needed for that newly assigned service are available; hence the newly
assigned service gets activated and so do its needs; the initial assignment is not complete until all of
the implied requests are not satisfied. For example, the answering machine service needs a phone

service but the phone service, in turn, needs a modem.

Service shareability constraint — some services can be used by one requestor at atime,
others can be shared by a number of users and yet others have to limit on how many users use them
at atime. The system has to make sure that no service gets overused. At the moment, the
shareability constraint gets set once for each request and cannot be changed during the run of the

-31-

constraint-satisfaction engine. Such ability would be potentially useful because some users take
larger share of aresource than others, e.g. applications sharing the screen space. At the moment a
display service hasto guess how many usersit can take at atime and cannot readjust the number on

the basis of how much space particular applications need.

Service family shareability constraint — we can also impose alimit on a collection of
services, independently of the limitsimposed on each of those individual services. Thisis especially
useful if the bunch contains several grades of the same service, for example two grades of a speech
out service: one with the ability to change voices and intonations (if the Laureate server is running)
and the other without those extra capabilities. In both cases, only one user can be using either
service at atime hence it makes sense to put alimit of one on the entire bunch thus making sure that

only one of those servicesisassigned at atime.

3.4.2 Heurigics

Assign new requests first — new requests are satisfied first, sometimes at the expense of the

previously satisfied ones. In case of atie, the newer request wins.

Then assign old things— when solving the global service allocation problem, try to assign old

servicesto the already satisfied requests.

Use machines where agent systemis already running — when assigning virtual machinesto
agents, give preference to those that have already been started. This heuristic makes sense because
the system knows not only about the services that are already available but also about those that can

be made available, and thisincludes virtual machines.

3.5 Cost and Utility

When resources are scarce, part of the arbitration processis deciding which requests are
more important. This could be done with self-assigned priorities or economic models may be
involved. In Realm self-assigned need levels are used in conjunction with the concept of utility of a

service to the requestor and the cost to others. Thisisavery simple and arbitrary scheme. It could

-32-

easily be replaced by adifferent system should there be aneed for that. This simple model is
sufficient for the current implementation of Realm because of the assumption of cooperation among
the developers of various software components. More complicated models would be required if

code we used could not be trusted.

The basic assumption of this schemaisthat, given arequest, each candidate service has
some utility to the requestor. Servicesthat are already allocated to request are also useful to their
current users. When a service istaken from its current user, the system as awhole incurs cost equal
to the utility of that serviceto its exowner. Also when acurrently allocated serviceis replaced with
adifferent one cost isincurred. The arbiter has to make sure that whenever it awards aserviceto a
new reguest, the cost of doing so should never exceed the utility of the awarded servicesto the new

reguestor.
Below | define and explain the al the conceptsin more detail:
Need — indication of how badly the requestor needs to have the request fulfilled;

Match level — expressed as percentage, indicates how well a given service would satisfy arequest;
each requests can pick afunction for cal culating the match level. One of the standard functions can be

picked or requestors can define their own.

Utility — function of match level and need; indicates how much the requestor would benefit
from aparticular service. Each request can specify what function they want to use for deriving
utility. If product is used, utility becomes directly proportional to the match. By using other
functions (square root or square), requests can attach high utility to even lower matches or they can
dismiss everything with the exception of best matches. The requests, however, comein bunches.
The utility derived from assigning services to individual requestsin the bunch, is equal to the

smallest utility assigned to any request in the bunch.

Upunch ? mln{ u(r|) Sj)1 I ? bunCh}

Equation 3-1

u(r,s) ? f,(need,, match(r, s))

Equation 3-2

Where, u(r,s) isthe utility of the service sto request r; need; isthe need of requestr,
match(r,s) isthe match level between requestr and service s; f, isthe utility function, upynch isthe

utility of the bunch.

Cost —in cases where allocation of a serviceto anew request causes older requests to be
deprived of aservice or reallocated a different service, cost isincurred. If an older request is
deprived of aservice, the cost of that action isthe utility of that service to that request. If the request
isreallocated a new service, the cost is determined by the owner of the request that just got
reallocated and can range from nothing to the utility of that service to that request. The total cost of
satisfying anew request, isthe sum of all individual costsincurred in the process. The total cost

cannot exceed the utility.

Cu(11'S;) ? Uyynns Where'r, 2 bunch’

Equation 3-3
In the above equation ¢, stands for cost of withdrawing service s from requestr;.

¢ (r.s,?)2 p, 2 maqou(r,s) 2u(r,s,)}

Equation 3-4
In the above equation ¢, (rj, §.«'s() stands for the cost of reallocating the request r; from

service s to service s pri isthe fixed penalty for reallocating requestr;.

3.5.1 Other approachesto cost and utility

Market-based approach — requires electronic cash and a banking system [Bre97]; generally
used when agents come from a variety of sources or act on behalf of a number of different entities

that cannot agree on “nice guy” type of cooperation.

3.6 Connecting with Metaglue?

In order to be useful, Realm needs to be integrated with its host agent system. In this
section | will describe how Realm integrates with M etaglue. Because Metaglue iswritten as an

extension of the Javalanguage, all lower level references will be using Javavocabulary.

There are several things that need to be taken into account when designing the M etaglue-
Realm interface. Below | present an overview of thisinterface conceptually dividing it into two
parts: one that allows the M etagl ue agents to communicate with Realm and the other that allows
Realm to controlled the M etaglue agents that agree to be managed by it. After that | present the

infrastructure for handling the connections.

3.6.1 Redm Agent —making Realm accessble to Metaglue

Realm agent, the Metaglue front end of Realm allowsagents make requests, query and

modify descriptions of servicesthey provide and release services when no longer necessary.

Making requests — because all the knowledge about services and requests provided by an
agent isrepresented on the knowledge-based side, all an agent needsto do in order to make a
reguest is to provide the name of request bunch to be activated and executed. Realm agent then
passes the request to the knowledge-based side and returns the list of newly assigned servicesto
requests within the activated bundle, provided that the request could be satisfied. Otherwise Realm

agent returns afailure notification.

2 Other members of the Intelligent Room project (namely Luke Weisman and Stephen Peters) have contributed to
the research presented in this section. Resource management has been an issue for along time in the Room and several other
attempts had been made at solving the problem before the work on Redm started. Also, new applicationsfor the Room were

-35-

Querying and changing service descriptions—when an agent wishes to change a
description of one of its services, Realm agent will passthat information to Realm where all
necessary recomputation will take place. Any agent can query any other agent’ s service properties.
Realm agent responds to the queries by looking up the values of appropriate properties within

Redm.

3.6.2 Managed Agent — making Metaglue accessible to Redm

ManagedAgent classisthe base classfor all agentsthat want to participate in Realnm-
mediated resource allocation. The ManagedAgent classwill automate all processes common to all

or most agents using Realm’s services. | will refer to such agents asmanaged agents. Below | list

and explain a number of actionsin whichiManagedAgent classwill be involved.

Startup - Asexplained in the previous chapter, M etaglue agents can request to be placed
on particular machines or together with some other agents. Agents may need to run on particular
machines in order to be able to control particular pieces of hardware. With Realm in place, agents
should be able to ask to be tied to particular pieces of hardware (described as a service provided by a
particular machine) rather than to particular computers. For example, if there are several computers

with modems connected to a phone line, the agent should be able to run on any of those computers.

Thus whenever amanaged agent starts, it should ask Realm what computer or, more
precisely, what virtual machine it should run on. Agents that need to be tied to particular pieces of
software and hardware need to contact Realm to find out where their needs can be satisfied. Agents
that do not have such needs also need to contact Realm to find out where they should run just in
case another agent needs them. Mechanisms for handling this are built into the parent class of all
managed agents thus requiring minimal effort on the part of programmers building new managed
agents. When a managed agent is started, it contacts Realm to find out where it should live and then

uses Metaglue'st i edTo primitiveto make sureit is started in the right place.

written in a Realm-compliant style even before Realm became available and during this process many requirements for the
Realm-Metaglue interactions have been clarified.

-36-

Representing services within the agent — in Metaglue, when an agent requests a handle to
another agent, it gets back a proxy object that mediates all method calls. That proxy object, in turn,
internally stores a handle to the actual agent. Thisrepresentation isvery convenient for Realm. It
means that if an agent requests a service, it can be given back a proxy object representing agiven
service. Realm can than invisibly interchange or remove the handle to the actual agent providing the

service.

Revoking a service bunch (r evoke primitive) — services are not revoked individually but
in abunch. The purpose of putting several requestsin abunch isto say that thisisan all-or-nothing
request. Hence revoking one service from a bunch should be equivalent to revoking the whole
bunch. When a serviceisrevoked, Realmremoves prevents the proxy object from relying methods
calls from the requesting agent to the agent providing the service. The requesting agent can be
notified about the revocation of any of its servicesif it extendstheser vi ceRevoked method

from the underlying ManagedAgent class.

Replacing a service (r epl ace primitive) — while services cannot be revoked individually,
they can beindividually replaced. Realm does it by replacing the actual agent handler inside the
proxy object with the handler to anew service provider. It then callstheseri vceRepl aced
method in the ManagedAgent . An agent can be notified of the replacement by overwriting the

servi ceRepl aced method.

3.6.3 Handling Nested Requests

As explained before, Realm takes a cautious approach to allocating services: before it
allocates one, it makes surethat it can satisfy its needs. | will refer to requests activated in the
process of satisfying other request asnested requests. When arequestsis processed by the
constraint-satisfaction engine, the engine creates amodel of the world, in which all new requests,
including the nested ones, are satisfied. This creates a slight complication because the nested
requests had not been yet formally issued. They will be issued when the agents providing services
allocated to first level requests are asked to deliver their services. At this point the nested requests

-37-

will formally be issued. Realm stores the results it computed earlier and uses them if possible.
However, if conditionsin the Room change, the agent may modify its requests somewhat before
issuing it. Inthat case, Realm will have to recomputed the solution. If the change to the request was
slight, only having to do with the ordering of candidate services, the service will still be satisfied
because during previous run Realm has ensured that some service can be provided for that nested
request. Problems may arise if agents change their requests significantly depending on conditions. In

such situations, Realm will not be able to guarantee a solution.

Also, if anew request is activated before a nested request is activated, the new request may
claim one of the services required by a nested request if the need level of the new request is

sufficiently high.

3.6.4 Connections

A separate set of infrastructure is needed for handling connections. As explained above,
connections are represented in the system in terms of the devices attached to the two ends and the

names of inputs and outputs the connections are attached to.

Thereisavariety of devicesthat can choose from a number of inputs or can send signal to
different outputs. A multiplexer is, of course, one of them. But so is a projector that can choose
between a number of RGB inputs and avideo input. It should be possible to use a standard language
for addressing all devices with input/output selection capabilities. Hence, in Realm, controllers of all
such devices provide the “connectible” service. Connectible devices can be asked to listen to
particular inputs, send signal to particular outputs or create connections between an input and an
output, depending on whether the deviceisasignal provider, recipient or an intermediate

multiplexing device.

Realm also provides a connection-making agent that can create connections given the

endpoints. It draws on the knowledge stored in the knowledge part of Realm.

4 Implementation

In this chapter | present some information about the implementation of Realm. | outline
organization of main modules, show examples of some of the code and eval uate the compl exity of

the solution.

4.1 TheKnowledge Part

The knowledge part is just aframework for storing and manipul ating information specific to the
host system. Without any information about M etaglue and the Intelligent Room, the knowledge part

contains mostly:
?? Templatesfor asserting information about agents, services and requests.
?? Infrastructure for meta control: context management tools, command tools;

?? Metacontrol information for Realm, i.e. information on what to do when (see Figure

47)

?? Request matching infrastructure — tool s that compare requests to availabl e services and
generate candidates — requests specify what particular functions should be used for

matching.

?? Standard functions for calculating utility

Most of the code in this part of the system is composed of fact templates and functions. The

few rules present in the core of the system perform meta control tasks.

4.2 The Constraint Satisfaction Engine
Bulk of the code went into the constraint-satisfaction engine.

The JSolver library, which formsthe core of Realm’ s constraint-satisfaction engine, deals

with integer constraints. Hence avail able services are represented as distinct integer values.

-39-

ew agent

description read Agent modifies/adds

service property New request

submited

newAgent . i ntroduce service. upd request.activate

at eProperty

* = newAgent * = serivce * = request

Request modified

*. gener at eCandi dat es | default

| *. veri fy(‘:andi dat es |

4
request. gener at eSol uti on

Solution found

No solution

request . appl ySol uti on | found

¥
| request.returnSol ution

Fiaure 4-1 Outline of Realm's meta control flow.
Variables represent requests. Assigning avalueto avariable is analogous to assigning aserviceto a

request.

Available virtual machines are also represented as integers and each agent has avariable
that represents the virtual machine this agent should end up running on. This makes the process
complicated because | am using a single constraint satisfaction engine to represent two different

concepts:. service to request assignments and agent to virtual machine assignments.

At the setup time (engine is re-setup before each run), the ids of candidate services are put
in the domains of variables representing requests. Analogously, ids of candidate virtual machines
are put in the domains of variables representing virtual machines, on which particular agents should
run. Theid’sused in the constraint satisfaction engine are different from those used internally in the
knowledge part. For efficiency reasons, idsin the constraint satisfaction engine should comein a

contiguous block.

By default all variables have service or virtual machinewith id 0 in their domain. This
represents auniversal “dummy” service or virtual machinethat isinfinitely shareable and thisisthe
first value that istried by the engine for any variable. Thusinactive requests get quickly dealt with
by being assigned “dummy” services and virtual machines. When arequest gets activated, a“ not
equals 0" constraint getsimposed on the corresponding request variabl e thus ensuring that the
request gets satisfied by areal service. The sameis done for the virtual machine variable of the

agent owning the request.

421 Condrants

?? Service shareability constraints are represented as cardinality constraints; if aservice
represented by an integer value n can only serve one request at atime, thisinformation

isrepresented in the engine by imposing a cardinality constraint of 1 on valuen.

?? Servicefamily shareability — these constraints are represented analogously to the
service shareability constraints. If thereisalimit on how many requests can be served
by afamily of services, acardinality constraint isimposed on the set of values

corresponding to the servicesin the family.

?? Cost constraint — every time a service gets assigned to arequest, the total cost and
utility are calculated. If the cost exceeds utility, the engine backtracks. Utility is
aways calculated in the most generous manner while cost iscalculated in avery
conservative manner ensuring that as the difference: utility — cost never decreases as

the search progresses deeper and deeper.

?? Tied to constraint — some requests are marked as being tied to the services they get
assigned to. If avalue gets assigned to a variable representing such arequest, an
“equal” constraint gets imposed on the variables representing virtual machine
assignments of the agent issuing the request and the agent providing the service. Thus
an agent requesting amodem will be put on one of the virtual machines running on a

computer that has amodem installed.

-41-

?? Activateif used constraint — as explained in previous chapter, if a service gets assigned
to arequest, the system has to make sure that all the needs of that request are satisfied.
Hence, whenever avalueis assigned to arequest variable, the system checksif the
service corresponding to that value has all its requests activated. If not, it activates
them. Activating arequest, as explained above, is equivalent to imposing the “ not
equals 0" constraint on the request variable and on the virtual machine variable of the

owning agent.

4.2.2 Heuridics

JSolver alows programmers to write their own functions specifying in what order variables
and values should be tried. Thisway | can instruct the engine to first try the “dummy” service or
virtual machine for any request or virtual machine variable. | can also instruct the engine to first
assign values to new request and then proceed with others. This implementations makes the engine

deterministic.

4.3 Metaglue I ntegration

Metaglue integration was implemented just as described in the Design Overview chapter.
The Real mAgent isagateway for communicating with Realm. The ManagedAgent isabase
classfor all agentsthat want to request or offer services through Realm. Implementation of those
components was fairly straightforward. Thanks to the way Metaglue passes agent handles, it was
very easy to implement the reall ocation feature — the requesting agent would have a pointer to a
proxy object that stays the same but a pointer to the actual agent can be freely changed inside the

proxy object and thus services can be replaced on the fly.

-42-

5 Ream at work

This chapter describes the workings of Realm by looking closely at various actionsit performs at
various stages of itslifetime. Below | present what happens at Realm'’ s startup and then | show how a

reguest for the “short text message” (see section 1.6.2) service gets handled.

5.1 System startup

Currently, Realm starts when any of the agents request its services (thanks to the on-
demand agent startup feature of Metaglue). Upon startup, the first thing Realm does is scan the

agent distribution tree looking for files contai ning descriptions of agents.

5.1.1 Readingintheinfo about available agents
Each file containing an agent description must contain, at least, the following:

- anassertion statement that informs Realm of the name of the agent described in the

file,

- aruletriggered by thei nt r oduce command, which will assert all the descriptive
information about the services the agent provides and about the needs of those

services.

The file may also contain special matching functions for requests and properties, special
functionsfor deriving utility, or rules for special handling of certain requests.

5111 Asserting serviceinfo and needs

The moment afileisloaded and the statement with name of the new agent is asserted, the
system issues introduce command addressed to the new agent. The rule containing all the
descriptive information gets triggered and information about the agent, its services and needs
becomes available to the system. Below is an example of arule that assertsinformation about the

phone agent:

(defrul e phone-introduce

(kcommand (verb "introduce")
(subj ect "agentl and. devi ce. phone"))
=>
(newAgent (assert (agentlnfo (name "agentl and. devi ce. phone"))))

;; setting up the service famly

(bi nd ?shbidl (newBunchl D))

(assert (serviceFamly (nane "Phone Fam |y")
(owner "agent! and. devi ce. phone")
(id ?sbidl)))

;; declaring the phone service
(bind ?sid (newServicel D))
(assert (servicelnfo (name "Phone Service")
(owner ?sbi dl)
(id ?sid)
(interfaces "agentl and. devi ce. phone")))
;; creating request bunch for the phone service
(bind ?sbidl (newBunchl D))
(assert (serviceNeed (nanme "needs for the phone")
(owner 7?sid)
(id ?sbidl)))
;; requesting a nodem for the phone service
(assert (request (nanme "nmodent')
(owner ?sbi dl)
(tiedTo TRUE)
(interfaces "hardware. nodem')))
This simple agent provides only one service — the phone service — and requires only one
other serviceto run: amodem. The header of the rule makestherule firewhenthe“i nt r oduce”

command isissued with the subject equal to the formal name of this agent. In the body of thisrule,
first the information about the phone service gets asserted and then the information about the
phone’ s needs. Because JESS does not allow for nested fact structures, all facts have to explicitly
point to the higher-level facts that own them. Thustheser vi ce fact hasanowner field that

pointstotheser vi ceFam | y fact, etc.

In this case the Java name of he agent is the same as the name of the service it provides.

Thisisnot required. In case of agents providing more than one serviceit is not even possible.

5112 Generating candidates
Once the information about an agent is provided to the system, two things happen:

- thesystem asks all other agentsto review the services offered by the newcomer

the system asks the newcomer to look for services that will satisfy its requests.

In case of the movie showing agent, the system will ask all other agentsif they need the

movie showing service. If the answer isyes, the new agent’ s service will become a candidate for

one of the other agents' request.

Then the system will ask the movie agent to look for candidates for its needs. the VCR

service and the display service.

5.1.1.3 Matching and utility calculation
Every time candidates are to be generated for arequest, the system looks at all possible

services and does the following:

checksif aserviceisof akind that the request isasking for (Javainterface names are

used for naming services);

if the answer isyes, all the properties specified in the request are matched against
those specified by the service under consideration. Each request property specifies
what method should be used to match it. All kinds of properties have default matching
methods to make programming simple. In case of the display service request, the
movie showing agent uses request properties specify the minimum resolution it needs,

the actual size of the display and its color capabilities;

after al properties are matched, the results of the property matches are combined to
produce overall match; each request can specify what method should be used for doing
so. A number of default methods are provided by Realm. The movie showing agent
uses the minimum method, i.e. the overall match is as good as the lowest match among

all properties.

When the overall match is obtained, the requestor has to specify the utility of the
candidate service. Utility isusually afunction of the match. The default method makes
utility directly proportional to the match. If an agent is desperate for any result,

however, another function is used that assigns high utility to even less desirable

candidates. Depending on the situation, the movie showing agent will choose between
these two functions.
5114 Verifying candidates
After candidates are created, they are verified first by the owners of the candidate services
and then by the system. As said before, neither the service owners nor the system are required to
perform the verification but they can if they want to. More about verification will be said in the next

section.

5.1.2 Fird request —“short text output” service (with interference)

5121 Activating request bunch

When an agent needs a service, it usesther equest method inherited from
ManagedAgent to activate an appropriate request bunch within Realm. In this example, letus
assume that the calendar agent needs to remind a user about an upcoming event. It needs to request

the “short text output” service. It executesacall:

Hasht abl e services = request(“contact user”);

Where “ contact user” is the name of arequest bunch contained in the description of the
calendar agent. The bunch contains only one request, namely one for the “ short text output” service.
The request method returns a hash table keyed by the names of the requests and contains pointers to
agent proxy objects.

5.1.2.2 Verifying candidates again

When the request for a*“ short text output” service gets activated in Realm’ s knowledge
base, the request gets reviewed again, this time with the current situation in the Room in mind. In
this case the calendar agent does not need to perform any extra verification but the system does.
Depending on what the user is doing, it affects what kinds of deviceswould be most likely to be
used. As explained in the examplein section 1.6.2, if the user is on the phone or engaged in a
conversation, the Room’s common sense engine will deduce that voice-intensive devices should be
used only if necessary. It will thus decrease the utility of the speech generation service making it

more likely that a quieter service will be awarded to the request.

-46-

5123 Setupengine

Once the candidates are generated and verified, the constraint-satisfaction engine is reset
and the knowledge about the current state of the world and current requests and corresponding
servicesistranslated into the data structure usable by the engine. The processis straightforward and
quick despite the fact that arelatively large number of new objects hasto be generated.

5124 Runengine

When the engineisready, it isran. If there exists a solution, such that all constraints are
satisfied, the engine returns the new state of the world. Otherwiseit returns afailure.

5125 Imposethesolution on the system

If the engine returned aresult, Realm needsto impose it on the world. If any of the requests
serviced caused areallocation, Realm first dealswith this. Then it returns newly assigned services to

the requests being serviced.

-47-

6 Comparison With Related Systems

In this chapter | represent several well-known related systems and show how Realm differs

from them. Table 6-1 contains a summary of the information presented in this chapter.

6.1 Jini

Jini [Arn99, Edw99] is aframework for building resource management systems. It
providestoolsfor resource discovery and resource description. It does not, however,
provide any tools for actual resource management. Realm could well be used to do the
resource management with Jini. The Jini could provide their communication infrastructure
aswell as some of its descriptive mechanisms and Realm could deal with allocating

services to requests and with minimizing resource conflicts.

6.2 Open Agent Architecture (OAA)

OAA [Mar99] is an agent platform with abuilt-in system for describing and managing
services offered by the agents. Its descriptive capabilities in some ways surpass those of
Realm. Unfortunately, OAA does not address some issues that | have found to be crucial in
administering servicesin asmart environment.

OAA uses aspecial language, 1CL, based on PROLOG for description. It describes agents
interms of tasks they can perform. The difference between tasks and servicesisabasic
tasksareindivisible and are treated as being point like in time. The requests are stated as
goals. Often agoal will be composed of sub goalslogically connected together. The
strength of OAA comes from the facilitator's ability to decompose complex goalsinto more
basic ones and then del egating them to individual service providing agentsin correct order.
The weakness of OAA comes from theimplicit assumption that all basic tasks are
indivisible and point-like in time. Thus OAA does not provide any built-in mechanismsfor

arbitrating among conflicting reguests.

Such model is not adequate in an intelligent environment where many services have to be

provided over time, e.g. display for the movie showing agent.

6.3 Hive

Hive [Min99] is an agent platform; a system for building applications by networking
distributed resources together. One of the major design objectives of Hive was to makeit “fully
distributed.” This precludesany kind of central repository of knowledge. Unlike in Realm-enhanced
Metaglue, Hive agents become available to the system only after they were explicitly started
externally to the system. Agentsin Hive are self-describing and all decisions about who isgoing to
perform what tasks are arrived through direct negotiation. Applicationsin Hive are created by
explicitly connecting various components together. Thus resource conflicts are diminished because
connections among agents are long-lived and pre-designed, contrary to the on-demand

configurations created within Realm-enhanced Metaglue.

6.4 Resource Description Framework (RDF)

Resource Description Framework (RDF) [Las99], as the name implies, provides only
means for expressing information about resources. It does not provide any tools for reasoning about
those resources or brokering requests. RDF provides extensive means for expressing capabilities and
properties of various resources. Unlike Realm, RDF does not provide explicit support for encoding
needs of services. One of the main advantages of RDF isthat it is, in principle, independent of
encoding. One tested encoding is based on XML but others are theoretically possible thus making

RDF platform independent.

-49-

Discovery

Communication of needs

Arbitration

and services (description)

Other

Realm Service providersneedto | Interface names and listsof | Full, service providersand | Can be influenced by other
notify resource manager; | properties; devices may offer | servicerequestorscanaso | parts of the system.
requestors need to know | many services; they canaso | influence arbiter's
how to find the manager; | offer the same services at decisions
central registry; the different grades of quality
manager can also know
about agents that are
available

Jini IP multicast; fully Interface names and Attribute | The framework offersnone
automatic objects —itisup to the designer of

aparticular
implementation to provide
an arbitration component if
necessary

OAA Sdlf-announcement Uses ICL (based on No concept of ownership

PROLOG) for announcing of resources hence no
capabilities and for making resource conflicts hence no
request — platform and arbitration; however, good
language independent; facilitation abilitiesindude
reguests are expressed in decomposition of complex
terms of goals (i.e. actionsnot | goals

services)

Hive Central registry or Class name + RDF to None — when agents are Users RDF
agents' own initiative describe the details arranged into applications,

care has to be taken not to
overuse any of the
resources.

RDF N/a Rich, uses XML for encoding | N/a

(other encodings possible€)

Table 6-1 Overview of various resource management and related systems.

7 Evaluation of Realm

The system isnow in the final stage of implementation in the Intelligent Room. In this
section | will show how Realm performed during tests with respect to the design requirements laid
out in the second chapter. | will also evaluate how well Realm satisfied our expectations. Thus | will
implicitly evaluate how adequate and compl ete the design requirements laid out in chapter two

Were.

7.1 Compliance with Requirements

1. Servicesnot devices
Realm'’ s knowledge representation isin terms of services not devices or agents. Realm

uses Javainterface name syntaxfor naming all services.

2. Dynamic knowledge cooperation
Realm has an extended support for allowing various parties to participate in the
candidate selection process. The host system as well as the service provider and

requestor can influence the decisionsevery time arequest is made.

3. On-demand agent startup
Ream can reason about agents and their services even if they had not been brought to
lifeyet. One of the important contributions of Realm isthat it does not activate a

service unlessit has away of satisfying all of its needs.

4. Machinerequirements
Realm allows service providersto request to be on the same computer or on the same
virtual machine as another service (rendered in either hardware or software). Thisis

also a consequence of supporting on-demand agent startup.

5. Extensbility
Both representations and computational functions of knowledge part of realm can be

extended by any agent. Alterations do not require changesto Realm itself. It is

-51-

sufficient that an agent provides (together with its description) definitions of al new

functions and representationsit uses.

6. Local toglobal approach
Heuristics implemented in the constraint-sati sfaction engine, aswell as the cost-utility
analysis, ensure that solutions with minimal impact on the whole system will be tried
first. Realm will, however, resort to such actions as reallocating new servicesto old

requests or, even, withdrawing services from old requests, if absolutely necessary.

7. Resourceconflict reduction

Realm’ s constraint-sati sfaction engine ensures that requests are servicesfairly.

8. Hideconnections
The programmer is not required to know anything about the connections among
various components of the Room. The knowledge is stored by Realm and used by the
connection making agent. All the programmer has to provide is the names of the end

point services.

7.2 Impact of Realm on the Intelligent Room

First of all Realm makes it possible to move our technology from our research lab to other
officesin the building more easily. It will no longer be necessary to customize applications for each
new space. Aslong as most of the services are provided somehow, it is no longer important how
they are rendered. For example, most offices will have at most one overhead projector (unlike our

research space that has two). In fact, some of the officeswill only have computers screens.

Secondly, Realm makes the application devel opment process much easier by taking care of
many lower level details such as finding what devices are available and what software should
control them. Designers can now focus more on the higher-level aspects of the interactions with

Room’ sinhabitantsinstead of having to deal explicitly with device choice and control.

Realm makes the Room behave in an apparently intelligent fashion by preventing
applications from stealing resources from each other. Also, when appropriate, the Room now

-52-

allocates different devices to the same request depending on the state of the interaction with the
user. Asin the example chapter 4, if any of the agents needs to say anything to the user but the user
ison the phone, the Room will recommend using one of the visual devicesinstead of the speech

output.

7.3 LessonsLearned

The main shortcoming of Realm that we observed during the experimentation period was the
assumption that it always looks for asingle way to satisfy arequest. With Realm, tt is not possible to make
requests for several or all services of akind (such features are present in some other system, e.g. OAA). We
can imagine situations where an application needs to communicate something to the user very urgently. In
situations like that, it would be desirable to make arequest for two or three communication devices and use

them at once to ensure that the message captures user’ s attention.

Further, we have discovered a need for posting “ standing” requests with Realm. There are two

kinds of such requeststhat are desirable:

1. Automatic upgrade — after arequest is activated, the requestor should be able to mark it for
automatic upgrade. What that meansisthat whenever anew service that could satisfy the
reguest becomes available, the system should check if the new service is better than the
current one. If so, Realm should automatically replace the old service with the new one. We
can imagine that if the movie showing agent receivesthe TV as adisplay, it may want to

request automatic upgrade hoping that one of the projectors will eventually become available.

2. Idle mode handlers — requestors should also be able to post requests for services on
“whenever available’ basis. We can imagine mood creating agents-- acting somewhat like
screen savers-- that would take care of certain types of devices whenever those devices are

idle. Background music could be played through the speakers whenever nobody el se uses

them; “virtual window® could be displayed on an idle projector. This kind of requests could
also be used by applications that need to perform resource intensive background jobs, such as

faxing copies of meeting minutes.

The*"standing” requests are just going to be stored in Realm and kept active. They will not be put

in aqueue — the system will remain reactive and will not attempt to do future planning.

3 The research area for the Intelligent Room has no windows. Cameras have been installed in adjacent offices and
connected to projectors in thework areato create the “virtual windows.” While thiswas done on awhim, it proved to have a
positive impact on the atmosphere in the lab and would be a perfect “ screen saver” kind of application.

-54-

8 Contributions

8.1 Within the Intelligent Room

Realm provided the Room’ s software infrastructure with apowerful layer of abstraction.
With Realm in place, the Room'’ s applications became portable and plans have been made to install
Roomtlike infrastructure in several other spaces ranging from individual faculty and student offices
with very minimal equipment to a medium size conference room filled with avariety of high-tech
devices. Without Realm, installing Room’ s applications in those spaces would have required

rewriting all applicationsto fit the needs and abilities of each individual space.

Also, as mentioned in section 7.2, Realms simplifies enormously the process of creating
higher-level applications for the Room by relieving the software designers from having to explicitly

choose or control devices needed by their applications.

8.2 Design Principlesfor Resource Management Systems for I ntelligent
Spaces

One of the main contributions of thisthesisis having laid out and tested a set of
requirements for a resource management system for a smart environment. Those principles were
derived from several years of interacting with and designing software for one such space, namely
the Intelligent Room. Some of these principles, such as resource conflict reduction, were asimple
consequence of the problem being considered. Others, | believe, were novel and were derived from
having observed unanticipated aspects of interactionsin the Intelligent Room. The novel ideas
included the observation that on-demand service startup is a desirable feature of a smart space and
that it causes a number of problems for resource management that need to be addressed explicitly.
These problems include having to start some servicesin correct places or having to anticipate the

needs of services being allocated to satisfy requests.

Another important observation reflected in the design principles presented in this thesis has
to do with the fact that devicesin an intelligent space are often connected by means external to the
computer system. Such connections include video connections from VCR to amultiplexer to a
projector, or a cable connecting a modem to phone line. Such connections have to be taken into
account and they have to be represented in the system. They should also be hidden from the
programmer to ensure that the programmer can deal only with abstract services and not with

concrete physical devices.

8.3 New paradigm —user asa resource

Presence of Realm also opens the door to a new design paradigm in the Intelligent Room
project: onein which user’s attention is explicitly modeled as aresource available in the system.
Together with extending the concept of connectionsit will allow for automatic choice of the best
deviceto reach the user even without the intervention of the Room’s common sense engine.
Consider the example of acalendar application. Let us assume that in order to communicate with the
user, calendar agent requests not just a“short text output” service but also “user’ s attention” service
and a connection between the two. “User’ s attention” service can be provided by two “services,”
namely user’s auditory and visual systems. The moment user enters the Room, connectionis
established between visual devices (such as displays and the LED sign) and user’ svisual system. At
the same time connection gets established between the speech output service and user’ s auditory
system. Hence when the calendar requests user’ s attention and user is on the phone, user’s auditory
system is not available and all calendar can get isvisual attention. Given this, the constraint

satisfaction engine will allocate one of the services that have a connection to user’ s visual attention.

This notion of human attention being a scarce resource isavery important and avery old
one. After al, there are severe limitations on how many things we, humans, can attend to at atime.
Currently, computational abilities of all kinds of devices areimproving at arate close to the one
predicted by the Moore’ s law. The only component of the computational system that is not

improving is human attention. Hence, as the spaces get better equipped and physical devices

become plentiful, there will still be alimit on how many agents can try to communicate with a

single human user.

The new space allocated to the Intelligent Room project will be equipped with eight
projectors (compared to the two available in the current space). Clearly, the number of screens will

no longer be the main bottleneck in communicating with the user.

-57-

9 Bibliography

[Arn99] Arnold, Ken, Bryan O’ Sullivan, Robert W. Scheifler, Jim Waldo and Ann Wollrath.
The Jini Specification. Addison-Wesley, Reading, MA, 1999

[Chun99] Chun, Hon Wai. Constraint Programming in Java with JSolver 2.0— An Introduction.
http://www.aotl.com/binary/JSolver%202.0%20I ntro. pdf

[Coen97] Coen, Michael. Building Brains for Rooms. Designing Distributed Software Agents.
Proceedings of the Ninth Conference on Innovative Applications of Artificial
Intelligence (1AAI97). Providence, RI, 1997

[Coen9s] Coen, Michael. Design Principles for Intelligent Environments. Proceedings of the
Fifteenth National Conference on Artificial Intelligence (AAAI98). Madison, WI, 1998

[Coen99] Coen, Michael, Brenton Phillips, Nimrod Warshawsky, Luke Weisman, Stephen
Peters, Krzysztof Gajos and Peter Finin. Meeting the Computational Needs of
Intelligent Environments: The Metaglue System In submission, 1999

[Edwa9] Edwards, W. Keith. Core Jini. Prentice Hall, Upper Saddle River, NJ, 1999

[Fer99] Ferber, Jacques. Multi-Agent Systems— An Introduction to Distributed Artificial
Intelligence. Addison-Wesley, Reading, MA, 1999

[Huh99] Huhns, Michael N. and Mary M. Stephens. Multiagent Systems and Soci eti es of
Agents in Multiagent Systems— A Modern Approach to Distributed Artificial
Intelligence. Gerhard Weissed. MIT Press, Cambridge, MA, 1999

[Las99] Lassila, Oraand Ralph R. Swick eds. Resour ce Description Framework (RDF) Model
and Syntax Specification. W3C Recommendation, 22 February 1999
http://www.w3.org/TR/REC-rdf-syntax/

[Mar99] Martin, D. L., A. J. Cheyer, and D. B. M oran, "The open agent architecture: A
framework for building distributed software systems," Applied Artificial Intelligence,
vol. 13, pp. 91--128, January-March 1999.
http://www.ai .sri.com/pubs/papers/Mart: Open/document.ps.gz

[Min99) Minar, Nelson, Matthew Gray, Oliver Roup, Raffi Krikorian and Pattie Maes. Hive:
Distributed Agents for Networking Things. Proceedings of ASA/MA'99, the First
International Symposium on Agent Systems and Applications and Third International
Symposium on Mobile Agents. August 1999

[Mor97] Moran, D. B., A. J. Cheyer, L. E. dulia, D. L. Martin, and S. Park, "Multimodal user
interfaces in the Open Agent Architecture,” inProc. of the 1997 International
Conference on Intelligent User Interfaces (1U197). pp. 61--68, Orlando, FL, January
1997
http://www.ai.sri.com/pubs/papers/M ora97:Multimodal /document.ps

[Sad94] Sadeh-Koniecpol, N., K. Sycara, and Y. Xiong, Backtracking Techniques for the Job
Shop Scheduling Constraint Satisfaction Problem, tech. report CMU-RI-TR-94-31,
Robotics Institute, Carnegie Mellon University, October, 1994.
http://www.ri.cmu.edu/pubs/pub_350.html

[FrioQ] Friedman-Hill, Ernest J. Jess, The Java Expert System Shell. January 2000.
http://herzberg.ca.sandia.gov/jess

[Phiog] Phillips, Brenton. Metaglue: A Programming Language for Multi Agent Systems.
M.Eng. Thesis. Massachusetts Institute of Technology, Cambridge, MA, 1999

[War99] Warshawsky, Nimrod. Extending the Metaglue Multi Agent System. M.Eng. Thesis.
Massachusetts I nstitute of Technology, Cambridge, MA, 1999

-58-

