
Data-Intensive Systems Benchmark Suite

Analysis and Specification
Version 1.0

30 June, 1999

Contract number: MDA972-97-C-0025

submitted to: submitted by:

Dr. José Mu•oz Atlantic Aerospace Electronics Corp.
DARPA / ITO 470 Totten Pond Road
3701 North Fairfax Drive Waltham, MA 02451
Arlington, VA 22203

Table of Contents

1 INTRODUCTION ___________ 1
1.1 Data-Intensive Systems __________ 1

1.2 Motivation _____________________ 1

1.3 Goals__________________________ 1

1.4 Organization of this Document ____ 3

2 BACKGROUND____________ 4
2.1 Algorithm Selection _____________ 4

2.2 Algorithm Analyses _____________ 4
2.2.1 Method of Moments ___________ 4
2.2.2 Simulated SAR Ray Tracing_____ 7
2.2.3 Image Understanding _________ 10
2.2.4 Multidimensional Fourier Transform13
1.1.5 Data Management ____________ 14

3 PROCEDURES ___________ 18
3.1 Overview _____________________ 18

3.2 Benchmarking Procedure _______ 18

3.3 Metrics _______________________ 19
3.3.1 MoM Benchmark Metrics______ 21
3.3.2 Simulated SAR Ray Tracing

Benchmark Metrics __________ 21
3.3.3 Image Understanding Benchmark

Metrics ____________________ 21
3.3.4 Multidimensional Fourier Transform

Metrics ____________________ 21
3.3.5 Data Management Benchmark

Metrics ____________________ 22

3.4 Measurement Procedures _______ 22

3.5 Submission of Results___________ 23
3.5.1 Required Elements ___________ 23
3.5.2 How to Submit Results ________ 24

3.6 Common Data Types ___________ 24

3.7 Arithmetic Precision____________ 25

4 SPECIFICATIONS_________ 27
4.1 Approach _____________________ 27

4.2 Benchmark Specifications _______ 27
4.2.1 Method of Moments __________ 28

4.2.1.1 Input ______________________31
4.2.1.2 Algorithmic Specification _____32
4.2.1.3 Output ____________________42
4.2.1.4 Acceptance Test_____________43
4.2.1.5 Metrics ____________________44

4.2.1.6 Baseline Source Code________ 46
4.2.1.7 Baseline Performance Figures _ 46
4.2.1.8 Test Data Sets______________ 46

4.2.2 Simulated SAR Ray Tracing ____ 47
4.2.2.1 Input _____________________ 47
4.2.2.2 Algorithmic Specification ____ 58
4.2.2.3 Output____________________ 67
4.2.2.4 Acceptance Test ____________ 68
4.2.2.5 Metrics ___________________ 68
4.2.2.6 Baseline Source Code________ 68
4.2.2.7 Baseline Performance Figures _ 69
4.2.2.8 Test Data Sets______________ 69
4.2.2.9 References ________________ 69

4.2.3 Image Understanding __________ 72
4.2.3.1 Input _____________________ 72
4.2.3.2 Algorithmic Specification ____ 75
4.2.3.3 Output____________________ 82
4.2.3.4 Acceptance Test ____________ 83
4.2.3.5 Metrics ___________________ 83
4.2.3.6 Baseline Source Code________ 84
4.2.3.7 Baseline Performance Figures _ 84
4.2.3.8 Test Data Sets______________ 84
4.2.3.9 References ________________ 84

4.2.4 Multidimensional Fourier Transform85
4.2.4.1 Input _____________________ 85
4.2.4.2 Algorithmic Specification ____ 86
4.2.4.3 Output____________________ 88
4.2.4.4 Acceptance Test ____________ 89
4.2.4.5 Metrics ___________________ 89
4.2.4.6 Baseline Source Code________ 89
4.2.4.7 Baseline Performance Figures _ 89
4.2.4.8 Test Data Sets______________ 89
4.2.4.9 References ________________ 90

4.2.5 Data Management ____________ 90
4.2.5.1 Input _____________________ 91
4.2.5.2 Algorithmic Specification ____ 95
4.2.5.3 Output___________________ 100
4.2.5.4 Acceptance Test ___________ 100
4.2.5.5 Metrics __________________ 100
4.2.5.6 Baseline Source Code_______ 100
4.2.5.7 Baseline Performance Figures 100
4.2.5.8 Test Data Sets_____________ 101
4.2.5.9 References _______________ 101

5 CONTACT INFORMATION _ 102

6 REFERENCES___________ 103

DIS Benchmarks Version 1.0 Introduction

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 1

1 Introduction

As part of the DARPA Information Technology Office’s Data-Intensive Systems research
program, this document presents a suite of application-oriented benchmarks, and the
methodology supporting it.

This section provides an introduction to the effort and the document, including an outline
of the motivation for the program, the goals to be sought, and the organization of the re-
maining sections of the document.

1.1 Data-Intensive Systems

Many defense applications employ large data sets that are accessed non-contiguously.
These applications cannot take full advantage of typical memory-access optimizations,
and consequently perform at approximately two orders of magnitude below peak rates.
Some data-starved applications identified by DARPA/ITO are RADAR cross-section
modeling, high-definition imaging, terrain masking, relational and object-oriented data-
bases, structural dynamics calculations, and circuit simulation.

Compounding the problem, memory access speeds have also not grown in pace with stor-
age sizes, nor with processor speeds.

To bolster the above applications and address these problems, DARPA/ITO has launched
a Data-Intensive Systems (DIS) effort, which includes two complimentary tasks: (1) in-
corporate logic within memory chips (processor-in-memory, or PIM), allowing manipu-
lation of data locally in a memory subsystem; and (2) adaptive cache management, to
increase cache utilization and improve data flow.

1.2 Motivation

The development of new architectures and approaches to data-intensive computing could
be beneficial to many problems of interest to DARPA. Evaluation of the architectures in
the context of those problems is essential in order to realize those benefits.

Equally important, the existence of simplified–but meaningful–programs derived from
defense applications can provide valuable input to the development process.

Therefore, benchmarking fills a critical need in the development of Data-Intensive Sys-
tems. An appropriate benchmarking effort will accelerate insertion of DIS technology
into defense systems.

1.3 Goals

The primary goal of this effort is the development of a benchmark suite that can be used
to quantify the performance gains likely to be achieved for defense computer programs
when implemented using approaches and architectures developed under the DIS program.

Any benchmark specification dealing with early research into new systems must remain
architecture-neutral. In support of this goal, the benchmark specifications are essentially
only the mathematical description of problems’ solutions. Of course, over years of de-

DIS Benchmarks Version 1.0 Introduction

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 2

velopment in the context of Von Neumann computer architectures, many known optimi-
zations have been utilized, and an attempt has been made to provide or reference these, so
that participants charged with implementing the benchmarks are not faced with having to
independently rediscover the optimizations.

Benchmarks that focus on the measurement of relative performance frequently involve
implementation only of specific, isolated functions, resulting in accurate measurement of
peak performance. This level of performance is rarely realizable in general application,
so benchmarks that include the processes of data movement and preparation are desirable
for a more generalized measurement of real performance. Considering the variety of ar-
chitectures under scrutiny in the DIS program, it would be dangerous to presume that
these “overhead” functions diminish in proportional resource consumption as data sets
grow larger. Therefore, avoidance of isolated tasks as benchmarks is a goal of this pro-
gram; rather, performance related to the interactions between program components is in-
tended to be included in the measurements.

[Weems], while reviewing lessons from prior benchmark efforts, points out:

“Having a known, correct solution for a benchmark is essential, since it is difficult
to compare the performance of architectures that produce different results. For
example, suppose architecture A performs a task in half the time of B, but A uses
integer arithmetic while B uses floating-point, and they obtain different results. Is
A really twice as powerful as B?”

Therefore, a complete solution with test data sets is considered one of the essential com-
ponents of the distribution of the benchmark specification.

Although there are sometimes competing ideas about how to best solve a particular
problem, the goal of a benchmark is not specifically to solve a problem, but rather to test
the performance of different machines doing comparable work. Since DIS architectures
are likely to vary greatly, significant latitude is allowed in the implementation of a solu-
tion to benchmark problems. However, participants must remain cognizant of the fact
that ultimately, the measurements taken must be meaningful in the context of defense
problems, and specifically in the context of relative gain. So, it is not a goal of this
benchmark effort to develop the best solutions for the most difficult problems; rather, it is
a goal to employ pertinent solutions to problems expected to benefit from DIS research,
and allow enough flexibility to maximize individual performance, yet remain consistent
and comparable.

While benchmarks that are too simplistic do not offer valuable results, those that are too
complex are never implemented, at least in a meaningful way. Resources are limited, so
ease of implementation is a factor of consideration. It is a goal of this program to develop
benchmark programs that should require relatively little source code during implementa-
tion, yet still offer meaningful results.

Often, high-performance systems are developed that remain under-utilized due to the
esoteric or difficult nature of their programming. Therefore, an important goal of this ef-
fort is to evaluate the labor costs associated with use of candidate architectures. The
ability to handle existing, ‘legacy code’ is an important consideration, as is the labor cost
to exploit the powerful features of these systems.

DIS Benchmarks Version 1.0 Introduction

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 3

A program will generally execute faster when its required data set is small enough to fit
in main memory, as opposed to when paging or swapping is required. Likewise, when
the data set is small enough to fit in cached memory, it will generally execute faster still.
Balancing the competing factors of speed, size, and cost is a major engineering decision,
and quantifying the effects of that decision is a goal of this effort.

Finally, in support of the primary goal of being able to quantify performance gains, it is a
goal of this effort to remain open to any additional information participants wish to sup-
ply that will assist reviewers in making an accurate determination. While this document
specifies minimum participation requirements, information such as results, analyses,
proofs, or additional metrics is hereby solicited.

1.4 Organization of this Document

The remainder of this document is organized as follows:
1. Section 2 provides the foundation for this work, including analyses of the algorithms

included in the benchmark.
2. Section 3 outlines the procedures to be followed by participants.
3. Section 4 provides the specifications for the benchmark set.
4. Sections 4 and 5 give contact information and references, for participants needing ad-

ditional information.

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 4

2 Background

Given the motivation and goals outlined above, this section addresses the determination
of the content of the benchmark suite. The selection of the algorithms to be included, and
analyses of each–showing critical performance bottlenecks and suggesting possible
gains–are provided.

2.1 Algorithm Selection

Although many classes of algorithms could benefit from systems with advanced memory
or PIM elements, three classes would provide a representative scope of achievable per-
formance improvement for problems of interest to key DARPA programs:

• Model-Based Image Generation – This class includes generation of synthetic signa-
tures and scenes for targets and terrain based on complex models of objects and so-
phisticated camera models for various sensor types. Applications include target
recognition, real-time scene simulation for visualization or training, and model-driven
change detection.

• Target Detection – This class includes spatial- and frequency-domain target detection
in scenes collected from a wide range of sensor types. Applications include auto-
mated exploitation and cueing systems.

• Database Management– This class includes algorithms for index maintenance, stor-
age management, and content-based query processing. Applications include sensor
data archive management and geographic information systems such as the Dynamic
Database for Battlefield Situation Awareness.

From these classes, five algorithms were selected–two from Model-Based Image Genera-
tion, two from Target Detection, and one from Database Management . Analyses of these
algorithms which suggest their possible performance gains are included below.

2.2 Algorithm Analyses

Each of the selected applications was analyzed, with a specific interest in the identifica-
tion of computational bottlenecks in the algorithms and potential performance improve-
ments offered by DIS architectures. Fragments of the algorithms suitable for benchmark
implementation were identified, and from these the specifications found in Section 4 of
this document. The remainder of this section presents individual analyses of the five se-
lected algorithms.

2.2.1 Method of Moments

The first class of algorithms chosen for inclusion in the DIS benchmark suite are Method
of Moments (MoM) algorithms, which are frequency domain techniques for computing
the electromagnetic scattering from complex objects. MoM algorithms require the solu-
tion of large dense linear systems of equations. Traditionally, MoM algorithms have em-
ployed direct linear equation solvers for these systems. The high computational

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 5

complexity of the direct solver approach has limited MoM algorithms to low frequency
problems. Recently, fast solvers have been introduced which have low computational
complexity. The potential of these fast solvers to enable MoM algorithms to solve larger
problems at higher frequencies is ultimately limited by the speed of main memory. Thus,
fast MoM algorithms may benefit from the Data-Intensive Systems research effort.

In MoM algorithms the integral equation form of the Helmholtz equation is discretized by
expanding the surface currents induced by the applied excitation in N basis functions.
Then N test functions are used to convert the integral equation to a dense linear N×N sys-
tem that takes the form Z • J = V. Generally, N increases as the square of the frequency,
and for typical problems, N is greater than 10,000. In traditional MoM algorithms, which
first appeared in the late1960’s, the dense linear system Z • J = V is solved by a direct
linear equation solution algorithm, which may be composed as an in-core or out-of-core
solver. On modern parallel computers, the direct solvers may be extended to work on
shared or distributed-memory architectures.

The advantage of MoM algorithms is that they are exact representations of Maxwell’s
equations and highly accurate simulations are possible. The disadvantage of the tradi-
tional MoM algorithms is that the methods are computationally intensive, especially as
the frequency goes up. The computational complexity of traditional MoM algorithms
includes Ο(N2) integral evaluations to compute the matrix Z and Ο(N2) arithmetic opera-
tions to solve the system Z • J = V for J. The memory requirement for traditional MoM
algorithms is Ο(N2). For these reasons, the traditional MoM algorithms are generally
used only for low frequency problems. Although traditional MoM algorithms have been
highly optimized on a variety of high-performance computing machines, the largest
problems solved so far are for N on the order of 100,000.

Recently, new fast MoM algorithms based on fast, iterative linear equation solvers have
been introduced. The iterative solvers rely on numerically stable and rapidly converging
iteration procedures, such as the preconditioned GMRES method [Saad]. Fast matrix-
vector multiply algorithms are used to compute products of the form Z • X used in the it-
erative procedure. The computational complexity of the fast MoM algorithms is
Ο(NlogN). The memory requirement for the fast MoM algorithms is Ο(N). This is a re-
markable reduction from the Ο(N2) computational complexity of the traditional MoM al-
gorithms, and potentially, allows the solution of much larger problems at higher
frequencies.

Rohklin [Rohklin-1, Rohklin-2] has introduced new fast MoM algorithms for the Helm-
holtz equation, which use iterative linear equation solvers and the fast multipole method
(FMM) for fast matrix-vector multiplies. To compute products of the form Z • X, the Z
matrix is not formed or stored, rather the product Z • X is viewed as a field and approxi-
mately evaluated by the FMM. The mathematical formulation of the FMM is based on
the theory multipole expansions and involves translation (change of center) of multipole
expansions and spherical harmonic filtering. The computational complexity of these new
methods is Ο(NlogN) and the memory requirement is Ο(N).

Building on the FMM approach, Dembart, Epton and Yip [Dembart-1 to 4] at Boeing
have implemented a fast MoM algorithm in a production grade electromagnetics code

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 6

used by the company for radar cross-section (RCS) studies. Problems for which the
number of unknowns is on the order of 10,000,000 have been solved with this code.
Boeing’s fast solver uses the preconditioned GMRES iterative method, which requires
only the calculation of products of the form Z • X, combined with a multilevel FMM for
fast matrix-vector multiplies.

The potential of the fast MoM algorithms to solve larger problems at higher frequencies,
which results from their low computational complexity, is impacted by two memory bot-
tlenecks encountered by fast solvers: low reuse of data and non-unit stride memory ac-
cess.

We introduce the issue of low reuse of data by first considering the direct solvers used in
the traditional MoM algorithms. Since the computational complexity is Ο(N2) and the
memory requirement is Ο(N2) for direct solvers, the ratio of computation to data access is
Ο(N). For typical problems solved by the traditional MoM algorithms, where N is greater
than 10,000, data reuse is high. When data reuse is high, cache is an effective tool for
enhancing processor performance. The direct solver, in-core or out-of-core, can be or-
ganized so that a block of data is placed in cache and then reused from cache. This effec-
tive use of cache makes the computer perform as if all the memory is as fast as the cache
memory. Similarly, direct solvers can be optimized for shared- or distributed-memory
architectures.

For the fast MoM algorithms, where the computational complexity is Ο(NlogN) and the
memory requirement is Ο(N), the ratio of computation to data access is Ο(logN). Indeed,
implementation of Rohklin’s translation theorems shows that for the translation opera-
tions, which are key to the FMM, the ratio of memory access to computation is 3-to-1.
Thus, cache cannot be used to enhance processor performance, and the speed of fast
MoM algorithms is ultimately limited by the speed of main memory.

In addition to the bottleneck resulting from the low reuse of data, fast solvers based on
the FMM face a second memory related bottleneck. The FMM relies on the numerical
implementation of spherical harmonic filtering. The filter operates on rectangular arrays
of data in three stages. The arrays are accessed first by rows, then by columns, and fi-
nally, by rows again. In the second stage, it is necessary to access memory locations that
are not consecutive. Thus, the speed of the fast MoM algorithms based on the FMM is
ultimately limited by the speed of accessing main memory with non-unit stride.

Fast MoM algorithms, based on efficient iterative linear equation solvers, have the po-
tential to compute the electromagnetic scattering from complex objects at frequencies 10
to 100 times higher than possible with traditional MoM algorithms. As pointed out
above, the ultimate potential of these fast MoM algorithms is limited by two memory-
related bottlenecks: low reuse of data and non-unit stride. For these reasons we have cho-
sen to use Boeing’s fast solver, based the preconditioned GMRES iteration method and
the FMM for fast matrix-vector multiplies, as the basis for the Method of Moments
Benchmark. The key FMM kernels represented in the benchmark are the translation op-
erations and spherical harmonic filtering.

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 7

2.2.2 Simulated SAR Ray Tracing

The simulation of Synthetic Aperture Radar (SAR) provides a cost-effective alternative to
real data collections. In contrast to deployed sensors systems, whose operational pa-
rameters are fixed, computer simulations allow continuous variation of system and scene
parameters. They have been used to simulate the performance of hypothetical sensors
systems and to predict the signature of targets from a large number viewing angles as
well as target signature that are inaccessible. These simulated target signatures have been
used to design, test, and have been included as part of ATR systems.

Phenomenological models of targets and backgrounds and their interactions are the theo-
retical foundation of the computer simulations. For example, both image-domain and
phase-history-domain approaches have been used to simulate synthetic aperture radar
(SAR). The image domain approach uses a generalization of the physical optics ap-
proximation to compute target scattering. Such an approach is very amenable to use with
a solid geometry target model sampled by ray casting. The phase history domain ap-
proach uses a variety of methods to compute target scattering: physical optics (PO),
physical theory of diffraction (PTD), method of moments (MoM), and others. Hybrid
implementations of these two methods have also been developed. The SAR simulation
method analyzed for this benchmark is based on the image domain approach.

Figure 2.2.2-1. A typical geometry for airborne collection of SAR data relative to a
specific ground site.

A typical SAR collection geometry is illustrated in Figure 2.2.2-1. Assume far field con-
ditions and a narrow-band signal. Let α and β denote, respectively, the receive and
transmit polarizations of the radar, u(t) the transmitted waveform, and γ(r’) the so-called
SAR reflectivity of the scene, The radar return signal is generally represented as

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 8

where S is the illuminated portion of the scene, R = r - r’ is the distance from the radar
to the point r’ on S, c is the speed of light and K is a system constant. In essence, the
model is based on the argument that the return from a differential surface element ds’, lo-
cated at r’, is a replica of the transmitted signal. This signal is delayed in time by the two-
way propagation time from the radar to r’ and back, and modified by the reflectivity of the
surface element. It can be shown that such a model is consistent with physical optics, and
an explicit formula for γ can be obtained.

It is customary to demodulate ν(t) by mixing with a reference signal h(t), yielding

s(t) = h(t)v(t)

Let Γ(f) denote the spatial Fourier transform of γ(r):

Γ(f) = ℑ {γ (r)}

A single range record s(t) can be interpreted as corresponding to the values of Γ(f) over a
radial line segment in the spatial frequency domain. The complete record of s(t) for a se-
quence of pulses transmitted and received at positions along the platform trajectory con-
stitute a so-called phase history.

The fact that the collected data corresponds to the Fourier transform of the reflectivity
density suggests that a reconstruction (image) of the reflectivity can be obtained by in-
verse Fourier transformation of the data. It will be at best a partial reconstruction because
we have only partial data. For a linear trajectory, the phase history represents a planar
surface in the spatial frequency domain over which the value of Γ(f) has been sampled.
The most that can be obtained is a two-dimensional image. Letting A(f) denote a
weighted, two-dimensional processing aperture over the data surface, the SAR image
formation process is given by

g(r) = ℑ -1 { A(f) Γ(f) }

Additional insight is gained by noting that the image formation process is mathematically
equivalent to the convolution

g(r) = a(r)∗γ (r)

where

a(r) = ℑ -1 { A(f) }

is known as the spatial impulse response.

()ν γαβ αβ() (’) ’t K r u t dsR
c

S

= − 2

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 9

Figure 2.2.2-2. Block diagram of the generalized physical optics SAR simulation.

Simulation of the SAR system can be achieved by synthesis of the phase history followed
by aperture weighting and inverse transformation, or by direct computation of the reflec-
tivity density followed by convolution with the spatial impulse response. Both methods
have been implemented in SAR simulation programs like X-PATCH and RADSIM.

In the process of analyzing this approach, the simulated SAR technique can be broken
down into three steps as seen in Figure 2.2.2-2.

First, is the process of sampling a scene database made of polygons, splines, and Con-
structive Solid Geometry. A ray tracing system is used to accomplish this sampling, by
simulating how the radar energy bounces through the scene.

Ray tracing is a process where rays are fired from a viewing window into the scene and
recursively traced through their specular reflections. Each ray is defined as vector with a
starting position at the sensor and a direction defined by the pixel it passes through on the
viewing window, in this case our synthetic aperture. Each ray is tested against all objects
in the scene to see if an intersection can be found. The process of finding the intersection
involves finding the roots of a system based on the combination of the vector and object.
If multiple intersections are found the closest intersection is used. Once an intersection is
found, the object ID and the intersection coordinates are recorded. In addition, several
other properties at the intersection point are determined. These are surface normal, cur-
vature, surface material type, and length of the ray from the intersection point to the ori-
gin of the ray. Using the surface intersection normal and the incoming ray, a reflected ray
is calculated along the perfect specular reflection direction. This ray is fired from the cur-
rent intersection point and the next intersection is found. This recursive process contin-
ues until either the ray leaves the scene, or a preset number of reflections are found. The
intersection results of each original ray and all of its reflections create a ray history that
contains all the intersection information, normally stored in a linked list. The output of
the ray-tracing section is a ray history for each pixel in the image plane.

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 10

In programs like X-PATCH, the ray-tracing portion of the process consumes 50% to 60%
of the total computation time. With this being the major time component in the SAR
simulation process, it is a prime candidate for parallelization. Parallel ray tracing has
been investigated by several researchers and is not a simple problem. This process will
be the major thrust of the benchmark effort for simulated SAR imagery.

The second step is the process of converting the ray-traced information, the ray history,
into the electromagnetic (EM) response of the sampled scene data. Here each ray path is
analyzed to generate a fully polarimetric EM response solution. This is a linear process
and does not consume a large amount of time. This step, in the SAR simulation, would
be a trivial process to parallelize because each ray history is independent of all the others.
Due to the small amount of time and the simplicity of parallelization, this portion of the
process is not considered as part of the benchmark.

The final step in the simulated SAR process is converting the 2-D array of EM responses
into complex images. This is accomplished by mapping the 2-D array of EM responses
into the slant plane. This slant plane image is then convolved with a system Impulse Re-
sponse (IPR) to form a complex image that can be detected and viewed.

This final step is a unique combination of processes, from the viewpoint of paralleliza-
tion, and does present the second-highest consumer of CPU time. Creating a parallel ver-
sion of this section of the process will stress data-passing, as EM responses are mapped
onto a rectangular grid called the slant plane. This output then runs through a standard
convolution. Each of these steps will require different lay-outs of memory and should
present some unique problems as a parallel implementation. For this reason, and because
this step is a large time consumer, it is part of the simulated SAR benchmark.

2.2.3 Image Understanding

Image processing algorithms represent the third type of algorithm chosen for study. The
applications of interest include target detection and classification. A sampling of these
algorithms was chosen for this benchmark identifying bottlenecks that are common to
image processing applications. The sampling contains algorithms that perform spatial
filtering and data reduction. The algorithms selected for the benchmark are a morpho-
logical filter component, a region of interest (ROI) selection component, and a feature
extraction component. These form the Image Understanding Sequence as shown in
Figure 2.2.3-1. The morphological filter component provides a spatial filter to remove
background clutter in the image. Next, the ROI selection component applies a threshold
to determine target pixels, groups these pixels into ROIs, and selects a subset of ROIs de-
pending on specific selection logic. Finally, the feature extraction component computes
features for these selected ROIs.

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 11

Feature
Extraction

Morphological
Filter

K

V
regions
O

ROI
Selection

W

distanceShort
distanceLong

features

thresholdLevel
minArea
maxRatio
selectNumber

Figure 2.2.3-1: Image Understanding Sequence

Transformations that generate images from symbolic input, as well as Fourier Trans-
forms, were excluded, since these are addressed in other portions of the Benchmark Suite.

The input required by the sequence is a set of parameters and an image, V. The first step
in the sequence is a spatial morphological filter component generating image W. Then,
the ROI selection component applies a simple threshold and groups connected pixels into
ROIs (or targets) contained in image W. This component then computes initial features
for each ROI in image W, and selects candidate ROIs, depending on the values of these
features. These selected ROIs are stored in object image, O. The initial features for each
selected ROI are stored in the list regions. Lastly, the feature extraction component com-
putes additional features for the selected ROIs. The final output is a feature list, features,
containing all the features calculated for each selected ROI. Details regarding the se-
quence can be found in Section 4.2.3.

Each algorithm has two associated costs: operational and pixel addressing. The opera-
tional cost is a measure of the computational burden placed upon the processors to exe-
cute the algorithm, and pixel addressing cost is a measure of the amount of memory usage
or access that is required. A brief description and analysis of each component, including
its bottlenecks, follows.

The morphological filter component chosen for the benchmark is a relatively straightfor-
ward procedure, designed to remove background clutter and retain objects of interest.
The total cost of the morphological filter is determined by assuming the kernel is applied
over the entire input image, although in practice the kernel is usually only applied over a
subset of the image (the input image less a portion at the edges). The address-to-
operation ratio is approximately the same for each approach. The filter utilized in this
benchmark includes three distinct phases: erosion, dilation, and difference. The number
of operations for the filter is

size(V) 4size(K) +1[]
where V is the input image, K is the kernel, and size(X) is the total number of pixels in X.
The operational cost consists of two multiplies, one subtraction, one minimum compari-
son, and one maximum comparison. The number of pixel addresses is

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 12

size(V) 4size(K) + 5[]
where the kernel and input image are accessed multiple times as the kernel is applied over
the input image. The address to operation ratio is then

(4size(K) + 5) (4size(K) +1)

which is bounded in the range {1, 1.8}.

The ROI selection component of the sequence involves a threshold phase, a connected-
component phase (where detected pixels are grouped into objects), an initial feature ex-
traction phase, and a selection phase (where ROIs are selected based on the values of the
initial features). The initial feature extraction phase measures five characteristics of the
object region. Three of these–centroid, area, and perimeter –are descriptive of the shape
and location of the ROI. The other two–mean and variance –are statistical measures of
amplitude over the pixel population of the ROI. The threshold phase has an address-to-
operation ratio of two. The operational and pixel addressing costs associated to the con-
nected component phase, the initial feature extraction phase, and the selection phase vary
greatly, depending on the implementation and the data involved, so no analysis of these
costs is provided here.

After selecting ROIs, additional features are calculated. These give a rough measure of
the texture of each ROI. As discussed in [Parker 97], a gray-level co-occurrence matrix
(GLCM) contains information about the spatial relationships between pixels, by repre-
senting the joint probability that a pixel with a given value will have a neighboring pixel
at a particular distance and direction with another chosen value. Since this matrix is
square, with dimensions equal to the number of possible pixel values, it provides more
information than can easily be analyzed. Statistical descriptors of the co-occurrence ma-
trix have been used as a practical method for utilizing these spatial relationships. Fur-
thermore, [Unser] designed a method of estimating these descriptors without calculating
the GLCM, instead using sum and difference histograms. The descriptors chosen as fea-
tures for this benchmark are GLCM entropy and GLCM energy, and are defined in terms
of a sum histogram, sumHist, and a difference histogram, diffHist. These descriptors are
calculated for each of two distances and four directions.

It is typical in target detection systems to calculate many features to be used in a target
recognition step. The ideal is to choose the fewest and cheapest features possible that
provide the best detection result. The cost for the feature extraction component is de-
pendent upon the number of features or targets present in the input image which can
range from zero to several thousand in typical applications. This makes the algorithm
very difficult to execute efficiently, since many features will have a high computational
cost with a small memory access cost, while a few will have a low computational cost
with a high memory access cost. Thus, an a priori-implementation for feature extraction
is generally not possible. Consequently, there is no analysis provided here of the cost in-
volved to calculate these features.

The two main bottlenecks which occur in typical target recognition applications are the
result of manipulations of large amounts of data while expending little computational ef-
fort, and of smaller amounts of data in computationally intensive functions. The intent of

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 13

this benchmark is to represent these bottlenecks within the sequence, so that attempts to
remove these bottlenecks may be examined.

2.2.4 Multidimensional Fourier Transform

The Fourier Transform has wide application in a diverse set of technical fields. It is util-
ized in image processing and synthesis, convolution and deconvolution, and digital signal
filtering, to name a few. In fact, the transform is utilized within both the Ray-Tracing and
Method of Moments benchmarks described elsewhere in this document. However, spe-
cial interest in the Fourier transform merits its independent inclusion in this benchmark
suite. Specifically, the interest is in the nature of the memory access patterns, which are
indicative of a large class of problems.

The multi-dimensional Discrete Fourier Transform (DFT) is defined as

��
F(n1, n2,�,nN) = �

kN =0

NN

∑ e2πik NnN NN �e2πik1n1 N1 f k1, k2 ,�,kN()
k1=0

N1

∑ (2.2.4.1)

where f is an input complex multi-dimensional array of size ��N = N1 × N2 ×�× NN ,
and F is the output forward transform of f . The Fourier Transform is rarely imple-
mented directly as Equation 2.2.4.1, since the process would require Ο(N2) operations.
Instead, the transform can be accomplished in Ο(Nlog2N) operations, or less, using one of
a series of methods generically called Fast Fourier Transforms (FFT). These FFT meth-
ods exploit one or more mathematical properties of Equation 2.2.4.1 to reduce the re-
quired number of operations.

The bottleneck associated with DFTs that is of interest here is the non-unit-stride memory
access associated with the transform. Part of the subscripts of Equations 2.2.4.1 can be
“pulled out” of the summations (i.e., the exponential with the subscript kN can be pulled
outside of the sum over kN-1 etc.), which shows that the multi-dimensional DFT can be
represented by a series of one-dimensional DFTs:

��
F n1,n2,�,nN()= FN FN−1 FN −2 �F1 f k1,k2,�,kN()()()()() (2.2.4.2)

where Fk is a one-dimensional DFT over the specified index. The aspect of Equation
2.2.4.2 to note is that for whatever memory access the inner loops attempt, the outer loop
will always be “opposite” or irregular, which prevents a unit-stride access. Rearrange-
ment of the summations or manipulation of the equations can alleviate this memory ac-
cess bottleneck to some extent, but some non-unit-stride access is present with most DFT
implementations.

In order to simplify the implementation and specification of this benchmark, the DFT is
limited to three-dimensional transforms only. The implementation of a 3-D transform is
complex enough to give an indication of the performance of the architecture on higher
dimensional transforms, but simple enough to be relatively easy to implement. The in-
clusion of one- or two-dimensional transforms would not significantly add any other per-
formance information regarding the candidate architectures. In addition, one- and two-

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 14

dimensional input can be approximately tested by specifying the length of the remaining
dimensions of the array to be one.

2.2.5 Data Management

The fifth area in which the DIS benchmark suite attempts to measure performance im-
provement is in data management, specifically in the area of DBMS. Applications for
traditional DBMS have been dominated by archival storage and retrieval of large volumes
of essentially static data. Some newer applications, such as the Dynamic Database for
Battlefield Situation Awareness, demand management of complex, dynamic indices in
addition to the data.

The objective of this benchmark is to measure the performance improvement of a given
hardware configuration for certain elements of traditional DBMS processing. Perform-
ance improvements due to sophisticated database design or special software implementa-
tion are avoided and not intended to be part of the benchmark. This benchmark focuses
on two weaknesses of conventional DBMS implementations: index algorithms and ad hoc
query processing.

Large volumes of data in a DBMS are typically referenced by an index structure. The
index can be used instead of brute-force searches over all the data when a query is made.
The index defines one or more elements of the data entries as key values. Thus, the key
values are specified in advance, and the DBMS maintains a separate index structure based
on them. The index is used to accelerate query processing by minimizing the amount of
data that must be accessed to satisfy the query.

Two assumptions typical of conventional algorithms are that the data will be predomi-
nately static, and that operation can be suspended for index maintenance. Neither as-
sumption holds for the Dynamic Database or other dynamic information systems, and
current applications drive standard indexing schemes into frequent wholesale index re-
generation, yielding unacceptable performance.

The index structure allows efficient searches over a database when the query can use a
pre-defined key value. Queries which do not use a key value are called ad hoc, non-key,
or content-based queries. This query type requires a brute-force search over all database
entries. Conventional applications usually process an ad hoc query in two stages: an in-
dex-based search is used for the index keys in the query formulation, if any, and brute-
force search is performed on the results of the index-based search. These brute-force
searches are a bottleneck in a typical DBMS. The performance impact of non-key queries
can be reduced by parallel searches of the data, which may be applicable to specific
hardware architectures, or by partitioning the data.

Partitioning schemes provide an additional performance boost for a general database de-
sign where the primary objective is to separate areas of the database into logical sections,
each of which is then indexed by its own scheme. The partition allows more efficient
searches, when the sections have been chosen well, or when an optimal scheme is known
a priori. It also supports parallel searches across partitions.

Bottlenecks traditionally associated with DBMS primarily occur in query processing, and
the majority of work done to enhance performance has been in this area. Much of this

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 15

query optimization has increased the query response speed at the expense of maintaining
the index over the lifetime of the database. By definition, an index requires an increase in
overhead or up-front processing in favor of quicker, cheaper searches. Typical command
operations such as insert and delete have generally not been optimized. This reiterates
the implied assumption of the existence of periods during operation when user interaction
can be suspended to deal with index management. The cost associated with index man-
agement over the operation life of the database represents a new measure of performance
for advanced data management applications, and a corresponding new bottleneck.

The indexing method chosen for use within this benchmark is an R-Tree structure. The
R-Tree index allows the key to represent spatio-temporal data, which makes the R-Tree
particularly applicable to geographic information; it is commonly supported by database
vendors. The R-Tree structure is as close to a de-facto standard for representing such
data in a database context as exists today.

The R-Tree index is a height-balanced tree containment structure, that is, nodes of the
tree contain lower nodes and leaves. Thus, the tree is hierarchically organized and every
level in the tree provides more detail than the previous level. The indexed data object is
stored only once, but because of the containment structure, keys at all levels are allowed
to overlap. This may cause multiple branches of the R-Tree to be searched for a query
whose search index intersects multiple nodes.

A general measure of index maintenance cost for separate command operations is the
number of node accesses required for each operation. Other measurements of cost be-
come increasingly software-dependent, and are avoided in this analysis. A generic R-
Tree implementation, which is given later in this document, has three command opera-
tions to measure: insert, delete, and query. Because the R-Tree is a height-balanced
structure, the total number of paths for a full tree is given by:

N = 2 k −1 F
k =1

h

∑
where N is the number of paths, h is the height of the tree, and F is the fan or order of the
tree. Traditional performance measures have focused on the query response: for the ge-
neric R-Tree the minimum number of node accesses is h, which is expected from a
height-balanced tree, and the maximum number of node accesses is N, or a complete node
search over all possible paths. The maximum number is unique to the R-Tree or similar
overlapping index trees and represents a significant bottleneck. The problem is exacer-
bated for improperly managed index structures, and can be alleviated by efficient soft-
ware implementations and improved hardware architectures which allow more efficient
or parallel searches.

Index management over the operation of the database represents a new type of bottleneck
for advanced applications. The cost of maintaining the index can be estimated in the
same manner as for query commands, by determining the number of node accesses re-
quired to complete the command in both the best and worst cases. A descriptive estimate
of the average case is also given, with the caveat that the average case is highly imple-
mentation-dependent, and will vary for each system.

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 16

The insert operation has three separate phases: a search over all paths, insertion (which
may cause node splitting), and index key adjustment. The best case occurs when inser-
tion does not require node splitting and no parent keys need to be adjusted; this yields a
cost of N node accesses. The worst case does require splitting along each parent, and all
parent keys are adjusted; this yields a cost of N+2h node accesses. An average insert
would tend to require parent key adjustment and periodic node splitting. Thus, the aver-
age insert cost would tend towards the maximum cost.

The delete operation has two phases: a search for the data to be deleted, and a possible
key readjustment. The best case has a cost of h node accesses, which represents no key
adjustments and an immediate “one” path search for the data. The worst case has a cost
of N+h, which represents a full search of the data and an all parent key adjustment. The
average cost of a delete operation tends to the minimum case, since the operation would
include key adjustment but probably not a full search.

The costs of the insert and delete operations are greater than or equal to the query opera-
tion in both the best and worst cases. Thus, index management over the operational life
of the database represents a significant performance bottleneck when the data is dynamic.

This benchmark has been developed to measure the performance improvements of new
hardware architectures for both index maintenance and non-key queries, which represent
the two significant performance bottlenecks. One goal is to remove or “level” the algo-
rithmic component over all of the architectures, without preventing any new or unique
software implementations that would allow a significant performance improvement due
to exploitation of special hardware features. This is done by defining the benchmark as
the implementation of a highly simplified database with a specific index structure. The
database supports only three simple aggregate data objects whose primary difference is in
size. The use of different sizes of data objects is intended to prevent optimization of the
implementation for an object of a specific size, and the sizes themselves were chosen to
prevent similar multiples. The objects are aggregate in that they contain a set of data at-
tributes or parts which are linked together as a list. An ad hoc query uses an attribute of
the object for non-key searches. This type of search with simplified objects is relatively
simple to implement, but is representative of more complicated database behavior such as
object traversal. This benchmark requires the use of the R-Tree structure, but the partici-
pant is encouraged to modify or develop additional implementations tailored for new ar-
chitectures.

The DIS benchmark metrics provide a measurement of the candidate architecture’s ability
to handle the “highest” load when the number of users is large and the system resources
are taxed to their limits. The benchmark simulates this maximum resource utilization by
issuing the index commands in a batch rather than a stream mode. A stream mode would
more closely mimic a “real” DIS application, allowing for multiple users and possible
“down” time for index maintenance. However, this benchmark is primarily interested in
the extreme condition, where down-time, in which a database can perform index mainte-
nance with no cost to the users, is assumed not to exist. The performance on successful
completion of the entire data set with its multiple commands is the primary metric of this
benchmark, and this must include the time required for index maintenance since this will
directly affect the users under extreme conditions. Participants are allowed to introduce

DIS Benchmarks Version 1.0 Background

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 17

artificial lags to the command input to simulate a stream mode, but the times reported for
individual command completion and overall set completion must include the added lag
times.

DIS Benchmarks Version 1.0 Procedures

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 18

3 Procedures

This section provides information on the procedures to be used when employing these
benchmarks. The primary purpose of the section is to answer the question, “How does
one use this benchmark?” It begins with an overview, then describes the procedures
which are common across all four benchmarks in this set. Metrics, measurement, report-
ing, data types, and precision are also addressed.

3.1 Overview

Procedures are a critical element of benchmarking. To be useful, benchmarks must be
approached uniformly and analyzed consistently. According to [Honeywell], the follow-
ing questions must be addressed by benchmarking procedures:

• How should baseline performance metrics be established, against which to compare
the other results?

• How should the operations in the benchmark specification be performed?

• How can it be ensured that an implementation is solving the intended problem?

• How should measurements be made?

• How should benchmark results be reported so that anyone examining the results has
sufficient information to interpret them correctly?

3.2 Benchmarking Procedure

The following procedure should be executed by any group or individual wishing to gen-
erate an implementation of this benchmark set. The sequence was published in [Honey-
well], and applies to all five of the benchmarks in the set. It is presented here modified
only to the degree necessary for relevance to this set.

Step Action

1 Review the background and all procedures as specified in this document.
These capture the common aspects of all benchmarks.

2 Review the benchmark specifications, as given in Section 4 of this docu-
ment, noting any restrictions associated with the benchmark development
activity. Understand the metrics of interest, the acceptance test, and the
information that needs to be reported.

3 Develop a benchmark implementation in accordance with the benchmark
specification. This step can take one of two forms:

• simple compilation, with no source code modification, in the case of
an ‘un-optimized’ code test, or

• manual optimization, to the degree desired by the participant. In this
case, the specific steps or operations to be performed are particular to
the benchmark being implemented. A precise description of the steps

DIS Benchmarks Version 1.0 Procedures

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 19

is provided in each respective benchmark specification. Any restric-
tions regarding the steps are also provided.

For both cases, baseline source code, written in the C programming lan-
guage is provided.

4 Tabulate any information required by the Metrics portion (Section 3.3) of
this document.

5 The process used to measure benchmark metrics is important in the inter-
pretation and reproducibility of results. Section 3.3.4 provides a descrip-
tion of the allowable techniques for measurement. Timing must be
performed as specified in this document. Benchmark runs should be re-
peated a sufficient number of times as to ensure reproducibility of results.

6 The use of acceptance tests is critical to determining whether a specific
implementation is deemed valid. For each benchmark run, examine the
results and verify that they pass the appropriate acceptance test as defined
in the benchmark specifications (Section 4).

7 Reporting of results is a weakness of many existing benchmark ap-
proaches. Section 3.5 addresses the topic of results reporting in detail,
providing guidelines regarding what information needs to be provided to
ensure that adequate interpretation of the results is possible.

Participants are required to measure performance of all five benchmarks using ‘un-
optimized’ code. That is, the baseline code provided for each benchmark must be com-
piled without any modification, and run ‘as-is’ to establish performance of the architec-
ture utilizing only automatic optimizations. In addition, participants are encouraged to
modify or replace this baseline source code and run the tests again, establishing perform-
ance after manual optimizations. This should be done for one of the benchmarks at the
very minimum. This process may be repeated as desired, but users are reminded that
each level of optimization must be documented in accordance with Section 3.5.1.

Therefore, the above procedure must be followed at least six times–once for each ‘un-
optimized’ benchmark, and once for one ‘manually optimized’ benchmark. There is no
limit to how many times it may be followed. However, the ability of the reviewers to ef-
fectively analyze the results must be considered.

3.3 Metrics

Of primary interest for all the benchmarks in this set is the trade-off between ‘perform-
ance’ and ‘cost’, where performance is focused mainly on maximizing throughput, and
cost is focused mainly on programmer labor costs. Of course, there are many other im-
portant considerations relating to performance and cost; some important contributing
factors are listed here:

Performance Cost

Maximize throughput (primary) Minimize programmer labor (primary)

DIS Benchmarks Version 1.0 Procedures

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 20

Maximize scalability Minimize development labor

Minimize power consumption Maximize use of OTS parts

Maximize robustness Minimize part count

Maximize implementation flexibility Maximize ability to retrofit

Minimize volume and weight

To quantify these factors, metrics are specified for each benchmark. These are only con-
cerned with the performance aspect of the trade-off. It is expected that the cost aspect
will be addressed in the Architectural Description and Comments portions of the reports.
While each benchmark will require different measurements of performance, all metrics
are intended to quantify throughput. How these measurements vary over the range of in-
put data sets gives some notion of scalability for a specific configuration. How the con-
figuration itself can be scaled is another issue to be addressed in the Architectural
Description.

Implicitly, the implementations are expected to provide correct output to even be consid-
ered. This requirement is an element of each acceptance test, and is therefore not a metric
in need of evaluation.

The energy spent by implementers laboring in the development of each benchmark im-
plementation is of special interest. As this is ultimately difficult to measure accurately,
reviewers will rely on participant’s candid reporting on this subject. A frank summary of
the required skills, labor expended, and problems encountered during the process would
be of great benefit to those establishing the utility of a given design.

Although peripheral devices vary greatly in access speeds and communication throughput
rates, it is desirable to understand the limitations on throughput induced by the architec-
ture. Therefore, for all benchmarks, the time spent reading from input and writing to out-
put should be included in time-for-completion metrics, but recorded separately where
possible. Participants should comment on I/O features or limitations in their Architec-
tural Descriptions.

Power consumption is also an important metric. Again, the early stages of development
under the DIS program might make accurate quantification of power consumption impos-
sible. However, participants are expected to include their best estimates of the power re-
quired for each benchmark in the suite. Measurement methods employed should be
detailed in the report, as it is anticipated that no specific methodology may reasonably be
imposed.

Although scalability with respect to problem size is largely addressed by the spectrum of
input sets provided with the benchmark, scalability with respect to processor or memory
configuration can only realistically be addressed by qualitative analysis. Participants
should address this issue for each benchmark in their reports.

Additional metrics for each of the benchmarks are described in the following subsections.
This information is also included in the benchmark specifications (Section 4). These, and
the above basic metrics should be considered the minimum required for a report. It is in

DIS Benchmarks Version 1.0 Procedures

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 21

the participant’s interest, however, to supply a complete report, with all the details rele-
vant to evaluators concerned with DIS applications.

3.3.1 MoM Benchmark Metrics

The metrics for the Method of Moments Benchmark consist of three measures: perform-
ance, scalability with respect to problem size, and scalability with respect to processors.
The metrics are described in detail in Section 4.2.1.5.

The most important of the three metrics is performance, which is measured in wall-clock
time. The primary measure of performance is the total wall-clock time for the calculation
of the far-field by the multilevel FMM. The secondary measure of performance is the
breakdown of the total time into the total time for all translation operations and the total
time for all spherical harmonic filtering/synthesis calculations. The tertiary measures of
performance are the breakdown of the secondary measures into the total time for each of
the six steps in the multilevel FMM as specified in Section 0.

3.3.2 Simulated SAR Ray Tracing Benchmark Metrics

The primary metric for the simulated SAR ray-tracing benchmark suite will be total exe-
cution time. Secondary metrics will be scalability (how does adding more processors ef-
fect the timings and how do larger data sets effect the timings) and load distribution (how
is the workload distributed among the processor). These secondary metrics are important
measures for the ray tracing part of the benchmark. The major problem with parallel im-
plementations of ray tracing is in achieving a constant work load and maintaining scal-
ability.

3.3.3 Image Understanding Benchmark Metrics

The primary metric associated with the image understanding benchmark is total time for
accurate completion of a given input data set. A series of secondary metrics for the indi-
vidual times of the processing operations is also required. See section 4.2.3.5 for more
detail.

3.3.4 Multidimensional Fourier Transform Metrics

There are three metrics for this benchmark. The first, and primary, is the total time re-
quired to complete the input set. This should include the time for each transform test as
well as the I/O time required to load the randomly generated input, and output the result.
The total time should not include the time necessary for the generation of the random
data. The second metric is the time required to complete the individual transform tests.
Again, this time should include any I/O time for loading of data and output of results.
The third metric measures the “mflops” [Johnson] of the individual transform tests. The
“mflops” for a given transform is defined to be

"mflops"=
5 X × Y × Z()log2 X × Y × Z()

time for one DFT in µs()

DIS Benchmarks Version 1.0 Procedures

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 22

where X, Y, and Z are the lengths of the first, second, and third dimensions, respectively.
The rational behind using this metric is to provide a reasonable comparison between dif-
ferent architectures, implementations, and transform sizes. Note that “mflops” are not
equivalent to MFLOPS (millions of floating-point operations per second), but are instead
an estimate of that value that assumes a common baseline number of operations for any
implementation as

5 X × Y × Z() log2 X × Y × Z() +ϑ N()
which is the radix-2 Cooley-Tukey FFT[Cooley]. This third metric is common in the
FFT literature and for more discussion of the reasoning behind the metric, the reader is
referred to [Johnson].

3.3.5 Data Management Benchmark Metrics

The primary metric associated with the Data Management benchmark is total time for
accurate completion of a given input data set. A series of secondary metrics are the indi-
vidual times of the command operations: Insert, Delete, and Query. Best, worst, average,
and standard deviation times should be reported for all operations for each data set.

The time for a non-response command operation to complete is defined as the time dif-
ference between the time immediately before the command is placed in the database input
queue and the time immediately before the next command is placed in the same input
queue. This time difference is essentially the rate at which each line of the input data set
is read and executed. This definition is applied to the Insert and Delete command opera-
tions. The time for a Query command operation to complete is defined as the time differ-
ence between the time immediately before the command is placed in the input queue to
the time immediately after the response is placed in the output queue.

3.4 Measurement Procedures

When measuring performance of a benchmark implementation, the following considera-
tions must be made:
• Actual platform measurements are preferred over simulated results. It is understood

that early iterations through the benchmarking process will necessarily be based on
simulation, but these must give way to measurements of actual systems for reliable
determinations to be achieved.

• If simulations are used, a description of the model and tools used, and the bases for
the timing values, should be provided.

• All data sets should be used. They have been provided in a range of sizes, so as to
test fixed-system scaling effects resulting from limited-resource optimizations.
Should particular data sets be unusable for some reason (e.g., the dataset requires
more memory than that which is available), the reason should be reported.

• There may be no recompilation or manipulation of the software or hardware between
runs producing final measurements. Recall that quantifying the effects of system de-
sign decisions is one of the goals of this effort. Therefore, the environment must be
consistent throughout the tests to ensure validity of measurements relative to one an-
other.

DIS Benchmarks Version 1.0 Procedures

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 23

• Tests should be repeated enough times to ensure reproducibility.
• As the DIS effort is primarily concerned with memory issues, measurement of time to

perform I/O operations shall ideally be factored out. However, because the relative
need for–and speed of–I/O is determined by the architecture, these times should be
measured and included in the report. If possible, the time for these operations should
be noted, so they can be excluded when appropriate.

3.5 Submission of Results

3.5.1 Required Elements

Participants are expected to supply the following items as a result of their tests:

Item Description

Architecture
description

A detailed description of the hardware and software environments utilized
during testing should be supplied. The description should be sufficient
that strengths and weaknesses of the architecture pertinent to the bench-
marks can be understood. Known performance measures such as bisection
bandwidth and feature size should be included. Limits of the architecture
(e.g., maximum of 32 processors, or maximum clock rate of 100Mhz)
should be identified, and if predicted performance is to be considered, it
must be justified in the Comments section of the report. As it is unwise to
compare raw timings, even for similar architectures, without considering
the differences in technology between the systems, this description is criti-
cal to the process, and should be organized, detailed, and complete.

Source code If modifications are made to the baseline source code in support of opti-
mized performance, the revised source code used during testing should be
supplied, along with corresponding documentation of the changes, and
detailed documentation of the code compilation, assembly, and execution.

Implemen-
tation
documenta-
tion

A detailed record of the implementation, including rationale and approach
to optimizations, is expected. This is particularly important when devia-
tions from the baseline code are employed, or when problems in imple-
mentation are encountered. An accurate account of the labor required to
implement each benchmark is required.

Output data Output data sets should be made available. Any deviations from the out-
put data specification should be explained.

Measure-
ments

Performance figures for each applicable benchmark should be supplied,
along with a description of how they were obtained. Any missing meas-
urements should be explained. Metrics in addition to those required by
this specification are encouraged, but they must be accompanied by
documentation of how they were gathered, and how they are pertinent to
the analysis. See Section 3.3 for more information.

Comments Participants are encouraged to include any other information pertinent to
the benchmarking process, including explanations of special circum-

DIS Benchmarks Version 1.0 Procedures

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 24

stances, or recommendations for improving the benchmark. To be consid-
ered, theoretical performance of an unbuilt architecture should be given
and justified. Particular attention should be given to the scalability of the
architecture with respect to each of the benchmarks in the suite. Results
from implementations of other benchmarks are welcomed, also, though
these should be sufficiently delineated so as not to obscure the data di-
rectly relevant to this benchmark.

3.5.2 How to Submit Results

[To be supplied, July 1999]

3.6 Common Data Types

The reference to several common data types used throughout this document and the ac-
companying specifications are described in this section. The descriptions given here ap-
ply to all data type references unless specifically noted.

Type Description

byte A byte consists of eight contiguously stored bits, with bit 0 being the least sig-
nificant bit (LSB) and bit 7 being the most significant bit (MSB). A signed
variant uses bit 7 as a sign bit.

char A char represents a 7-bit ASCII character with a decimal range of 0 to 127 as
defined by the ANSI specification, stored in a byte (with bit 7 always set to
zero). The term whitespace refers collectively to the characters of space (value
32), horizontal (value 9) and vertical (value 11) tabs, line-feed (value 10), and
form-feed (value 12).

short
integer

A short integer is a whole number stored contiguously as one 16-bit word (in 2
bytes). Bits 0:15 contain the integer, with bit 0 being the LSB and bit 15 being
the MSB. Bit 16 is the sign bit.

integer An integer is a whole number stored contiguously as one 32-bit word (in 4
bytes). Bits 0:30 contain the integer, with bit 0 being the LSB and bit 30 being
the MSB. Bit 31 is the sign bit.

float A float is a single-precision 4-byte real number stored contiguously as one 32-
bit word in excess 127 notation, and has a one-bit sign, an 8-bit biased expo-
nent, and a 23-bit fraction. Bits 0:22 contain the 23-bit fraction with bit 0 being
the LSB of the fraction and bit 22 being the MSB; bits 23:30 contain the 8-bit
biased exponent with bit 23 being the LSB of the biased exponent and bit 30
being the MSB; bit 31 is the sign bit.

The value of a float is given by:

DIS Benchmarks Version 1.0 Procedures

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 25

Value Bit Pattern
(−1)sign × 2exponent -127 ×1.fraction 0 < exponent < 255

(−1)sign × 2-126 × 0.fraction exponent = 0;fraction ≠ 0

(−1)sign × 0.0 (signed zero) exponent = 0;fraction = 0

+INF (positive infinity) sign = 0;exponent = 255;fraction = 0
-INF (negative infinity) sign = 1;exponent = 255;fraction = 0
NaN (Not - a - Number) exponent = 255;fraction ≠ 0

This description conforms to the IEEE 754 Floating-Point Arithmetic standard
and the reader is referred to it for further information including minimum and
maximum values.

double A double is a double-precision 8-byte real number stored contiguously as two
successively addressed 32-bit words in excess 1023 notation, and has a one-bit
sign, an 11-bit biased exponent, and a 52-bit fraction. Bits 0:51 contain the 52-
bit fraction with bit 0 being the LSB of the fraction and bit 51 being the MSB;
bits 52:62 contain the 11-bit biased exponent with bit 52 being the LSB of the
biased exponent and bit 62 being the MSB; and the highest-order bit (63) con-
tains the sign.

The value of the double is given by:

Value Bit Pattern
(−1)sign × 2exponent -1023 ×1.fraction 0 < exponent < 2047

(−1)sign × 2-1022 × 0.fraction exponent = 0;fraction ≠ 0

(−1)sign × 0.0 (signed zero) exponent = 0;fraction = 0

+INF (positive infinity) sign = 0;exponent = 2047; fraction = 0
-INF (negative infinity) sign = 1;exponent = 2047; fraction = 0
NaN (Not - a - Number) exponent = 2047;fraction ≠ 0

This description conforms to the IEEE 754 Floating-Point Arithmetic standard
and the reader is referred to it for further information including minimum and
maximum values.

3.7 Arithmetic Precision

The mathematics in the benchmark algorithms requires the manipulation of values which
cannot be stored in finite-precision memory representations. Since the successful com-
pletion of a benchmark is determined by a comparison between the output of the bench-
mark implementation and results provided by the baseline solution, the question of
precision and accuracy must be addressed.

The data types used for the input to the benchmarks conform to the IEEE 754 specifica-
tion, which also specifies the manipulation of these data types to ensure the mathemati-
cally expected results and expected properties for finite arithmetic. The output provided
with the benchmarks conform to the IEEE 754 standard, as does the baseline implemen-

DIS Benchmarks Version 1.0 Procedures

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 26

tation. Benchmark participants are not required to implement this specification, but the
output of their implementations must have the same level of precision, and perform to at
least the same level of accuracy for numeric calculations. This requirement allows the
baseline results to be accurately compared over the various architectures and implemen-
tations.

DIS Benchmarks Version 1.0 Specifications

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 27

4 Specifications

This section provides the specifications of each of the five benchmarks, preceded by an
explanation of the approach and intent relative to the specifications. The specifications
utilize a common outline, and are intended to contain the information needed by
implementers.

4.1 Approach

Each specification provided here is intended to be separable from the remainder of the
document; it contains all the information needed by a developer charged with building an
implementation of a benchmark, with the exceptions of the Common Data Types specifi-
cation from Section 3.6 and the Arithmetic Precision specification from Section 3.7.
Complete specifications of input, algorithm, output, acceptance tests, and required met-
rics are included.

In several cases, common algorithms used in the solution of the selected problems are
optimized for use with traditional systems. For example, certain steps in the Method of
Moments algorithm are only present to take advantage of unit-stride memory accesses.
While these steps are not strictly part of the solution algorithm, it would be onerous to
require participants to independently rediscover them. In some cases, it would require
implementers to become experts in the application field. So, the algorithmic descriptions
are intended to cover the mathematics of the solutions only. Known optimizations are
additionally provided for informational purposes, but implementation of these is not re-
quired.

Pseudo-code provided in the algorithmic specifications is intended to provide guidance
and clarification of algorithms only; it is not intended to represent optimal–or efficient–
implementations of problem solutions. Similarly, pseudo-code is not intended to repre-
sent ‘known optimizations’ as described above, except when specifically identified as
such.

4.2 Benchmark Specifications

Detailed descriptions of the benchmark algorithms are included in this section. Any sug-
gestion of the specific implementation of an algorithm is not intentional; all descriptions
implying a specific implementation should be viewed as examples only.

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 28

4.2.1 Method of Moments

The first class of algorithms chosen for inclusion in the DIS benchmark suite are Method
of Moments (MoM) algorithms, which are frequency-domain techniques for computing
the electromagnetic scattering from complex objects. MoM algorithms require the solu-
tion of large dense linear systems of equations. Traditionally, MoM algorithms have em-
ployed direct linear equation solvers for these systems. The high computational
complexity of the direct solver approach has limited MoM algorithms to low-frequency
problems. Recently, fast solvers have been introduced which have low computational
complexity. The potential of these fast solvers to enable MoM algorithms to solve larger
problems at higher frequencies is ultimately limited by the speed of main memory. Thus,
fast MoM algorithms may benefit from the Data-Intensive Systems research effort.

The scattering of a plane wave of a specified frequency, ω, from an object is given by
Maxwell’s equations. The Electric Field Integral Equation (EFIE) and the Magnetic Field
Integral Equation (MFIE) formulations, which describe the surface current densities in-
duced by an incoming plane wave of frequency ω, are given by

() () ()()() rdrJrJn
i

rEn
Sr

′Ψ∇ ′′⋅∇ ′+Ψ′−×=× ∫
′

������

r ε

µεω
ωε

21 (4.2.1.1)

() () ()() rdrJnrJrHn
Sr

′Ψ∇′×′×−=× ∫
′

������
r ε

22 (4.2.1.2)

where

()
R

e
r

ikR

π4
=Ψ

� (4.2.1.3)

is the Green’s function for the incoming plane wave.

The Method of Moments (MoM) approach to solving the EFIE or the MFIE is to discre-
tize the equation by expanding ()rJ

�
 in terms of a set of basis functions ()rBn

�
 as follows

() ()rBjrJ n

N

n
n

�� ∑
=

=
1

(4.2.1.4)

where J = {jn} the vector of expansion coefficients. When this expansion is substituted
into the integral equation (4.2.1-1) and the result multiplied by a basis function and inte-
grated over the scattering surface, the problem reduces to solving a linear system of
equations

VJZ =⋅ (4.2.1.5)

for the vector of expansion coefficients J = {jn}, where the entries in the matrix Z = [Zmn]
and the vector V = {vm} are complicated double integrals over the scattering surface and
must be calculated numerically. For example, the entries in Z = [Zmn] are given by

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 29

() () ()()() rdrdrBrBn
i

rBZ
Sr

nn

Sr

mmn

������

rr

′Ψ∇ ′′⋅∇ ′+Ψ′−×⋅= ∫∫
′εε

µεω
ωε

21 (4.2.1.6)

Generally, N increases as the square of the frequency, and for typical problems, N is
greater than 10,000. In traditional MoM algorithms, which first appeared in the late
1960’s, the dense linear system Z • J = V is solved by a direct linear equation solution
algorithm, which may be composed as an in-core or out-of-core solver. On modern par-
allel computers, the direct solvers may be extended to work on shared or distributed
memory computer architectures.

The advantage of MoM algorithms is that they are exact representations of Maxwell’s
equations and highly accurate simulations are possible. The disadvantage of the tradi-
tional MoM algorithms is that the methods are computationally intensive, especially as
the frequency goes up. The computational complexity of traditional MoM algorithms
includes Ο(N2) integral evaluations to compute the matrix Z and Ο(N3) arithmetic opera-
tions to solve the system Z • J = V for J. The memory requirement for traditional MoM
algorithms isΟ(N2). For these reasons, the traditional MoM algorithms are generally used
only for low frequency problems. Although traditional MoM algorithms have been
highly optimized on a variety of high-performance computing machines, the largest
problems solved so far are for N on the order of 100,000.

Recently, new fast MoM algorithms based on fast, iterative linear equation solvers have
been introduced. The iterative solvers rely on numerically stable and rapidly converging
iteration procedures, such as the preconditioned GMRES method [Saad]. Fast matrix-
vector multiply algorithms are used to compute products of the form used in the iterative
procedure. The computational complexity of the fast MoM algorithms is Ο(NlogN). The
memory requirement for the fast MoM algorithms is Ο(N). This is a remarkable reduc-
tion from the Ο(N3) computational complexity of the traditional MoM algorithms, and
potentially allows the solution of much larger problems at higher frequencies.

Rohklin [Rohklin-1, Rohklin-2] has introduced new fast MoM algorithms for the Helm-
holtz equation, which use iterative linear equation solvers and the fast multipole method
(FMM) for fast matrix-vector multiplies. To compute products of the form Z • X, the Z
matrix is not formed or stored, rather the product Z • X is viewed as a field and approxi-
mately evaluated by the FMM. The mathematical formulation of the FMM is based on
the theory of multipole expansions, and involves translation (change of center) of multi-
pole expansions and spherical harmonic filtering. The computational complexity of these
new methods isΟ(NlogN) and the memory requirement isΟ(N).

Building on the FMM approach, Dembart, Epton and Yip [Dembart-1 to 4] at Boeing
have implemented a fast MoM algorithm in a production grade electromagnetics code
used by the company for radar cross-section (RCS) studies. Problems for which the
number of unknowns is on the order of 10,000,000 have been solved with this code.
Boeing’s fast solver uses the preconditioned GMRES iterative method, which requires
only the calculation of products of the form Z • X, combined with a multilevel FMM for
fast matrix-vector multiplies. The solver may be summarized as follows:

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 30

1. The preconditioned GMRES iterative solution method is used to solve the system
Z • J = V. This method does not require computation and storage of the matrix Z, but
rather requires the capability to compute, for a given vector X, the product Z • X.

2. To compute the product Z • X, the Z matrix is first decomposed into two pieces which
represent contributions from “close together” and “well separated” basis functions, re-
spectively

farnear ZZZ += (4.2.1.7)

3. The matrix Znear is sparse, and it is computed once and for all, directly from the inte-
gral representation for its entries, in Ο(N) integral evaluations. The product Znear • X is
computed directly for each X inΟ(N) arithmetic operations.

4. The matrix Zfar is dense, but it is never computed at all—rather the product Zfar • X is
computed for each X by a multilevel FMM in Ο(NlogN) arithmetic operations.

Boeing’s multilevel FMM method is formulated by enclosing the scatterer in a cube and
then successively refining the cube into subcubes until the dimensions of the finest cubes
are on the order of several wavelengths. At each level in the cube hierarchy two multipole
expansions are computed: the outer expansion (field outside the cube due to sources in-
side the cube) and the inner expansion (field inside the cube due to sources outside the
cube). The outer and inner expansions are efficiently represented by far-field signature
functions. The key computations are translating multipole expansions (change of center)
and harmonic analysis/synthesis of signature functions. The multilevel FMM calculation
begins by computing the outer expansion at the finest level from X. Next, the outer-to-
outer translation operation is applied to traverse up the cube hierarchy computing the
outer expansions at all levels. Next, the outer-to-inner and inner-to-inner translations are
used to traverse down the cube hierarchy computing the inner expansion at all levels. Fi-
nally, the matrix-vector product Zfar • X is then computed from the inner expansion at the
finest level.

The Ο(NlogN) computational complexity of the FMM results from the computational
strategy of applying the outer-to-inner translation at each of the cube hierarchy as fol-
lows. At the coarsest level in the cube hierarchy, the outer-to-inner translation is applied
to all pairs of cubes that are non-adjacent. For all finer levels in the cube hierarchy, the
outer-to-inner translation is applied only to pairs of cubes that are non-adjacent at the
given level, and whose parents are adjacent at the next higher level.

Fast MoM algorithms, such as Boeing’s described above, have the potential to compute
the electromagnetic scattering from complex objects at frequencies 10 to 100 times higher
than possible with traditional MoM algorithms. The ultimate potential of these fast MoM
algorithms is limited by two memory-related bottlenecks: low reuse of data and non-unit
stride. For these reasons, we have chosen to base the Method of Moments Benchmark on
Boeing’s fast solver. The benchmark computes the far-field component of the wave field
generated by a collection of radiating scalar sources. The evaluation of the far-field cor-
responds to the evaluation of the matrix-vector product Zfar • X described above. The
computational method implemented in the benchmark is a scalar multilevel FMM similar
to the multilevel FMM used in Boeing’s fast solver. The key FMM kernels represented

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 31

in the benchmark are the translation operations and spherical harmonic filtering. Detailed
specifications of the Method of Moments Benchmark are given in the following sections.

4.2.1.1 Input

An input set for the Method of Moments Benchmark, which contains everything required
to run the benchmark, consists of three binary input files: source strengths, cubes, and
translation operators. The contents of the files are described in the sections below.

4.2.1.1.1 Source Strength File

The source points and their corresponding source strengths are specified in the Source
Strength input file. The record types in the file are specified in the following table. The
first record in the file is a record of type 1 containing a single integer number defining the
number of source points. This is followed by a record of type 2 for each source point
containing four floating point numbers (double) defining the three spatial coordinates of
the source point and the strength of the source at the source point.

Record
Type

Contents

1 integer
N

2 double float
X

double float
Y

double float
Z

double float
Q

4.2.1.1.2 Cube File

The cube hierarchy on which the multilevel FMM operates is specified in the Cube input
file. The record types in the file are specified in the following table. The first record in
the file is a record of type 1 containing a single integer number defining the number of
levels in the cube hierarchy. For each level in the cube hierarchy, there is a set of records
defining the cubes in the level. The first record for a level is a record of type 1 containing
a single integer number defining the number of cubes for the level. This is followed by a
set of records for each cube. The first record for a cube is a record of type 2 containing
three floating point numbers (double) defining the three spatial coordinates of the cube’s
center and an integer number defining the number of cubes in the level adjacent to the
cube. This is followed by a record of type 1 for each adjacent cube containing a single
integer number defining the number of the adjacent cube.

Record
Type

Contents

1 integer
N

2 double float
X

double float
Y

double float
Z

integer
M

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 32

4.2.1.1.3 Translation Operators

The tables defining the translation operators are specified in the Translation Operator
file. The record types in the file are specified in the following table. The file contains
four tables: outer-to-outer operator, inner-to-inner operator, outer-to-inner at top level,
and outer-to-inner at levels below top level. The four tables all have the same structure:
a list of complex numbers followed by a list of integer numbers.

The first record in the table is of type 1, containing a single integer number defining the
number of complex numbers in the table. This is followed by a record of type 2, con-
taining a single complex number (double), for each entry in the list. The next record in
the table is a record of type 1, containing a single integer number defining the number of
integer numbers in the table. This is followed by a record of type 1, containing a single
integer, for each entry in the list.

Record
Type

Contents

1 integer
N

2 double complex
X

4.2.1.2 Algorithmic Specification

The Method of Moments Benchmark computes the far-field component of the wave field
generated by a collection of radiating scalar sources. The computational method imple-
mented in the benchmark is a scalar multilevel FMM similar to the multilevel FMM used
by Boeing in its fast MOM solver discussed above. The mathematical formulation of the
scalar multilevel FMM relies on the theory of scalar multipole expansions and the theory
of harmonic analysis/synthesis of signature functions. We present the specifications of
the benchmark in the following order.

1. Field Generated by a Distribution of Scalar Sources

2. Multilevel Fast Multipole Method

3. Translation Operations

4. Spherical Harmonic Synthesis/Analysis

4.2.1.2.1 Field Generated by a Distribution of Scalar Sources

For the Method of Moments Benchmark, we define a scalar wave field as a field ()x
�φ

which satisfies the scalar Helmholtz equation

() 022 =+∇ φk (4.2.1.8)

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 33

where k is the wave number. The benchmark computes the field generated by a collec-

tion of sources radiating from source points{ } N

ii 1x =
�

 with amplitudes { } N

ii 1q = at a collection

of field points { } M

ji 1y = . The value of the field at the field points is given by

() ()∑
=

−=
N

i
ijj xykhqy

1
0

���
αφ (4.2.1.9)

where ho is the spherical Bessel function of the first kind (we assume a time variation
of tie ω−).

For convenience in the Method of Moments Benchmark,
we take the field points to be identical to the source
points. Under this assumption, the computational com-
plexity of computing the field values at the field points
by approximately evaluating the Bessel functions and
doing the sum is Ο(N2). This is similar to the computa-
tional complexity of the matrix-vector multiply step in
an iterative MoM solver for N unknowns.

4.2.1.2.2 Multilevel Fast Multipole Method

In this section we formulate the multilevel fast multipole
method and show that the computational complexity of
the method is Ο(NlogN).

Figure 4.2.1-2. Fine Grid and Scatterer

We begin by introducing the multilevel cubical grid system utilized in the multilevel
FMM. The source and field points are enclosed in a cube. This cube is then subdivided
into eight equal subcubes, and each of those is similarly sub-divided, until a sufficiently
fine grid is achieved. The dimensions of the cubes at the finest level are on the order of
several wavelengths and the number of levels isΟ(NlogN). At each level of this grid sys-
tem there is a set of “active” cubes, that is, cubes which contain the source or field points.
Only the active cubes are used in the multilevel FMM. One level of such a grid is de-
picted in Figure 4.2.1-1. A second, finer grid is shown in Figure 4.2.1-2. To simplify the
figures the illustrations are two-dimensional. Cubes are represented as squares and the

Figure 4.2.1-1. Coarse Grid
and Scatterer

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 34

scatterer as a one-dimensional curve. The source and field points are distributed along
the scatterer and are not explicitly shown in the figures. To simplify the description of
the multilevel FMM, we will describe the method for the two level (fine and coarse) cu-
bical grid system, shown in Figure 4.2.1-1 and Figure 4.2.1-2. As appropriate, we will
indicate which steps must be repeated for cube hierarchies with more than two levels.

First, we introduce the outer-to-inner translation. Referring to the fine grid shown in
Figure 4.2.1-2, we consider two distinct cubes Cd and Ce with centers d

�
 and e

�
, respec-

tively. The finite degree outer expansion centered at d
�

for the wave field ()()xd

d

�
rφ outside

Cd due to the sources inside Cd has the form

()() () ()()dxdxZdxkhDx m
n

N

n

n

nm
n

m
n

d
d

d �������
r −−−=∑ ∑

= −=0

φ (4.2.1.10)

where the coefficients m
nD are given by

() ()()cxcxZcxkjqD ii
m

nin

N

i
i

m
n

������
−−−= −

=
∑ π4

1

(4.2.1.11)

The outer-to-inner translation from d
�

 to e
�

 is the construction of an inner expansion for
()()xd
d

�φ centered at e
�

 having the form

()() () ()()exexZexkjEx m
n

N

n

n

nm
n

m
n

e
e

e �������
r −−−= ∑ ∑

= −=0

φ (4.2.1.12)

that is valid for all x
�

 inside Ce. The calculation of the coefficients m
nE from the coeffi-

cients m
nD is described in the discussion of the translation operations below.

 For a given decomposition into cubes and specified values for Nd and Ne, the accuracy
of the outer-to-inner translation from d

�
 to e

�
 depends only on the distance ed

��
− be-

tween the cubes. For a specified accuracy, we say two cubes satisfy the far-field condi-
tion if they are sufficiently separated so that the accuracy of the outer-to-inner translation
for the pair satisfies the specified accuracy.

The outer-to-inner translation provides a (1-level) computational tool to compute the field
at the field points. The calculation proceeds in several steps

• For all cubes Ce we apply, for all cubes Cd that satisfy the far-field condition, the
outer-to-inner translation to translate Cd’s outer expansion to an inner expansion at
Ce’s center and sum the translated inner expansions. The result is the inner expansion
for all cubes Ce due to all the sources in cubes that satisfy the far-field condition with
respect to Ce.

• For all cubes Ce, we compute the field at field points in Ce as the sum of the far-
field, which is given by the inner expansion computed in step1, and the near-field due
to all sources inside cubes (including Ce) that don’t satisfy the far-field condition with
respect to Ce.

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 35

If we decompose the domain into very fine cubes, the computational complexity of the
second step is reduced to only Ο(1), but the computational complexity of the first step
remains Ο(N2). Similarly, if we decompose the domain into course cubes, the computa-
tional complexity of the first step is reduced to only Ο(1), but the computational com-
plexity of the second step remains Ο(N2). This problem is resolved by the multilevel
FMM. To specify the multilevel FMM we introduce the outer-to-outer and inner-to-inner
translations.

Referring to Figure 4.2.1-1 and Figure 4.2.1-2, we consider a cube Cd at the coarse level
with center d

�
 and a cube Cc at the fine level with center c

�
. The finite degree outer ex-

pansion centered at c
�

 for the wave field ()()xc
c

�φ outside Cc due to the sources inside Cc

has the form

()() () ()()cxcxZcxkhCx m
n

N

n

n

nm
n

m
n

c
c

c �������
r −−−= ∑ ∑

= −=0

φ (4.2.1.13)

where the coefficients m
nC are given by

() ()()cxcxZcxkjqC ii
m

nin

N

i
i

m
n

������
−−−= −

=
∑ π4

1

(4.2.1.14)

The outer-to-outer translation from c
�

 to d
�

 is the construction of an outer expansion for
()()xc
c

�φ centered at d
�

 having the form

()() () ()()dxdxZdxkhDx m
n

N

n

n

nm
n

m
n

d
d

d �������
r −−−= ∑ ∑

= −=0

φ (4.2.1.15)

that is valid for all x
�

 outside Cd. The calculation of the coefficients m
nD from the coeffi-

cients m
nC is described in the discussion of the translation operations below.

Referring again to Figure 4.2.1-1 and Figure 4.2.1-2, we consider a cube Ce at the coarse
level with center e

�
 and a cube Cf at the fine level with center f

�
. Suppose the we have

constructed a finite degree inner expansion centered at e
�

 for the wave field ()()xe
e

�
rφ inside

Ce due to the sources outside Ce of the form

()() () ()()exexZexkjEx m
n

N

n

n

nm
n

m
n

e
e

e �������
r −−−= ∑ ∑

= −=0

φ (4.2.1.16)

The inner-to-inner translation from e
�

 to f
�

 is the construction of an inner expansion for
()()xe
e

�
rφ centered at f

�
having the form

()() () ()()fxfxZfxkjFx m
n

N

n

n

nm
n

m
n

f
f

f �������
r −−−= ∑ ∑

= −=0

φ (4.2.1.17)

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 36

that is valid for all x
�

in Cf. The calculation of the coefficients m
nF from the coefficients

m
nE is described in the discussion of the translation operations below.

The outer-to-outer and inner-to-inner translations
provide the computational tools we need to use the
cube hierarchy to efficiently compute the field at the
field points. The calculation proceeds in several
steps, traversing up and down the cube hierarchy.

1. For all cubes Cc at the fine level we compute the
finite degree outer expansion for Cc from the
sources at the source points.

2. For all cubes Cd at the coarse level, we apply the
outer-to-outer translation to translate the outer
expansion for each of Cd’s children to Cd’s cen-
ter and sum the translated outer expansions. The
result is that we have constructed the outer ex-
pansion for all cubes Cd at the coarse level. The
outer-to-outer translation from the coarse level to
the fine level is shown in Figure 4.2.1-3.

3. For all cubes Ce at the coarse level we apply, for all cubes Cd at the coarse level that
satisfy the far field condition, the outer-to-inner translation to translate Cd’s outer ex-
pansion to an inner expansion at Ce’s center and sum the translated inner expansions.
The result is the inner expansion for all cubes Ce at the coarse level due to all the
sources in cubes at the coarse level that satisfy the far-field condition with respect to

Cf. The outer-to-inner translation at the coarse
level is shown in Figure 4.2.1-4.

4. For all cubes Ce at the coarse level, we apply, for
each child Cf of Ce the inner-to-inner translation
to translate the inner expansion for Ce to Cf’s
center. The result is the inner expansion for all
cubes Cf at the fine level due to sources in cubes
Cc at the fine level such that the parents of Cf
and Cc satisfy the far-field condition. The inner-
to-inner translation from the fine level to the
coarse level is shown in Figure 4.2.1-5.

5. For all cubes Cf at the fine level we apply, for all
cubes Cc at the fine level that satisfy the far field
condition and for which the parents of Cf and Cc
don’t satisfy the far-field condition, the outer-to-

inner translation to translate Cc’s outer expansion to an inner expansion at Cf’s center
and sum the translated inner expansions. The result is the inner expansion for all
cubes Cf at the fine level due to all the sources in cubes at the fine level that satisfy

Figure 4.2.1-3. Outer-to-Outer
Translation from Fine to

Coarse Level

Figure 4.2.1-4. Outer-to-Inner
Translation at the Coarse Level

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 37

the far-field condition with respect to Cf. The outer-to-inner translation at the fine
level is shown in Figure 4.2.1-7.

6. For all cubes Cf at the fine level, we compute the field at field points in Cf as the sum
of the far-field, which is given by the inner expansion computed in step5, and the
near-field due to all sources inside cubes (including Cf) that don’t satisfy the far-field
condition with respect to Cf. The evaluation of the near-field is shown in Figure
4.2.1-6.

The two-level computation described above is easily
extended to a multilevel cube hierarchy. The effi-
ciency of the multilevel calculation derives from step
5, where the outer-to-inner translation only need to
be applied at a level to cube pairs at the level for
which the outer-to-inner translation was not already
accounted for at the higher levels. As a result the
computational cost of the translation operations is
roughly the same at all levels of the cube hierarchy.
Also, by using approximately log N levels the com-
putational cost of the step 6 is roughly the same for
all field points. Thus, the computational complexity
of the multilevel FMM is Ο(NlogN).

4.2.1.2.3 Translation Operations

In this section we use Rohklin’s translation theorems
to specify the translation operations: outer-to-inner, outer-to-outer and inner-to-inner. The
theorems are expressed in terms of far field signature functions on the unit sphere. For a
scalar wave field as a field ()x

�φ , we define the associated far field signature function

()s
��

φ as follows

() ()[]sceks ik
c

����
r τφτφ τ

τ
+= −

∞→
lim (4.2.1.18)

for points s
�

on the unit sphere. When ()x
�φ is defined by a multipole expansion, we may

Figure 4.2.1-5. Inner-to-Inner
Translation from Fine Level to

Coarse Level

Figure 4.2.1-6. Near-field Contributions
at Fine Level

Figure 4.2.1-7. Outer-to-Inner Transla-
tion at Fine Level

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 38

use the spherical harmonic transform to evaluate the associated far field signature func-
tion. Accordingly, for the finite degree outer expansions ()()xc

c

�φ and ()()xd
d

�φ and the fi-

nite degree inner expansions ()()xe
e

�φ and ()()xf
f

�φ discussed above, the associated far field

signature functions are given by

()() ()∑ ∑
= −=

+=
cN

n

n

nm

nn
n

m
n

c
c isZCs

0

1���
rφ (4.2.1.19)

()() ()∑ ∑
= −=

+=
Nd

n

n

nm

nn
n

m
n

d
d

isZDs
0

1���
rφ (4.2.1.20)

()() ()∑ ∑
= −=

+=
Ne

n

n

nm

nn
n

m
n

e
e isZEs

0

1���
rφ (4.2.1.21)

()() ()∑ ∑
= −=

+=
fN

n

n

nm

nn
n

m
n

f
f

isZFs
0

1���
rφ (4.2.1.22)

Rohklin’s translation theorems also make use of three operators defined on the unit
sphere: the harmonic projection operator ΠN, the outer-to-outer/inner-to-inner translation
operator ()NrsG ,;

��
 and the outer-to-inner translation operator ()NrsM ,;

��
.

The spherical harmonic projection operator ΠN is defined by

()[] () ()
t

S

NN tftssf r

���� ωδ
π

∂⋅=Π ∫∫
1

4
1 (4.2.1.23)

where

() () () () ()[]∗

= −=
∑ ∑∑ =⋅+=⋅ tZsZtsPnts m

n

N

n

n

nm

m
nn

N

N

������

00

412 πδ (4.2.1.24)

The outer-to-outer/inner-to-inner translation operator ()NrsG ,;
��

 is defined by

() () () ()tsPrkjinNrsG nn

N

n

n
�����

⋅+=∑
=0

12,; (4.2.1.25)

() ()() ()rZsZrkji m
n

mm
nn

N

n

n

nm

n ��� −

= −=
−=∑ ∑ 14

0

π (4.2.1.26)

The outer-to-inner translation operator ()NrsM ,;
��

 is defined by

() () () ()tsPrkhinNrsM nn

N

n

n
�����

⋅+= ∑
= 0

12,; (4.2.1.27)

() ()() ()rZsZrkhi m
n

mm
nn

N

n

n

nm

n ��� −

= −=
−=∑ ∑ 14

0

π (4.2.1.28)

With these definitions in place, Rohklin’s translation theorems may be states as follows:

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 39

• Outer-to-Outer Translation Theorem. The finite degree outer signature func-
tions ()()sc

c

��
rφ and ()()sd

d

��
rφ are related to one another by the identity

()() () ()()[]sNNcdsGs c
cdcN

d
d d

�������
r

r φφ +−Π= ,; (4.2.1.29)

• Outer-to-Inner Translation Theorem. The finite degree outer signature func-
tion ()()sd

d

��
rφ and the finite degree inner signature function ()()se

e

��
rφ are related to one an-

other by the identity

()() () ()()[]sNNdesGs d
dedN

e
e e

�������
r

r φφ +−Π= ,; (4.2.1.30)

• Inner-to-Inner Translation Theorem. The finite degree inner signature func-
tions ()()se

e

��
rφ and ()()sf

f

��
rφ are related to one another by the identity

()() () ()()[]sNNefsGs e
efeN

f
f f

�������
r

r φφ +−Π= ,; (4.2.1.31)

The importance of Rohklin’s translation theorems is that they reduce translation of mul-
tipole expansions to pointwise multiplication on the unit sphere of a signature function by
a translation operator, followed by filtering.

4.2.1.2.4 Spherical Harmonic Synthesis/Analysis

In this section we specify Epton and Dembart’s method for filtering and interpolating
signature functions. Filtering of signature functions is needed for implementation of
spherical harmonic projection operator ΠN used in Rohklin’s translation theorems stated
above. Interpolation and filtering of signature functions is needed to move discrete tabu-
lations of the functions on the unit sphere between levels without losing accuracy. First,
we define spherical harmonic analysis and synthesis for finite degree signature functions
tabulated on a grid on the unit sphere. Then we specify Epton and Dembart’s algorithm
for performing spherical harmonic analysis and synthesis. Finally, we describe Epton and
Dembart’s method for filtering and interpolating signature functions.

For a finite degree signature function ()sf
�

of the form

() ()sZfsf
N

n

n

nm

m
n

m
n

�� ∑ ∑
= −=

=
0

(4.2.1.32)

a tabulation (){ }10,10:, −≤≤−≤? φθφθ NlNkf lk of ()sf
�

 on a grid of s
�

values on the

unit sphere defined as follows (θN and φN will be specified in terms of N .)

(){ }1;0,21: −=+==Θ θθπθθ NkNkkk (4.2.1.33)

{ }1;0,2: −===Φ lll NlNl φπφφ (4.2.1.34)

The process of obtaining the coefficients{ }nmNnf n
n ≤≤≤ ,0: from the tabulation

(){ }10,10:, −≤≤−≤? φθφθ NlNkf lk is called spherical harmonic analysis. The in-

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 40

verse process of obtaining the tabulation (){ }10,10:, −≤≤−≤? φθφθ NlNkf lk from

the coefficients { }nmNnf n
n ≤≤≤ ,0: is called spherical harmonic synthesis.

Epton and Dembart’s algorithm for performing spherical harmonic analysis and synthesis
is based on the observation that the spherical harmonics ()sZ m

n

�
can be viewed as trigono-

metric polynomials inθ andφas follows

() () () ()φθθ φ ,
00

fezfsZfsf imm
n

N

n nm

m
n

N

n

n

nm

m
n

m
n === ∑ ∑∑ ∑

= −== −=

�� (4.2.1.35)

where ()φθ ,…s
�

and () () φθ imm
n

m
n ezsZ =�

. Changing the order of summation gives

() () ()() φφ θθφθ im
N

Nm

mimm
n

N

Nm

N

mn

m
n efezff ∑∑ ∑

−=−= =
==, (4.2.1.36)

where the functions ()(){ }NmNf m ≤≤−:θ are given by

()() ()θθ m
n

N

mn

m
n

m zff ∑
=

= (4.2.1.37)

A linear system of equations relating the m
nf and the ()lkf φθ , is formulated by compar-

ing discrete and analytic expansions of ()()θmf as follows.

1. Application of the discrete Fourier inversion theorem to ()φθ ,f gives
()()θmf as fol-

lows

()() ()l

N

l

imm fe
N

f l φθθ
φ

φ

φ

,
1

1

0
∑

−

=

= (4.2.1.38)

2. Application of the shifted cosine transform to
()()θmf for m even gives

()() [] () evenmFpf m
p

N

p

m == ∑
−

=

�
1

0

cos
θ

θθ (4.2.1.39)

where the numbers (){ }10,,: −≤≤≤≤−= θNpNmNevenmF m
p are given by

()
[] () evenmfe

Np
F lk

N

l

im
N

k

m
p

l =

= ∑∑
−

=

−

=

�φθ
θ

φθ
φ

φ
,

1
cos

1
1

0

1

0

(4.2.1.40)

3. Similarly, application of the shifted sine transform to ()()θmf for m odd gives

()() ()[] () oddmFpf m
p

N

p

m =+= ∑
−

=

�
1

0

1sin
θ

θθ (4.2.1.41)

where the numbers (){ }10,,: −≤≤≤≤−= θNpNmNoddmF m
p are given by

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 41

()
()[] () oddmfe

Np
F lk

N

l

im
N

k

m
p

l =

+
= ∑∑

−

=

−

=

�φθ
θ

φθ
φ

φ
,

1
1sin

1
1

0

1

0

(4.2.1.42)

4. Expanding ()θm
nz in a cosine series for m even gives

()() () [] evenmpAfzff
n

p

m
pn

N

mn

m
n

m
n

N

mn

m
n

m === ∑∑∑
===

�θθθ cos
0

,
(4.2.1.43)

[]∑ ∑
=

≥
=

=

=
N

p

N

pn
mn

m
n

m
pn evenmpfA

0
, cos �θ

(4.2.1.44)

5. Similarly, expanding ()θm
nz in a sine series for m odd, gives

()() () ()[] oddmpAfzff
n

p

m
pn

N

mn

m
n

m
n

N

mn

m
n

m =+== ∑∑∑
−

=
+

==

�θθθ 1sin
1

0
1,

(4.2.1.45)

()[]∑ ∑
−

=
+≥

=
+ =+

=
1

0
1

1, 1sin
N

p

N

pn
mn

m
n

m
pn oddmpfA �θ

(4.2.1.46)

6. By comparing the discrete and analytic cosine expansions of ()()θmf for m even, we
obtain the following system of linear equations

() evenmFfA m
p

N

pn
mn

m
n

m
pn ==∑

≥
=

�,
(4.2.1.47)

7. Similarly, by comparing the discrete and analytic sine expansions
of ()()θmf for m odd, we obtain the following system of linear equations

() oddmFfA m
p

N

pn
mn

m
n

m
pn ==∑

+≥
=

+ �

1

1,
(4.2.1.48)

Epton and Dembart’s method for filtering and interpolating signature functions consists
of the following computational steps to transform an input tabulation ()lkf φθ , of a finite

degree signature function ()sf
�

on the unit sphere to an output tabulation ()lkg φθ , of the

filtered/interpolated finite degree signature function ()sg
�

on the unit sphere.

Step Action

1 Starting with a tabulation ()lkf φθ , of a finite degree signature func-

tion ()sf
�

on the unit sphere, perform the discrete Fourier transform in the
φ direction using an FFT.

2 Split the transformed data into even and odd frequency data arrays.

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 42

3 Transpose the even and odd frequency data arrays.

4 Apply the discrete shifted cosine transform to the even frequency data ar-
ray in the θ direction using a FFT. Similarly, apply the discrete shifted
sine transform to the odd frequency data array in theθ direction using a
FFT.

5 Solve the linear system of equations defined by equations 4.2.1-46 and
4.2.1-47 to compute m

nf .

6 Compute m
ng from m

nf . For filtering, m
ng is obtained from m

nf by dropping

terms. For interpolation, m
ng is obtained from m

nf by adding zero terms.

7 Apply the inverse discrete shifted cosine transform to the even frequency
data array in theθ direction using a FFT. Similarly, apply the inverse dis-
crete shifted sine transform to the odd frequency data array in
theθ direction using a FFT.

8 Transpose the even and odd frequency data arrays.

9 Combine the transformed even and odd frequency data into a single data
array.

10 Perform the inverse discrete Fourier transform in the φ direction using an

FFT to compute the tabulation ()lkg φθ , of the finite degree signature func-

tion ()sg
�

 on the unit sphere.

4.2.1.3 Output

An output set for the Method of Moments Benchmark consists of two binary files: com-
puted far-field and metrics report. The contents of the files are described in the sections
below.

4.2.1.3.1 Far-Field

The far-field computed at the field points, which are identical with the source points
specified in the Source Strength file, are output to the Far-Field file. The record types in
the file are specified in the table below. The first record in the file is a record of type 1
containing a single integer number defining the number of field points. This is followed
by a record of type 2 for each field point containing three floating point numbers (double)
and a single complex number (double) defining the three spatial coordinates of the field
point and strength of the computed far-field at the field point.

Record
Type

Contents

1 integer
N

2 double float double float double float double complex

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 43

X Y Z E

4.2.1.3.2 Metrics Report

The Method of Moments Benchmark collects data for the evaluation of the metrics speci-
fied in Section 4.2.1.5. The metric data is output in the Metrics Report output file. The
record types in the file are specified in the table below. The first record of the file is a
record of type 1 containing three floating-point numbers (float) defining the first and sec-
ondary performance metrics. The second record of the file is a record of type2 containing
six floating-point numbers (float) defining the tertiary performance measures for the
translation operations. The third record of the file is a record of type2 containing six
floating-point numbers (float) defining the tertiary performance measures for the spheri-
cal harmonic filtering/synthesis calculations.

Record
Type

 Contents

1 float
T1

float
T2

float
T3

2 float
T1

float
T2

float
T3

float
T4

float
T5

float
T6

Implementers may add additional records to the Metric Report file to record data for
evaluating their implementation relative to the metrics for scalability with respect to
problem size and scalability with respect to processors, if these metrics apply to their im-
plementation.

4.2.1.4 Acceptance Test

The Acceptance Test for the Method of Moments Benchmark consists of a comparison
between the reference far-field and the computed far-field. The reference far-field is
specified in the Far-Field Reference file. The number of digits of accuracy specified for
the acceptance test is also defined in the Far-Field Reference file. The contents of the
Far-Field Reference file are described below.

The computed far-field at a field point passes the acceptance test if the computed far-field
and the reference far-field agree to the specified number of digits. To avoid possible self-
checking errors, implementers should perform the acceptance test on a computer separate
from the PIM computer that is being benchmarked. Implementers should report the re-
sults of the acceptance test in the Acceptance Test Report file. The contents of the Ac-
ceptance Test Report file are described below.

4.2.1.4.1 Far-Field Reference

The field points and their corresponding far-field strengths used in the acceptance test are
specified in the Far-Field Reference input file. The record types in the file are specified
in the table below. The first record in the file is a record of type 1 containing a single in-
teger number defining the number of digits of accuracy specified for the acceptance test.

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 44

The second record in the file is of type 2 containing a single integer number defining the
number of field points. This is followed by a record of type 3 for each field point con-
taining three floating point numbers (double) and a single complex number (double) de-
fining the three spatial coordinates of the field point and strength of the far-field at the
field point.

Record
Type

Contents

1 integer
N

2 double float
X

double float
Y

double float
Z

double complex
E

4.2.1.4.2 Acceptance Test Report

The results of the acceptance test are output in the Acceptance Test Report file. The rec-
ord types in the file are specified in the table below. The first record of the file is a record
of type 1 containing a single integer number defining how many field points failed the
acceptance test. If any of the field points failed the acceptance test, the first record is
followed by a record for each field point that failed the acceptance test. The records are
of type 2 containing three floating point numbers (double) and two complex numbers
(double) defining the three spatial coordinates of the field point and the strengths of the
reference field and computed far-field at the field point.

Record
Type

Contents

1 integer
N

2 double float
X

double float
Y

double float
Z

dble com-
plex
E1

dble com-
plex
E2

4.2.1.5 Metrics

The Metrics for the Method of Moments Benchmark consist of three measures: perform-
ance, scalability with respect to problem size and scalability with respect to processors.
The metrics are described the sections below. The performance metric is a quantitative
metric measured directly by the Method of Moments Benchmark code and reported in the
Metric Report file. The scalability metrics are subjective measures and should be evalu-
ated by the implementers with respect to their PIM architecture.

4.2.1.5.1 Performance

The performance of an implementation of the Method of Moments Benchmark is meas-
ured in wall-clock time. The performance measures are summarized in the table below.
The primary measure of performance is the total wall-clock time for the calculation of the

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 45

far-field by the multilevel FMM. The secondary measure of performance is the break-
down of the total time into the total time for all translation operations and the total time
for all spherical harmonic filtering/synthesis calculations. The tertiary measures of per-
formance are the breakdown of the secondary measures into the total time for each of the
six steps in the multilevel FMM as specified in Section 0.

Metric Wall-Clock Time
primary Total Time for Multilevel FMM

secondary Total Time for Translation Operations

tertiary Total Time for Translation Operations During
Initialize Sig. Functions at Finest Level

tertiary Total Time for Translation Operations During
Outer-to-Outer below Coarsest Level

tertiary Total Time for Translation Operations During
Outer-to-Inner at Coarsest Level

tertiary Total Time for Translation Operations During
Inner-to-Inner above Finest Level

tertiary Total Time for Translation Operations During
Outer-to-Inner below Coarsest Level

tertiary Total Time for Translation Operations During
Evaluation of Far-Field at Finest Level

secondary Total Time for Filtering/Synthesis

tertiary Total Time for Filtering/Synthesis During
Initialize Sig. Functions at Finest Level

tertiary Total Time for Filtering/Synthesis During
Outer-to-Outer below Coarsest Level

tertiary Total Time for Filtering/Synthesis During
Outer-to-Inner at Coarsest Level

tertiary Total Time for Filtering/Synthesis During
Inner-to-Inner above Finest Level

tertiary Total Time for Filtering/Synthesis During
Outer-to-Inner below Coarsest Level

tertiary Total Time for Filtering/Synthesis During
Evaluation of Far-Field at Finest Level

The demonstration benchmark code includes timing subroutines. Calls to the timing rou-
tines are embedded in the benchmark code to measure the specified performance metrics.
The benchmark code also includes a subroutine to output the performance metrics to the
Metrics Report file.

DIS Benchmarks Version 1.0 Specifications – Method of Moments

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 46

4.2.1.5.2 Scalability With Respect to Problem Size

The Method of Moments Benchmark includes a “flat plate” test series that sets the field
points equal to the source points and geometrically scales the number of points. Over this
set of test cases, a log/log plot of the total wall-clock time for the calculation of the far-
field by the multilevel FMM (the primary performance measure) versus number of points
should give approximately a straight line with slope +1. Deviations from this expected
behavior give an indication of the scalability with respect to problem size of an imple-
mentation of the Method of Moments Benchmark. The flat plate series is described in
more detain in Section 4.2.1.8.

4.2.1.5.3 Scalability With respect to Processors

The flat plate test series can also be used to study the scability of an implementation of
the Method of Moments Benchmark with respect to processors. For a given size problem,
a log/log plot of the total wall-clock time for the calculation of the far-field by the multi-
level FMM (the primary performance measure) versus number of processors should give
approximately a straight line with slope –1, if the implementation scales linearly with the
number of processors. Deviation from the straight line indicates the extent of linear per-
formance. Plotting the total time versus number of processors over the set of test cases in
the flat plate test series gives an indication of how the scalability with respect to proces-
sor varies over problem size.

4.2.1.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/projectweb/dis.

4.2.1.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

4.2.1.8 Test Data Sets

Test data sets are available at http://www.aaec.com/projectweb/dis.

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 47

4.2.2 Simulated SAR Ray Tracing

The Simulated SAR image process consists of three major steps:
• Geometry Sampling
• Electromagnetic Scattering Prediction
• Image Formation.

Of these, the Geometry Sampling and the Image Formation steps take the majority of the
CPU time, and present the most interesting sub-applications to build benchmarks around.

The Geometry Sampling is accomplished by using ray tracing to simulate the physical
optics part of the electromagnetic scattering problem. Here, rays are sent out from an
idealized synthetic aperture, and intersections between objects and these rays are found.
At each intersection, the information about the object intersected is determined and re-
corded. A specular reflection ray is generated at the intersection point, and it is then fired
into the object database. This creates a recursive process that allows the radar energy to
be followed as it bounces through the target database. The rays are followed until a user-
defined number of reflections have occurred, or until the ray leaves the database area.
This process results in a linked list of intersection information that is called a ray history.
The ray history is the output of the Geometry Sampling process.

For this benchmark, the Geometry Sampling section is further broken down into two sub-
parts that, when put together, form the complete Geometry Sampling benchmark.

The first sub-part is a ray server. This consists of the intersection-finding part of the ray-
tracing problem. It tests a bounding box structure, described in detail later, to find a list
of objects that possibly intersect the ray under test. It then applies the intersection code
for each type of object in this list. Once all intersections are found, it returns the inter-
section that is closest to the starting point of the ray under test.

The second sub-part is the Ray-Tracing Controller. This generates the grid of rays that
simulate the synthetic aperture and generates the specular reflection rays based on the in-
tersection information. It calls the ray server and passes a new ray from either the syn-
thetic aperture grid or a reflection ray. It also tests the ray before it is sent, to see if the
maximum number of reflections have been processed. This controller then takes the in-
tersection information returned from the ray server and creates the ray history by creating
the linked list for each ray fired from the synthetic aperture grid.

The Image Formation part of the simulated SAR benchmark suite takes an array of elec-
tromagnetic responses and maps them into a rectangular grid of the slant plane. This re-
mapped EM array is then passed through a convolution that adds the effects of the system
IPR. The final step is to convert the complex image into something that can be displayed.
To achieve this, magnitude detection is performed on the complex image.

4.2.2.1 Input

The input for the Simulated SAR benchmark is divided into two parts: the inputs for the
Ray-Tracing portion of the benchmark, and a separate set of inputs for the Image Forma-
tion portion. Each of these inputs specifications contain subsections for Input Variables

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 48

and Input Data. The Input Variables contain the information that would be contained in a
command line argument. The Input Data contains the databases used by each of the
benchmarks.

4.2.2.1.1 Recursive Ray Tracer Input

4.2.2.1.1.1 Input Variables

Aperture specifica-
tion

The aperture specification gives the location of the radar in global
coordinates, a look direction vector, and a field of view (FOV)
that simulates the synthetic aperture. If the FOV is given as
ZERO, then a Parallel Projection is used instead of a Perspective
Projection. In the Parallel case the target is centered in the Aper-
ture and the look direction vector will give the azimuth and eleva-
tion angles need to place the aperture in the correct position.

Number of sample
points

The number of sample points tells the ray-tracer the sample reso-
lution in both range (Vertical) and cross range (Horizontal). This
is directly related to the radar resolution. Three sampling resolu-
tions will be used in this benchmark.
• 512 x 512 for a small, low resolution, sample.
• 2048 x 2048 for a medium sample.
• 4096 x 4096 for a large sample.

Maximum number
of reflections

This will specify the maximum number of reflections that are to
be traced. This will be set to 3 for all benchmark runs.

Database Specifi-
cations

This will include the database name that will be used to select
between the target databases specified in the following section.
This specification will also contain a target rotation (yaw, pitch,
and roll) and translation that positions the target in global coordi-
nates.

4.2.2.1.1.2 Input Data

The target databases will consist of models built from both polygons and solid geometry
using Constructive Solid Geometry. Each target database will also contain a hierarchical
bounding-box structure. For the Polygon target model, we will assume triangular facets
or three-sided polygons. The file format of each model type is described below.

4.2.2.1.1.2.1 Polygon target model file format

The overall file format is as follows.
File header

Part1
Sub-part 1
Sub-part 2
.
.

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 49

Sub-part n
Part2

Sub-part 1
Sub-part 2
.
.
Sub-part n

.

.
Part-n

Sub-part 1
Sub-part 2
.
.
Sub-part n

File header
Target model name char[256] ASCII test description
Model bounding box float [3][2] Minimum X target value

Maximum X target value
Minimum Y target value
Maximum Y target value
Minimum Z target value
Maximum Z target value

Number of parts int Total number of modeled parts
Part format

Part name char[256] ASCII part description
Part bounding box float[3][2] Minimum X part value

Maximum X part value
Minimum Y part value
Maximum Y part value
Minimum Z part value
Maximum Z part value

Number of sub-parts int Total number of sub-parts
Sub-part format

Sub-Part name char[256] ASCII subpart description
Sub-Part bounding box float[3][2] Minimum X part value

Maximum X part value
Minimum Y part value
Maximum Y part value
Minimum Z part value
Maximum Z part value

Number of nodes int Number of facet vertices
Vertex list float[N][3] Number of nodes by x,y,z

Coordinates

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 50

Number of Facets int Number of 3-sided facets
Built from the above nodes

Facet list int [M][5] Number of facets by
vertex 1 index into vertex list,
vertex 2 index into vertex list,

vertex 3 index into vertex list,
Material index, and Surface index.

Here is an example file for a simple unit box with the lower left corner at (0,0,0). The
material type is 1 and the surface type is 3 for all facets.
Box
0.0 1.0 0.0 1.0
6

Front Face
0.0 1.0 0.0 0.0 0.0 1.0
1
Front Face
0.0 1.0 0.0 0.0 0.0 1.0
4
0.0 0.0 0.0
0.0 0.0 1.0
1.0 0.0 0.0
1.0 0.0 1.0
2
1 2 4 1 3
1 3 4 1 3

Back Face
0.0 1.0 1.0 1.0 0.0 1.0
1
Back Face
0.0 1.0 1.0 1.0 0.0 1.0
4
0.0 1.0 0.0
0.0 1.0 1.0
1.0 1.0 0.0
1.0 1.0 1.0
2
1 2 4 1 3
1 3 4 1 3

Left Face
0.0 0.0 0.0 1.0 0.0 1.0
1
Left Face
0.0 0.0 0.0 1.0 0.0 1.0
4
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
0.0 1.0 1.0
2
1 2 4 1 3
1 3 4 1 3

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 51

Right Face
1.0 1.0 0.0 1.0 0.0 1.0
1
Right Face
1.0 1.0 0.0 1.0 0.0 1.0
4
1.0 0.0 0.0
1.0 1.0 0.0
1.0 0.0 1.0
1.0 1.0 1.0
2
1 2 4 1 3
1 3 4 1 3

Top Face
1.0 0.0 0.0 1.0 1.0 1.0
1
Top Face
0.0 0.0 0.0 1.0 1.0 1.0
4
0.0 0.0 1.0
0.0 1.0 1.0
1.0 0.0 1.0
1.0 1.0 1.0
2
1 2 4 1 3
1 3 4 1 3

Bottom Face
1.0 1.0 0.0 1.0 0.0 0.0
1
Bottom Face
1.0 1.0 0.0 1.0 0.0 0.0
4
0.0 0.0 0.0
1.0 0.0 0.0
0.0 1.0 0.0
1.0 1.0 0.0
2
1 2 4 1 3
1 3 4 1 3

4.2.2.1.1.2.2 CSG solid target model file format

For the CSG solid target models, we will use the BRL CAD .cg geometry description file
format. This is an older format, but it is easier to work with. The geometry description
file contains all the information required to define the physical components of a geometry
model and the operations that are required to construct it. The format of each line of data
is a detailed record format. The entire file is divided into four basic parts: title control,
primitive definitions, region definitions, and region identifications.

The title control section simply provides a name for the model and the units of measure
(millimeters, centimeters, meters, inches, or feet abbreviated as mm, cm, m, in, and ft).

The primitive definition section uniquely describes each of the primitive solids to be used
in the model construction (See Figure 4.2.2-1).

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 52

The region definition section identifies each constructed region and the Boolean opera-
tion that is to be used to create it. Boolean operations will be performed in the order in
which they appear in the region definition section. As seen in the example of Figure
4.2.2-3, a space or blank character may be used as an optional operator. If the operator is
blank and the following solid/region number is positive then the operator is assumed to
be a "union". Otherwise, if the solid/region number is negative then the operator is as-
sumed the "difference"

The region identification section simply contains a list of all region IDs and their associ-
ated attributes. Figure 4.2.2-3 contains a sample of a complete geometry description file.

There is one special line of data that is required in the description file that is not part of
the geometry description or construction. Between the region definition section and re-
gion identification section, the ray tracer expects to find the value of -1 in columns 1-5;
this is used as a delimiter to mark the end of the region definition section.

TITLE record

Columns Contents

1-5 Model units (in, ft, mm, cm, m)

6-65 Name for targets

CONTROL record

Columns Contents

1-5 Number of primitives

6-10 Number of regions

PRIMITIVE DEFINITION records

See Table A

REGION DEFINITION records

Columns Contents

1-5 Region number

7-8 Boolean operator

9-13 Primitive number

14-15 Boolean operator

16-20 Primitive number

21-22 Boolean operator

23-27 Primitive number

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 53

28-29 Boolean operator

30-34 Primitive number

35-36 Boolean operator

37-41 Primitive number

42-43 Boolean operator

44-48 Primitive number

49-50 Boolean operator

51-55 Primitive number

56-57 Boolean operator

58-62 Primitive number

63-64 Boolean operator

65-69 Primitive number

71-80 Comments
Notes on Boolean operations:
"DIFFERENCE" - A negative primitive number
"INTERSECTION" - A positive primitive number
"UNION" - ’or’ in the Boolean operator columns
The union operation is performed between the two sets of primitives that are
listed before and after an ’or’ operator.

eg... 2 2 -4or 5 6 or 7 -1
(region) (solids...)

The operations for this example will be performed in the following order:
1) DIFFERENCE between primitives 2 and 4
2) INTERSECTION between primitives 5 and 6
3) UNION the results of steps 1 and 2
4) DIFFERENCE between primitives 7 and 1
5) UNION the results of steps 3 and 4

In this example, implied parentheses exist around (2 -4), (5 6) and (7 -1).
Other examples of operations include:
2 2 -4 6 or 7 -1

In this example, the DIFFERENCE is taken between primitives 2 and 4, and then the INTERSECTION is
taken between that result and primitive 6. A DIFFERENCE is taken between primitives 7 and 1. The
UNION of these results is then taken.

REGION IDENTIFICATION record

Columns Contents

1-3 Region number

4-10 Component code number (1-9999)

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 54

11-15 Space code number (1-99)

16-20 Material code

21-30 (unused)

31-80 Region description

Geometry Description Record Formats
Half Space HAF
Arbitrary Tetrahedron ARB4
Polyhedron - 5 Vertices ARB5
Polyhedron - 6 Vertices ARB6
Arbitrary Wedge ARW
Right Angle Wedge RAW
Polyhedron - 7 Vertices ARB7
Polyhedron - 8 Vertices ARB8
Box BOX
Rectangular Parallelepiped

RPP
Triangular - faceted Polyhedron ARS
Truncated General Cone TGC
Truncated Elliptical Cone TEC
Truncated Right Cone TRC
Right Elliptical Cylinder REC
Right Circular Cylinder RCC
Right Parabolic Cylinder RPC
Right Hyperbolic Cylinder RHC
Elliptical Paraboloid EPA
Elliptical Hyperboloid EHY
General Ellipsoid ELLG
Ellipsoid of Revolution ELL
Sphere SPH
Elliptical Torus ETO
Circular Torus TOR

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 55

Figure 4.2.2-1. Solid Primitive Definitions

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 56

Figure 4.2.2-2. Solid Primitive Definitions (continued)

For ARS the symbol 'M' represents the number of curves and the symbol 'N' represents
the number of points required to define the curve with the most number of points. (eg. If
M = 2 where curve 1 requires 3 points to define it and curve 2 requires 4 points then the
value of N must be 4 .)

The Equation for a half plane is: NxX + NyY + NzZ = Dh

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 57

Where V is the vector, D is the depth vector, H is the height vector, W is the width vec-
tor, N is the normal vector, R is the radius, A is the semi-major axis of ellipse, and B is
the semi-minor axis of ellipse.

An example file follows.

m Simple test object in meter units
 2 2
 1rpp -1.5000 1.5000 -1.5000 1.5000 -1.5000 1.5000
 2rpp -0.5000 0.5000 -0.5000 0.5000 -0.5000 0.5000
 1 1 -2
 2 2
 -1
 1 100 0 0 0 main box
 2 100 2 0 0 inside box

Figure 4.2.2-3. Example .cg file of a hollow box.

4.2.2.1.2 Image Formation Inputs

4.2.2.1.2.1 Input Variables

The input variables for the image formation benchmark will be stored as ASCII text.
Each item will be on a separate line, with the variable number first followed by a text
comment identifying that line of the input variable file. The system IPR will be written
out in the text file in row column order. There will be a separate Input Variable file for
each input data set.

Input data file
name

This will be the name of the Input data file that will be used with
this Input Variable file.

Aperture specifica-
tion

The aperture specification here will include the number of samples
in range and cross range and image resolution in meters.

System IPR This will be an array of floats representing the convolution kernel.
The kernel can be as small as 3 x 3, where only the main lobe in-
formation will appear in the final image, or as large as 35 x 35,
where numerous side lobes appear in the final image.

4.2.2.1.2.2 Input Data

The input data arrays are EM responses from the ray history arrays. The EM responses
are stored in complex format. The ray history and EM responses will come in three sizes
and in both float and double precision formats. These are ray histories with EM responses
added right after the subpart name.
• A small array at 512 X 512 sample points,
• A medium array at 2048 X 2048 sample points, and
• A large array at 4096 X 4096 sample points.

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 58

4.2.2.2 Algorithmic Specification

4.2.2.2.1 Recursive Ray Tracing Benchmark Algorithm Specifications

N

NN

Y

Y Y

Initializaton:

� Read Inputs
v Read

Database
v Build

Bounding
Box
Structure

Generate
Synthetic
Aperture

Or
E manation

Plane

Fire E manation
Plane Ray

Intersection
Calculations
(Ray Server)

Ray History
Update

Reflection
Calculation

F ire Reflection
Ray

Ray History
Output

Input
Data

A B

C

A? Did the last ray have and intersection
 (Yes - continue No - T he rays has left the
database)

B? Is the reflection Count < Max # of Reflections
 (Yes - Continue No - End of this ray)

C? Are they any more rays to be fired from the
Emanation Plane
 (Yes - F ire Next R ay No - Output R ay History

4.2.2.2.1.1 Initialization

The initialization process reads in the input variables and input database. It then builds
the bounding-box structure and object structure from the input database. The bounding-

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 59

box structure contains the bounding hierarchy and each bounding surface contains tags to
the object structure. In the initialization the Emanation Ray History pointer array is cre-
ated and initialized.

Both the bounding-box structure and the object structure should be available to all rou-
tines.

Because the BRL-CAD .cg format does not support bounding boxes, a separate file will
be provided that contains the bounding information. The format of this bounding-box file
is the same as that of the polygon models, except it will contain no polygon data. The
object and sub-object name will match the names found in the .cg file thus providing the
linkage between the objects and their bounding boxes.

4.2.2.2.1.2 Generation of the Emanation Plane

Using the aperture specification and the number of sample points, from the input data, an
Emanation plane is generated.

If the FOV is ZERO, and it always will be for this benchmark, this means that a parallel
projection is to be used. With this projection, all the rays are fired in the look direction.
The only thing that needs to be determined is the position and scale of the sample points.
For this benchmark, we will assume that for the parallel projection case the target will be
centered in the sample space and that the top-level bounding box just fits into the sample
window. This means that the target translation is ignored and only the rotation is used.
Each point in the top level bounding box must be put through the target rotation matrix
and then through the viewing matrix. The viewing matrix is built from the rotations
needed to rotate the target into the viewing azimuth and elevation. This rotation can be
derived using the following pseudo code.
Assume that z is up and create a vector up = [0,0,1]
Find the vector that is the cross product of the lookat vector and the
up vector.
Make sure that this new vector is a unit vector and call it alpha
Now find the cross product of the lookat vector and the alpha vector.
Again, make sure it is a unit vector and call it Beta.
The 3x3 Euler rotation matrix is then:

Alpha_i, Alpha_j, Alpha_k
Beta_i, Beta_j, Beta_k
Lookat_i, Lookat_j, Lookat_k

Keep this viewing rotation matrix around, as it will be used in the generation of the ema-
nation rays in the next step. It is possible at this point to combine the target rotation ma-
trix and the viewing matrix, so only one matrix multiplication has to be done.

When these rotations are applied to the top-level bounding-box points, a new bounding
box is derived that shows the target extent in the viewing frame, if the maximum distance
in the horizontal and vertical directions are taken. The Delta size of the viewing window
or Emanation plane is known in target units. To get the needed size of an individual
pixel, take the larger of the two and divide by the number of sample points in that direc-
tion. This benchmark will assume square pixels; thus, a pixel will have the same dimen-
sion in both the vertical and horizontal. This same bounding information can be used to
center the target in the sample space. The result of this will be a (x, y) coordinate in
viewing space based on the row and column in the sample space.

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 60

The distance from the radar to the center of the target is found by subtracting the target
translation vector from the radar location vector. The magnitude of this difference vector
is the desire distance number.

4.2.2.2.1.3 Emanation Plane Ray Firing

This routine is the beginning of the outside loop the Ray tracing system. It takes the in-
formation derived in generating the Emanation plane and produces global starting coordi-
nates and direction vectors for the out going rays. Every time it is called a new starting
ray position and direction vector are calculated for the next sample point in the Emana-
tion plane.

It generates the starting point in global coordinates by taking the row and column num-
bers and using the scaling information from the generation routine to derive an x, y, z
point in viewing space. The distance from the center of the target to the radar is added to
the z value to arrive at the viewing coordinate. This is then converted into a global coor-
dinate by passing this vector through the inverse of the viewing and target rotation matri-
ces. This global coordinate is then the starting position for the current ray.

The direction vector for this benchmark, because we are only using parallel projections, is
just the look direction vector from the input variables, aperture specification.

A flag is set that lets the ray history update routine know that a new emanation plane rays
has been fired. The starting position and direction are then passed to the Ray Server.

This routine is called on the first ray, when the previous ray leaves the target database, or
when the maximum number of reflections, of the previous ray, has been reached.

4.2.2.2.1.4 Intersection Calculations (Ray Server)

The ray server receives a ray, starting position and direction vector, and determines what,
if any, objects in the target database this ray intersects. Once the intersections are found,
they are processed and the nearest surface intersection is returned. The Ray Server is di-
vided into two major parts.

4.2.2.2.1.5 Bounding-Box Intersections

The first section is the bounding box intersection process. Here the bounding-box hierar-
chy is tested against the ray. The top level bounding box is tested first. If it is intersected
then each object bounding box is tested. If the current ray does not intersect the top-level
box, the ray server returns a flag that no intersections were found. This process continues
down the bounding box hierarchy until all possible intersected objects have been found.

4.2.2.2.1.6 Object Intersection

The second section finds the actual points of intersection, if they exist, for each object
identified in the above process. Once the intersection points have been identified they are
sorted by distance from the ray starting point and the nearest intersection is returned. The
ray server also returns the surface normal information at the intersection point.

Polygon Models With Polygon models, this is a straightforward process of testing

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 61

each polygon, in each sub-object, against the ray under test. If an
intersection is found it is recorded in the intersection list array.
When all the intersections are found, the intersection nearest the
starting point of the ray under test is return along with the surface
normal at that polygon. In this benchmark, all the polygons are
three sided and thus the surface normal is easily calculated using
the polygon vertices. It should be noted that the normal is the
same for any point on that polygon.

Solid Models with
CSG

With solid models and CSG operators, things are a little more dif-
ficult. Finding the intersections with the solid models requires
more effort, do to their more complex shapes. The intersections
come in pairs. One intersection enters the object and the other
leaves the object. The real work comes in using the intersection
pairs and the CSG operators to find the true intersection point for
any object. The supported CSG operators can be seen in Figure
4.2.2-4. If a ray were to pass through center top of the cube in
Figure 4.2.2-4, the intersection pairs would be operated on as
shown in Figure 4.2.2-5. The CSG operations are executed as
written in the .cg file.

It is noted here, that with solids, the bounding boxes for objects
surround a complete CSG object. The sub-object bounding boxes
surround the basic solid primitives that are combined, using the
CSG operators, to form the complete CSG object. In the example
in Figure 4.2.2-4, the object bounding box would surround the
cube and cylinder. The sub-object bounding boxes would be
around the cube as sub-object 1 and cylinder as sub-object 2.

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 62

Figure 4.2.2-4. Supported CSG Operators

Cube Cylinder

EP

EP

LP

LP

Raw Edge Pairs

Cube - Cylinder

EP

LP

Difference

Cube or Cylinder

EP

LP

Union

Cube + Cylinder

EP

LP

Intersection

Figure 4.2.2-5. CSG Operators on Intersection Pairs

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 63

4.2.2.2.1.7 Surface Intersection Algorithms

All the surface intersection algorithms needed for this benchmark can be found in " An
Introduction to Ray Tracing", Edited by Andrew S. Glassner, Academic Press, ISBN 0-
12-286160-4. This is referenced in the Bibliography section, but it is given special note
here. This is a single resource that has much, if not all, the needed information about Ray
Tracing algorithms. It is felt that the coverage of intersection algorithms on pages 33
through 119 of that text is much better and less confusing than what this author could put
forth.

4.2.2.2.1.8 Ray History Update

This routine handles the ray history linked list. There are three possible functions that
may run.

If the ray that is being processed is a new ray from the emanation plane, the ray history
update routine starts a new ray history link and generates a new node structure, initializes
the node, records the information returned by the ray server, and adds one to the total in-
tersection count.

If the ray that is being processed is a reflected ray, the ray history update generates a new
node structure, initializes it, and places the appropriate links in the new node, the previ-
ous node, and records the information returned by the Ray Server. It also updates the pre-
vious node with the reflected ray information that is now available. It then adds one to the
total intersection count.

If the ray that is being processed returns from the Ray Server without finding an intersec-
tion, the ray history server updates the current node with the reflected ray information and
then does nothing else.

The node generation consists of allocating a new section of memory for the new node
structure and then initializes it by entering a NULL into the previous_node and next_node
pointer variables.

The process of starting a new ray history link involves placing a pointer to the newly gen-
erated node structure into the emanation ray history pointer array. This array has the
same dimensions as the emanation plane and array keeps a pointer to each ray history
node associated with a new ray being fired from the emanation plane.

4.2.2.2.1.9 Reflection Calculations

A reflection ray is calculated for every intersection point as long as the maximum number
of intersections has not been exceeded. The process of finding a reflection ray is base on
Snells' law for a perfect specular reflection. This law states that an incoming ray of will
reflect at an equal and opposite angle, relative to the normal at the reflection point:

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 64

NI R

θ
i

θ
r

θi = θr

The formula for the direction of a specularly reflected ray is

R = I - 2(N•I)N

where I is the incident ray, N is the normal at the reflection point, and R is the reflected
ray.

4.2.2.2.1.10 Reflection Ray Firing

The reflection ray firing is similar to the Emanation ray firing. In this case, the reflected
ray calculated above becomes the look direction vector and the intersection point be-
comes the starting position of the ray. These are passed to the Ray Server.

4.2.2.2.1.11 Ray History Output

After all the emanation rays have been fired and their reflection paths followed, the final
step in the geometry sampling process is to output the ray history. This is done by using
the emanation ray history pointer array to follow each ray history. As each node is trav-
ersed the data in the node structure is written out to the ray history file in the form speci-
fied in section 4.2.2.3.1. As this data is written out, the pointers for previous_node and
next_node get replace with index numbers as if each node was an entry in a large 1-D ar-
ray of nodes. Those nodes that have NULL pointers are replaced by -1.

4.2.2.2.2 Image Formation Benchmark Algorithm Specifications

The Image Formation process consists of three steps that convert the EM Contributions
into a slant plane SAR Image.

4.2.2.2.2.1 Mapping EM contributions

The first step in the image formation process is to map the EM contributions of each ray
history into the slant plane. The slant plane image is a grid of cells measured in range
and cross range (see Figure 4.2.2-6).

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 65

Figure 4.2.2-6. Formation of the SAR Image

The first intersection EM contribution is mapped into this plane based on the position in
the emanation plane, for the cross range position, and the distance from the firing point to
the intersection point, for the range position. The multiple reflections are mapped to a
mean aspect and more distant range consistent with their appearance in the SAR imagery
(See Figure 4.2.2-7).

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 66

Figure 4.2.2-7. SAR Mapping of Returns

This process is followed for each ray history and each EM contribution for each reflection
resulting in a complex data array.

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 67

4.2.2.2.2.2 IPR Convolution

Once the EM scattering is mapped to the slant plane, it must be convolved with the sys-
tem IPR. This is an input centered convolution. The convolution edge effects are ac-
counted for by mirroring the edge pixels of the slant plane. Pixels are copied from the
left and right edges, range, and then copied from the top and bottom, cross-range. This
insures the corners of the mirrored images are filled correctly. The number of pixels
copied is equal to half of the IPR convolution width. This is a standard 2-D convolution
process.

4.2.2.2.2.3 Detection

The final process in the Image Formation sequence is the Detection process. This is
nothing more than finding the Magnitude image of the complex image plane. The output
from this process forms a viewable, or real-valued, image and is the desired output for
this portion of the benchmark.

4.2.2.3 Output

4.2.2.3.1 Recursive Ray Tracing Benchmark Output

The output for the Recursive Ray Tracing Benchmark is a link list of the intersection in-
formation for each sample in the aperture. This ray history file will be a binary file based
on an array of the following structure with the first number in the file being the number of
array entries
int number_of_entries
struct Ray_History {
 char object_name[256];

char part_name[256];
char subpart_name[256];
float intersection_x;
float intersection_y;
float intersection_z;
float normal_vec_i;
float normal_vec_j;
float normal_vec_k;
float ray_length;
float ray_start_i;
float ray_start_j;
float ray_start_k;
float ray_vector_i;
float ray_vector_j;
float ray_vector_k;
float reflection_vector_i;
float reflection _vector_j;
float reflection _vector_k;
int previous_node;
int next_node;

}

If the previous_node value is -1 this is the beginning of a ray history. If the next_node has
a value of -1 this is the last intersection point for this ray history. Using the first intersec-
tion point and the normal of each ray history one can create a shaded image of the target
under test. This can be a good tool for evaluating the ray tracer.

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 68

4.2.2.3.2 Image Formation Benchmark Output

The outputs for the Image Formation Benchmark will be, float or double, binary files
output at each stage of the process. The final binary file, after detection, is the only file
that is not complex. When displaying these images one should us a dB scaling do to the
nature of the detected image. Using -40dB down from the peak value will provide a
good-looking image. Other conversions that don't account for the wide bandwidth in the
final image may hide defects. When doing a timing run, only the final detected or real
valued image should be output. The in-between images are used only to validate each
step in the process.

4.2.2.4 Acceptance Test

A given data set will be considered successfully executed when the processing sequence
results match with the corresponding output provided with the benchmark. Precision is
discussed in Section 3.7.

4.2.2.4.1 Acceptance Test for Recursive Ray Tracer Benchmark

It must be realized that small differences in intersection location and in the calculation of
the normal can result in large errors after several reflections. Acceptance of this section
of the benchmark should look at each level in the ray history to see if it meets the toler-
ances discussed in Section 3.7.

4.2.2.4.2 Acceptance Test for the Image Formation Benchmark

An output data set for each step in the process is provided and a match should be
achieved for each step in the process.

4.2.2.5 Metrics

4.2.2.5.1 Metrics for Recursive Ray Tracer Benchmark

The primary metric for the Recursive Ray Tracer Benchmark is the total time to complete
the evaluation of all rays in the given aperture. Secondary metrics are based on processor
loading as a function of time. Also were possible a metric should be attempted that gives
the scalability ratios for input database size, aperture resolution, and number of proces-
sors. These secondary metrics will provide useful information on known problems with
parallel ray-tracing applications.

4.2.2.5.2 Metrics for the Image Formation Benchmark

The primary metric for the Image Formation benchmark is total time to complete all the
steps with the given input data set. A secondary metrics consists of the individual times
for each step in the Image Formation process.

4.2.2.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/projectweb/dis.

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 69

4.2.2.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

4.2.2.8 Test Data Sets

Test data sets are available at http://www.aaec.com/projectweb/dis.

4.2.2.9 References

Ray Tracing References

[1] K. Bouatouch and T. Priol. Parallel space tracing: An experience on an iPSC
hypercube. In N. Magnenat-Thalmann and D. Thalmann, editors, New Trends in
Computer Graphics (Proceedings of CG International ’88), pages 170–187,
New York, 1988. Springer-Verlag.

[2] J. G. Cleary, B. M. Wyvill, G. M. Birtwistle, and R. Vatti. Multiprocessor ray
tracing. Computer Graphics Forum, pages 3–12, 1986.

[3] F. C. Crow, G. Demos, J. Hardy, J. McLaugglin, and K. Sims. 3d image synthe-
sis on the connection machine. In Proceedings Parallel Processing for Com-
puter Vision and Display, Leeds, 1988.

[4] M. A. Z. Dipp´ e and J. Swensen. An adaptive subdivision algorithm and parallel
architecture for realistic image synthesis. ACM Computer Graphics, 18(3):149–
158, jul 1984.

[5] S. A. Green and D. J. Paddon. Exploiting coherence for multiprocessor ray trac-
ing. IEEE Computer Graphics and Applications, pages 12–27, nov 1989.

[6] H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura, and Y. Shigei. Load bal-
ancing strategies for a parallel ray-tracing system based on constant subdivision.
The Visual Computer, 4(4):197–209, 1988.

[7] A. J. F. Kok. Ray Tracing and Radiosity Methods for Photorealistic Image Syn-
thesis. PhD thesis, Delft University of Technology, jan 1994.

[8] T. T. Y. Lin and M. Slater. Stochastic ray tracing using SIMD processor arrays.
The Visual Computer, 7:187–199, 1991.

[9] D. J. Plunkett and M. J. Bailey. The vectorization of a ray-tracing algorithm for
improved execution speed. IEEE Computer Graphics and Applications, 5(8):52–
60, aug 1985.

[10] T. Priol and K. Bouatouch. Static load balancing for a parallel ray tracing on a
MIMD hypercube. The Visual Computer, 5:109–119, 1989.

[11] E. Reinhard. Hybrid scheduling for parallel ray tracing. TWAIO final report,
Delft University of Technology, jan 1996.

[12] I. D. Scherson and C. Caspary. A self-balanced parallel ray-tracing algorithm. In
P. M. Dew, R. A. Earnshaw, and T. R. Heywood, editors, Parallel Processing
for Computer Vision and Display, volume 4, pages 188–196, Wokingham, 1988.
Addison-Wesley Publishing Company.

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 70

[13] L. S. Shen, E. Deprettere, and P. Dewilde. A new space partition technique to
support a highly pipelined parallel architecture for the radiosity method. In Ad-
vances in Graphics Hardware V, proceedings Fifth Eurographics Workshop on
Hardware. Springer-Verlag, 1990.

[14] E. R. Frederik, W. Jansen . Rendering Large Scenes Using Parallel Ray Tracing.
Parallel Computing, pages 873-885, 1997

[15] T. Wilson, N. Doe. Acceleration Schemes for Ray Tracing. Report Number: CS-
TR-92-22, Department of Computer Science, University of Central Florida,
September 1992.

[16] R.L. Cook, T. Porter, L. Carpenter. Distributed Ray Tracing. Computer Graphics
(Proceedings of SIGGRAPH 1984), 18(3), 137-145, July 1984.

[17] R.L. Cook. Stochastic sampling in computer graphics, ACM Transaction in
Graphics 5(1), 51-72, January 1986.

[18] A. S. Glassner (Editor), An Introduction to Ray Tracing, Academic Press 1989.

[19] Ray Tracing Bibliography,
http://www.cm.cf.ac.uk/Ray.Tracing/RT.Bibliography.html

Simulated SAR References

[1] D.J. Andersh, M. Hazlett, S.W. Lee, D.D. Reeves, D.P. Sullivan and Y. Chu,
"Xpatch: A high fre-quency electromagnetic-scattering prediction code and envi-
ronment for complex three-dimensional objects," IEEE Antennas & Propaga-
tion. Magazine, vol. 36, pp.65-69, 1994.

[2] J. Baldauf, S.W. Lee, L. Lin, S.K. Jeng, S.M. Scarborough, and C.L. Yu, "High
frequency scattering from trihedral corner reflectors and other benchmark tar-
gets: SBR vs. experiment," IEEE Transacrions on Antennas and Propagation,
vol. 39, pp. 1345-1351, 1991.

[3] R. Bhalla and H. Ling, Image-domain ray tube integration formula for the
shooting and bouncing ray technique, University of Texas Report, NASA Grant
NCC 3-273, July 1993.

[4] R. Bhalla and H. Ling, "A fast algorithm for signature prediction and image
formation using the shooting and bouncing ray technique," to appear in IEEE
Transactions on Antennas and Propagation, 1995.

[5] G. Franceschetti, M. Migliaccio, D. Riccio, and G. Schirinzi, "SARAS: A Syn-
thetic Aperture Radar (SAR) Raw Signal Simulator," IEEE Transactions on
Geoscience and Remote Sensing, Vol. 30, No. 1, January 1992.

[6] G. Franceschetti, M. Migliaccio, and D. Riccio, "SAR Raw Signal Simulation of
Actual Ground Sites in Terms of Sparse Input Data," IEEE Transactions on
Geoscience and Remote Sensing, Vol. 32, No. 6, November 1994.

[7] D.E Herrick and I.J. LaHaie, SRIM Polarimetric Signature Modeling, ERIM
IR&D Final Report 675805-1-F, December 1988.

[8] D.E Herrick and B.J. Thelen, "Computer Simulation of Clutter in SAR Im-
agery," Proceedings of the Progress in Electromagnetics Research Symposium,
Cambridge, MA, July 1991

DIS Benchmarks Version 1.0 Specifications – Simulated SAR Ray Tracing

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 71

[9] D.E Herrick, "Computer Simulation of Polarimetric Radar and Laser Imagery,"
in Direct and Inverse Methods in Radar Polarimetry, W.-M. Boerner et al. (eds),
Klumer Academic Publishers, The Netherlands 1992.

[10] D.E Herrick, M.A. Ricoy, and W.D. Williams, "Modeling of Foliage Effects in
UHF SAR", Proceedings qfthe Ground Target Modeling and Validation Confer-
ence, Houghton, MI, August 1994.

[11] D.E Herrick, M.A. Ricoy, and W.D. Williams, "Synthesizing SAR Signatures of
Ground Vehicles with Complex Scattering Mechanisms", Proceedings of the
Ground Target Modeling and Validation Conference, Houghton, MI, August
1994.

[12] E.R. Keydel, D.E Henick, and W.D. Williams, "Interactive Countermeasures
Design and Analysis Tool," Proceedings of the Ground Target Modeling and
Validation Conference, Houghton, MI, August 1994.

[13] S.W. Lee and D.J. Andersh, On Nussbaum Method for Exponential Series, Elec-
tromagnetic Laboratory Technical Report ARTI-92-11, University of Illinois,
Urbana, November, 1992.

[14] H. Ling, R.C. Chou, and S.W. Lee, "Shooting and Bouncing Rays: Calculating
the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and
Propagation, vol. 37, pp. 194-05, 1989.

[15] J.M. Nasr and D. Vidal-Madjar, "Image Simulation of Geometric Targets for
Spaceborne Synthetic Aperture Radar", IEEE Transactions on Geoscience and
Remote Sensing, Vol. 29, No. 6, November 1991.

[16] N.D. Taket, S.M. Howarth, and R.E. Burge, "A Model For the Imaging of Urban
Areas by Synthetis Aperture Radar," IEEE Transactions on Geoscience and Re-
mote Sensing, Vol. 29, No. 3, May 1991.

[17] M.R. Wohlers, S.Hsiao, J. Mendelsohn, and G. Gerdner, "Computer Simulation
of Synthetic Aperture Radar Images of Three-Dimensional Objects," IEEE
Transactions on Aerospace and Electronic Systems, Vol. AES-16, No. 3, May
1980.

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 72

4.2.3 Image Understanding

Algorithms were selected for this benchmark that perform spatial filtering to determine
regions of interest (ROIs) and operate on a set of ROIs. The Image Understanding
benchmark consists of a sequence of components depicted in Figure 4.2.3-1. Also in-
cluded in the figure are names for input parameters, images, and intermediate output at
different parts of the sequence, which are referred to later in this document. The mor-
phological filter component provides a spatial filter to remove background clutter in the
image. Next, the ROI selection component applies a threshold to determine target pixels,
groups these pixels into ROIs, and selects a subset of ROIs depending on specific selec-
tion logic. Finally, the feature extraction component operates over and computes features
for the selected ROIs.

Feature
Extraction

Morphological
Filter

K

V
regions
O

ROI
Selection

W

distanceShort
distanceLong

features

thresholdLevel
minArea
maxRatio
selectNumber

Figure 4.2.3-1: Image Understanding Sequence

The input required by the sequence is a set of parameters and an image, V. The first step
in the sequence is a spatial morphological filter component generating image W. Then,
the ROI selection component performs a thresholding and groups connected pixels into
ROIs (or targets) contained in image W. This component then computes initial features
for each ROI in image W, and selects a list of ROIs depending on the values of these
features. These selected ROIs are stored in object image, O. The initial features for each
selected ROI are stored in list, regions. Lastly, the feature extraction component com-
putes additional features for the selected ROIs. The output at the end of the sequence is a
feature list, features, with both sets of features computed for each selected ROI.

4.2.3.1 Input

An input data set for the Image Understanding benchmark, which contains all input re-
quired for a single run of the benchmark, is provided in one binary input file, in the fol-
lowing order:

1. input image V (stored as an array of short integers)

2. morphological kernel K (stored as an array of unsigned bytes)

3. thresholdLevel (short integer)

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 73

4. minimum acceptable area value, minArea (integer)

5. maximum acceptable perimeter-to-area ratio, maxRatio (float)

6. number of ROIs to select, selectNumber (integer), and

7. distanceShort and distanceLong (integers).

The above values are provided in binary representation for an 8-bit unsigned byte, 2-byte
short integer, 4-byte integer, or 4-byte float as described in Section 3.6. References to
these inputs are found in Figure 4.2.3-1 and in the sections describing each component of
the sequence below. Descriptions or formats for input image V and kernel K are pro-
vided in the following subsections.

4.2.3.1.1 Image V

Images provided as input for the benchmark are rectangular, with square pixels, and
stored in row-dominant order. Let image V have X columns and Y rows, and v(x,y) be
any pixel in V where 0 ≤ x < X and 0 ≤ y < Y, as shown here:

v(0,0) v(1,0) v(2,0) • • • v(X-1,0)

v(0,1) v(1,1) v(2,1) • • • v(X-1,1)

v(0,2) v(1,2) v(2,2) • • • v(X-1,2)

• • • •

• • • •

• • • •

v(0,Y-1) v(1,Y-1) v(2,Y-1) • • • v(X-1,Y-1)

Figure 4.2.3-2: Sample Image V with X columns and Y rows

Preceding the image data are two integers, representing the number of columns and the
number of rows, respectively. Next, pixel values are provided, as short integers, in row-
dominant order, as shown in the following table. Therefore, an image with three rows and
five columns requires thirty-eight bytes, where the first eight bytes contain two 4-byte
integer values indicating the number of columns and rows, followed by fifteen 2-byte
short integer pixel values.

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 74

Table 4.2.3-1. File containing byte image V.

byte offset ↓ contents byte offset ↓ contents byte offset ↓ contents

0 6+2X v(X-1,0) • •

2 X 8+2X v(0,1) • •

4 • • 6+2XY-2X v(X-1,Y-2)

6 Y • • 8+2XY-2X v(0,Y-1)

8 v(0,0) 6+4X v(X-1,1) • •

10 v(1,0) 8+4X v(0,2) • •

• • • • 4+2XY v(X-2,Y-1)

• • • • 6+2XY v(X-1,Y-1)

4.2.3.1.2 Kernels

Kernels are small images that define a neighborhood or window to be used in the proc-
essing of a larger image. Kernels are provided in the same format as images and an ex-
ample of the file containing a kernel is contained in Table 4.2.3-2 below. Note that a
kernel with three rows and five columns requires twenty-three bytes, where the first eight
bytes contain two 4-byte integer values indicating the number of columns and rows, fol-
lowed by 15 unsigned-byte pixel values.

Table 4.2.3-2: File Containing Unsigned Byte Kernel K

byte offset ↓ contents byte offset ↓ contents byte offset ↓ contents

0 8 k(0,0) • •

1 X 9 k(1,0) • •

2 • • 7+XY-X k(X-1,Y-2)

3 • • 8+XY-X k(0,Y-1)

4 7+X k(X-1,0) • •

5 Y 8+X k(0,1) • •

6 • • 6+XY k(X-2,Y-1)

7 • • 7+XY k(X-1,Y-1)

A kernel-oriented procedure uses the location of the kernel’s center pixel as the location
in the output image for the output value. To facilitate this, kernel rows and columns al-
ways contain an odd number of pixels.

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 75

4.2.3.2 Algorithmic Specification

The Image Understanding benchmark consists of a series of operations to be performed,
in sequence, using given image and operating parameters as initial input. Output from
the benchmark consists of a table of feature values for each ROI selected. All of the op-
erations utilize the result from the prior step as input. In addition, the ROI selection and
feature extraction components utilize both the prior result and the input image, V, as de-
picted in Figure 4.2.3-1. Each component in the sequence is described individually be-
low.

4.2.3.2.1 Morphological Filter

The morphological filter component chosen for the benchmark uses a structuring element,
or kernel, K, that is a two-dimensional image with dimensions that are odd. Let V repre-
sent the input image and define the morphological operations, erosion (�) and dilation
(�) as follows:

[V ��K] = MIN[v(x+m, y+n)] m,n ∈ Ros(K), k(m,n)≠0 (4.2.3.1a)

[V ��K] = MAX[v(x+m, y+n)] m,n ∈ Ros(K), k(m,n)≠0 (4.2.3.1b)

where each output pixel is computed at location (x, y) for a morphological kernel, K,
which has a local region of support (Ros) that defines its geometric filtering properties
with M columns and N rows. For these primitive morphological operations, MAX and
MIN are computed locally for every pixel. Only nearby pixels are required to compute
output pixels, specifically for the pixels in K that are non-zero.

For this benchmark, the morphological filter is defined as follows. As shown in Figure
4.2.3-1, V is the input image and W is the output, where

W =V – [(V�� K) ���K] (4.2.3.2)

A detailed discussion on morphology can be found in [Maragos] and [Parker 97]. The
pixel values for input kernel K will be provided with unsigned byte precision and the pix-
els in the input image V will be provided with short integer precision as discussed in
Section 4.2.3.1. The pixels in the output image W are required to have a minimum of
short integer precision. Pseudo-code for the morphological filter component follows.

/* morphological filter component */
Get image V, kernel K
Clear images W, O1 and O2 (set to 0)
/* First calculate erosion O1 = V � K */
Loop for each pixel V(x,y) where (M-1)/2<=x<X-(M-1)/2 and

(N-1)/2<=y<Y-(N-1)/2
initialize minval
Loop for each non-zero pixel k(m,n)

minval = MIN[minval, V(x+m,y+n)]
End loop
o1(x,y) = minval

End loop
/* Next calculate dilation O2 = O1 ��K */
Loop for each pixel o1(x,y) where (M-1)/2<=x<X-(M-1)/2 and

(N-1)/2<=y<Y-(N-1)/2
initialize maxval

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 76

Loop for each non-zero pixel k(m,n)
maxval = MAX[maxval, o1(x+m,y+n)]

End loop
o2(x,y) = maxval

End loop
/* Last output W = V - O2 */
Loop for each pixel in w(x,y) where M-1<=x<X-M+1 and N-1<=y<Y-N+1
W(x,y) = V(x,y) - o2(x,y)
End loop

Note that, after processing, the valid output region will be smaller than the valid input
region, since there is not enough valid input data at the outer edges to calculate valid out-
put. In particular, for a given kernel with M columns and N rows, the outer frame of in-
valid data will be a rows at the top and bottom and b columns at the left and right of the
image, where a and b are defined by

a =
N −1

2
, b =

M − 1

2
(4.2.3.3)

This effect accumulates during a process involving sequential steps, so that the final out-
put will have an outer frame of undefined data equal in size to the sum of all the edge ef-
fects from each step within the process. This undefined outer frame should be set to the
value 0 (zero).

For example, if a simple 3x3 kernel is used for the morphological filter (performing an
erosion followed by a dilation), both M and N equal three. In that case, a and b are
(N −1)/ 2 = (M − 1) / 2 =1 pixel for each erosion or dilation. Therefore, the frame of un-
defined data in the output at the end of the filter is the sum 1 +1 = 2 pixels in width.

4.2.3.2.2 ROI Selection

The ROI selection component uses the input image V, and input parameters threshold-
Level, minArea, maxRatio, and selectNumber, provided in the input file as discussed in
Section 4.2.3.1. The image W from the morphological filter component is the final input
required. This component applies a threshold to image W, using the input thresholdLevel,
to differentiate target pixels from background pixels. Then, target pixels are grouped to-
gether to determine how many isolated ROIs have been found. This is achieved by trav-
ersing W and assigning each detected target pixel to an ROI. Areas that are connected to
each other are considered part of the same ROI. Two areas are declared connected if any
target pixel from one area is 8-adjacent with any target pixel in the other (i.e., if they are
horizontal, vertical, or diagonal neighbors). Next, an initial feature extraction is per-
formed on these ROIs. Finally, a subset of these ROIs is selected, based on the values of
the initial features. This subset of selected ROIs is used to generate the output of this
component: an image O of detected objects or ROIs, and a list, regions, which includes
initial features for each selected ROI.

The output O does not need to be an image, but does need to contain enough information
so that each selected ROI is differentiated from other ROIs, and so each pixel within an
ROI can be referenced. For the sake of simplicity and readability, the baseline imple-

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 77

mentation of the benchmark generates O in the form of an image. The depth of the values
in O is driven by the maximum number of possible ROIs ((216 − 2) as specified below).

Other implementations of the benchmark need not constrain O to be an image, as long as
the utility of O remains. For example, instead of a complete image containing all the
ROIs, each labelled with a distinct index, a subimage or chip could be extracted for each
ROI where the chip boundaries could be defined by the smallest rectangular region con-
taining the ROI. Then a method of obtaining the location of the ROI relative to the fil-
tered image W must also be retained (i.e., an offset to place the chip over the proper
location in W). In this manner, there would be selectNumber chips and offsets to specify
the selected ROIs. As another example, an ROI could be specified as a list of pixel loca-
tions.

The feature extraction process is split up into two stages: 1) an initial set of features is
calculated during the ROI selection component, and 2) an additional set of features is
computed during the feature extraction component. This split is frequently done in de-
ployed systems in order to minimize computation. Features in the first stage are typically
not as computationally expensive as those in later stages. The features from the first
stage are often used, as in this benchmark, to cull the ROI list before continuing, so that
the second stage features are not computed except where necessary.

Implementations of this component are required to handle at most (216 − 2) number of
ROIs (before going through the selection logic). Using 8-adjacent connectivity, the theo-
retical maximum number of distinct ROIs is approximately one quarter the number of
pixels in the entire original image. Should there exist more than (216 − 2) ROIs in W, the
ROIs beyond this number may be ignored.

Initial features for this component are extracted for each ROI that is found within W. The
features are centroid, area, perimeter, mean, and variance. See [Parker 94] or
[Castleman] for a detailed description of these features. The first three–centroid, area,
and perimeter–measure properties of the ROI defined after the threshold is applied to W.
Let T be an image, the same size as W, defined herein to be the value 1 over the target or
ROI in question, and 0 elsewhere.

The centroid is the location that is central to the ROI, represented as T, and is computed
using the following equations:

centroidCol =
t(x, y) * x∑

area(T)

 x, y ∈ Ros(T)

centroidRow =
t(x, y)* y∑

area(T)

(4.2.3.4)

where the x and y locations are relative to the pixel coordinates defined for the registered
image W with column and row ranges 0≤x<X and 0≤y<Y.

The area is a count of the number of target pixels contained in the ROI.

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 78

The perimeter is a count of the number of pixels on the target that are 8-adjacent to a
background pixel. To find this value, let two pixels be defined as 8-adjacent if they are
horizontal, vertical, or diagonal neighbors.

Both the thresholded version of W and the input image V are used to calculate the mean
and variance features. These features are statistical measures computed for the pixel val-
ues in each ROI using the equations:

mean =
v(x, y)t(x, y)∑

pixelCount
 x, y ∈ Ros(T)

variance =
[v(x, y)t(x, y)]2∑
pixelCount

 - mean2 x, y ∈ Ros(T)

(4.2.3.5)

where the summation for the mean and variance is calculated over a single ROI, and pix-
elCount is the number of pixels in that ROI (represented above as T).

Once the initial features have been calculated, selection logic using these features creates
a subset of selected ROIs that are retained. The three input parameters–minArea, maxRa-
tio, and selectNumber–specify the selection criteria. The features calculated in the ROI
selection component–area, mean, and perimeter–are used with these input parameters to
determine whether an ROI will be selected. Any ROI with a feature that does not pass
the selection criteria is removed from the ROI list. Two of the selection tests are defined
below.

minArea ≤ area

perimeter

area
≤ maxRatio

(4.2.3.6)

The final selection test requires ranking the list of ROIs by the value of the product (mean
* area) from largest to smallest value and selecting the top selectNumber of ROIs that
also satisfy the selection tests in Equation 4.2.3.6 above. Thus, the selectNumber ROIs
with the largest product mean*area, that also satisfy the selection tests in Equation
4.2.3.6, compose the set of selected ROIs.

Then, for the labelled ROIs, an output image, O, and a list, regions, must be constructed.
Image O defines the shapes and locations of the selected ROIs, and regions contains a list
of the selected ROIs including the initial features.

The output image, O, is required to have a minimum of short integer precision, to handle
labels for at most (216 − 2) ROIs. The list shown as regions in Figure 4.2.3-1 must in-
clude the six features described in this section for each ROI identified in image O. The
floating-point features–centroidCol, centroidRow, mean, and variance–are required to
have a minimum of float precision. The other features–area and perimeter–are required
to have a minimum of integer precision. Pseudo-code for a correct–though inefficient–
implementation of the ROI selection component follows.

/* ROI selection component */

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 79

/* V is input image */
/* W is morphological filtered image */
/* thresholdLevel is level to use to determine target pixels */
/* minArea, maxRatio, and selectNumber are parameters

to be used in ROI selection logic */
Get images V and W
Get parameters thresholdLevel, minArea, maxRatio, selectNumber
Clear image G (set to 0)
nt = 0
/* first threshold image W to determine target pixels
 and group pixels belonging to the same ROI, by
 marking each ROI with a unique id */
Loop for each (x,y) in W /* scan filtered image */

If w(x,y) > thresholdLevel then /* if target pixel */
Loop for (u,v) in 8 neighbors of (x,y)

If g(u,v) > 0 then /* if already tagged */
If g(x,y) > 0 and g(x,y) ≠ g(u,v) then

/* we are connecting two ROIs */
gt = g(u,v)
Loop for each (i,j) in G up to and

including (x,y)
If g(i,j) = gt then

g(i,j) = g(x,y)
Endif

End loop
Else /* first tagged neighbor */

g(x,y) = g(u,v)
Endif

Endif
End loop
If g(x,y) = 0 /* ROI is isolated */

If (nt > (216-2)) then
g(x,y) = 0 /* ignore >(216-2) ROIs */

Else
nt = nt + 1 /* increment ROI count */
g(x,y) = nt /* label ROI with new id */

Endif
Endif

Endif
End loop

/* Compute initial features for each ROI */
/* F is list of initial features */
Initialize F
Loop for each ROI in G

clear centroidCol, centroidRow, area, perimeter,
mean, and variance

Loop for each pixel g(x,y) in ROI
centroidCol = centroidCol + x
centroidRow = centroidRow + y
area = area + 1
If pixel is 8-adjacent to background pixel

then perimeter = perimeter + 1
Endif
mean = mean + v(x,y)
variance = variance + v(x,y)*v(x,y)

End loop
centroidCol = centroidCol / area

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 80

centroidRow = centroidRow / area
mean = mean / area
variance = (variance/area) -mean2
add features to list F

End loop

/* use selection logic to select subset of ROIs */
order list F ranking mean*area value from largest to smallest
numROIs = 0
initialize list regions
clear image O
Loop for each ROI on list F

If (minArea <= area) AND
 (perimeter/area <= maxRatio) AND
 (numROIs < selectNumber) Then

numROIs = numROIs + 1
add ROI to object image O
add initial features to list regions

Endif
End loop for each ROI on list F

4.2.3.2.3 Feature Extraction

In the final component of the sequence, additional features are calculated for the ROIs
selected from the previous component. As shown in Figure 4.2.3-1, two input parameters
are provided in the input file for this component. The parameters–distanceShort and
distanceLong–are provided in integer precision as discussed in Section 4.2.3.1. The input
image, V, the object image, O, and the list, regions, complete the inputs required for this
component. The input O does not need to be an image, but does need to contain enough
information so that each selected ROI is differentiated from each other and so each pixel
within an ROI can be referenced. In this implementation, this is achieved by having O be
an image. The depth of the values in O is driven by the maximum number of ROIs pos-
sible (216 − 2).

The additional features calculated in this component give a measure of the texture of each
ROI. As discussed in [Parker 97], a grey level co-occurence matrix (GLCM) contains
information about the spatial relationships between pixels within an image. Statistical
descriptors of the co-occurence matrix have been used as a practical method for utilizing
these spatial relationships. Furthermore, [Unser] designed a method of estimating these
descriptors without calculating the GLCM, instead using sum and difference histograms.
The features to be calculated here are GLCM entropy and GLCM energy, and are defined
in terms of a sum histogram, sumHist, and a difference histogram, diffHist. These histo-
grams are dependent on a specific distance and direction just as the GLCM. The sum
histogram, sumHist, is a normalized histogram of the sums of all pixels at a given dis-
tance and direction. Likewise, the difference histogram, diffHist, is a normalized histo-
gram of the differences of all the pixels at a given distance and direction. The GLCM
descriptors are defined as:

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 81

GLCM entropy = - sumHist(i)* log[sumHist(i)]
i

∑
 - diffHist(j) *log[diffHist(j)]

j
∑

GLCM energy = sumHist(i)2

i
∑ * diffHist(j)2

j
∑

(4.2.3.8)

where sumHist(i) is the normalized sum histogram and diffHist(j) is the normalized dif-
ference histogram for the particular distance and direction of interest.

For this benchmark, rather than calculate these measures for all possible distances and
directions, two distances are given in the input file, and four directions of interest must be
used. These directions are defined as: 0°, 45°, 90°, and 135°. Therefore, the feature ex-
traction component will compute, for each selected ROI, a total of sixteen features (two
descriptors at each of two distances and four directions). Both of the descriptors – GLCM
entropy and GLCM energy – are required to have a minimum of float precision.

The final output of the benchmark is a feature list, features, containing all twenty-two
features (both initial and additional features), for each selected ROI. Pseudo-code for a
correct–though inefficient–implementation of the feature extraction component follows.

/* feature extraction component */

/* V is the input image */
/* O is object image */
/* regions is list which includes initial features */
/* features is list of all features

(initial and additional features) */
Get images V and O
Get list regions
Initialize features
numROI = 0
Loop for each ROI in O /* scan object image */

numROI = numROI + 1 /* keep track of number of ROIs */
Get initial features for ROI from list regions
Loop for distance = distanceShort and distanceLong

/* for 0 degree direction (horizontal) */
dx = distance
dy = 0
call calcDescriptors(V,O,numROI,dx,dy,energy,entropy)
add all features(distance,0°) to features
/* for 45 degree direction (right diagonal) */
dx = distance
dy = distance
call calcDescriptors(V,O,numROI,dx,dy,energy,entropy)
add all features(distance,45°) to features
/* for 90 degree direction (vertical) */
dx = 0
dy = distance
call calcDescriptors(V,O,numROI,dx,dy,energy,entropy)
add all features(distance,90°) to features
/* for 135 degree direction (left diagonal) */
dx = - distance
dy = distance

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 82

call calcDescriptors(V,O,numROI,dx,dy,energy,entropy)
add all features(distance,135°) to features

End loop for distances
End ROI loop
End feature extraction

routine calcDescriptors(V, O, numROI, dx, dy, energy, entropy)
numlevels = (number grey-levels in image)
numhistlevels = 2*numlevels
get array sumHist size numhistlevels, initialize to 0
get array diffHist size numhistlevels, initialize to 0

totalnumpixels = 0
Loop for each pixel in ROI numROI

/* calculate sum and difference histograms */
If (x,y) AND (x+dx,y+dy) legal pixel addresses in ROI Then

Increment sumHist([v(x,y) + v(x+dx,y+dy)])
Increment diffHist(numlevels+[v(x,y)-v(x+dx,y+dy)])
Increment totalnumpixels

Endif legal pixel address
End loop for numROI
/* normalize sumHist and diffHist */
Loop for i = 0, numhistlevels

sumHist(i) = sumHist(i) / totalnumpixels
diffHist(i) = diffHist(i) / totalnumpixels

End loop for i
energyS = 0
energyD = 0
entropy = 0
/* calculate descriptors from sumHist and diffHist */
Loop for i = 0, numhistlevels

entropy = entropy - sumHist(i)*log(sumHist(i))
 - diffHist(i)*log(diffHist(i))

energyS = energyS + sumHist(i) * sumHist(i)
energyD = energyD + diffHist(i) * diffHist(i)

End loop for i
energy = energyS * energyD
End routine calcDescriptors

4.2.3.3 Output

The output for the Image Understanding benchmark should be provided as a char (7-bit
ASCII stored in 8-bit bytes) file where there is one line of ASCII text for each selected
ROI. This entry should contain all the features calculated for that ROI: six initial features
from the ROI selection component and sixteen additional features from the feature ex-
traction component. The format for each entry is described in the following table.

Field Description Type Format

1 centroidCol float m.dddd E±xx

2 centroidRow float m.dddd E±xx

3 area inte-
ger

dddddd

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 83

4 perimeter inte-
ger

dddddd

5 mean float m.dddd E±xx

6 variance float m.dddd E±xx

7 0° GLCM entropy float m.dddd E±xx

8 GLCM energy float m.dddd E±xx

9 45° GLCM entropy float m.dddd E±xx

10 DistanceShort GLCM energy float m.dddd E±xx

11 90° GLCM entropy float m.dddd E±xx

12 GLCM energy float m.dddd E±xx

13 135° GLCM entropy float m.dddd E±xx

14 GLCM energy float m.dddd E±xx

15 0° GLCM entropy float m.dddd E±xx

16 GLCM energy float m.dddd E±xx

17 45° GLCM entropy float m.dddd E±xx

18 DistanceLong GLCM energy float m.dddd E±xx

19 90° GLCM entropy float m.dddd E±xx

20 GLCM energy float m.dddd E±xx

21 135° GLCM entropy float m.dddd E±xx

22 GLCM energy float m.dddd E±xx

Table 4.2.3-3: Output Record Specification for Each ROI

One space (char value 32) should be used to delimit each field, and a carriage return/line
feed should follow the last field for each ROI.

4.2.3.4 Acceptance Test

The software implementation will be considered successful for a given input data set
when the implementation is executed for the given input data set and produces results that
match with the corresponding output provided with the benchmark. Precision is dis-
cussed in Section 3.7.

4.2.3.5 Metrics

The primary metric associated with the Image Understanding benchmark is the total time
required to run a given input data set through the Image Understanding sequence gener-

DIS Benchmarks Version 1.0 Specifications – Image Understanding

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 84

ating accurate results. A series of secondary metrics for the individual times of the proc-
essing components is also required. The time associated with a processing component is
defined as the time at the beginning of one part in the flow to the beginning of the next
part in the flow. For example, the time to perform the Morphological Filter component is
the time it takes to apply the morphological filter to the input image V and obtain the out-
put image W, not including time to read input image, V, and kernel, K.

4.2.3.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/projectweb/dis.

4.2.3.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

4.2.3.8 Test Data Sets

Test data sets are available at http://www.aaec.com/projectweb/dis.

4.2.3.9 References

[Castleman] Castleman, K., Digital Image Processing, Prentice-Hall, 1979.

[Maragos] Maragos, P., “Tutorial on advances in morphological image processing
and analysis,” Optical Engineering, vol. 26, no. 7, pp. 623-632, July 1987.

[Parker 94] Parker, J., Practical Computer Vision Using C, Wiley, 1994.

[Parker 97] Parker, J., Algorithms For Image Processing And Computer Vision, Wiley
Computer Publishing, 1997.

[Unser] Unser, M., “Sum and Difference Histograms for Texture Classification,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-8, 1:118-125, 1986.

 [Weeks] Weeks, A., Fundamentals of Electronic Image Processing, SPIE/IEEE
series on imaging science & engineering, 1996.

DIS Benchmarks Version 1.0 Specifications – Fourier Transform

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 85

4.2.4 Multidimensional Fourier Transform

The Fourier Transform has wide application in a diverse set of technical fields. It is util-
ized in image processing, convolution and deconvolution, and digital signal filtering to
name a few. This benchmark attempts to measure the performance of a typical range of
transforms using the candidate hardware configurations.

The DIS Fourier Transform Benchmark consists of applying a three-dimensional Dis-
crete Fourier Transform (DFT) to a series of transform tests, all of which have the same
number of dimensions, but may have different sizes and are repeated a specified number
of times. The three-dimensional DFT is defined by

F(x, y,z) = e2πik3 z Ze2πik2 y Ye2πik1x X f k1, k2, k3()
k1 =0

X

∑
k2 = 0

Y

∑
k3 = 0

Z

∑ 4.2.4.1

where f is the input complex three-dimensional array of size X × Y × Z , and F is the
output forward transform of f of the same size. An individual transform test consists of
a specification of the size of the input array and the number of times the input array is
transformed into the output array. Note that this benchmark does not specify any recur-
sive application of the DFT (for example, applying the transform, calculating the inverse,
and applying the transform to the result). Thus, the input array, f , should not be over-
written during the calculation of the transform output, F .

The size of the three-dimensional data array to be transformed is specified by an input file
(i.e., the values of X , Y , and Z), but the initial values for the array data, f , are not pro-
vided. The DFT computes the transform of a three-dimensional array of complex floats,
but the computational speed or efficiency of the DFT is not data dependent. Because of
this separation between data and performance, and to reduce the size of the input set, only
the lengths of the three dimensions are specified. The values for the array should be ran-
domly initialized once for each transform test. The characteristics of the random input
initialization is left to the individual implementers with the conditions that the random
number generator have a period larger than 232 and the values generated lie within the
bounds detailed for floats in Section 3.6 (Common Data Types). Note that almost all im-
plementations of the standard UNIX rand() function satisfy these conditions.

4.2.4.1 Input

An input set for the Fourier Transform Benchmark is provided in a single ASCII text file
as a list of transform tests. All values within the input file are integers and are white-
space-delimited (here “white space” indicates carriage returns, line feeds, or spaces). The
first value in the input file is an integer, which specifies the number of transform tests
detailed in the file. The rest of the file consists of a series of four integers where each set
of four specifies a transform test. The first three integers of a set are the lengths of the
first, second, and third dimensions of the transform, respectively. The fourth integer of a
set is the number of times to repeat this particular test. Table 4.2.4-1 shows a schematic
of an input file where M is the number of transform tests detailed in the file and X , Y ,
and Z are the lengths of the first, second, and third dimensions, respectively.

DIS Benchmarks Version 1.0 Specifications – Fourier Transform

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 86

Table 4.2.4-1: Fourier Transform Input Schematic

Value Description

integer number of transform tests, M

integer length of 1st dimension, X

integer length of 2nd dimension, Y transform test 1

integer length of 3rd dimension, Z

integer number of iterations

integer length of 1st dimension, X

integer length of 2nd dimension, Y transform test 2

integer length of 3rd dimension, Z

integer number of iterations

: : :

integer length of 1st dimension, X

integer length of 2nd dimension, Y transform test M

integer length of 3rd dimension, Z

integer number of iterations

An example of an input file is given in the table below. This example file specifies five
separate transform tests: a 200x100x1 transform repeated 10,000 times, a 5000x100x1
transform repeated 5000 times, a 20,000x800x1 transform repeated 100 times, a
5000x200x2 transform repeated 250 times, and a 4000x1000x1 transform repeated 500
times.

Table 4.2.4-2: Fourier Transform Input Example

5 # number of transform tests, M

200 100 1 10000 # parameters for transform test 1

5000 100 1 5000 # parameters for transform test 2

20000 800 1 100 # parameters for transform test 3

5000 200 2 250 # parameters for transform test 4

4000 1000 1 500 # parameters for transform test 5

4.2.4.2 Algorithmic Specification

The discussion of the algorithmic specification for the DFT in this benchmark will be
limited, as the amount of material freely available to the implementers is extremely large.
Rather, a brief description of several FFT algorithms, with appropriate references, will be

DIS Benchmarks Version 1.0 Specifications – Fourier Transform

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 87

given. The focus of the discussion is on the FFT methods since almost all transform im-
plementations are FFT rather than a direct implementation of the DFT Equation 4.2.4.1.
However, any implementation which yields valid results is acceptable. The algorithm
descriptions provided here are not meant as a complete listing of all available or allow-
able methods; implementers are encouraged to use any methods that will demonstrate the
advantages of their hardware configurations. Also, a brief discussion of implementing
algorithms which require dimensions of a power of two using “zero padding” is given.

The majority of FFT methods transform the original DFT into a series of subproblems
which achieves a lower computational complexity[Duhamel90]. The most common sub-
problem decomposition is to assume that the dimensions of the input array are powers of
two. This allows the summations present in Equation 4.2.4.1 to be split into two sub-
problems [Cooley]. The even- and odd-numbered frequencies are separated and the
problem is recursively split by two until the original transform of length N = X ×Y × Z
is reduced to transforms of length one, which is simply the identity operation that copies
its input number to its output slot. The total process is on the order of N log2 N and re-
quires a bit reversal either on the input or the output depending upon the specific algo-
rithm. Methods that do the bit-reversal then build up the transform are generally called
decimation-in-time (DIT) or Cooley-Tukey FFT methods. Methods that manipulate the
input data and then do bit-reversal on the output values are generally called decimation-
in-frequency (DIF) or Sande-Tukey FFT methods.

The same type of reasoning can be applied, but the recursive subdivision stopped, at
higher powers of two (typically four and eight with this type of algorithm called radix-4
or radix-8 methods[Ganapa]). These small transforms are done using highly optimized
code, which provides a modest but appreciable performance improvement. A combina-
tion of subproblems of lengths two, four, or eight are also possible, and are generally
called split-radix methods[Duhamel84].

The division of the DFT into subproblems is not limited to powers of two, but can be ap-
plied using prime numbers[Rader] and combinations of powers of two and primes with
relatively sophisticated decision trees to determine the “optimal” subproblem divisions
for a given problem [Frigo], [Frigo99].

The subproblem division of Equation 4.2.4.1 into powers of two requires that most of the
computations, especially complex multiplications, be done in the initial stages of the al-
gorithms for the Sande-Tukey FFT methods. However, the Cooley-Tukey methods place
most of the complex computation at the final stages of the algorithms. A combination of
the DIT and DIF methods with a transition stage between the domains would then lead to
computation savings which is the idea behind Decimation-In-Time-Frequency methods
[Saidi].

Several FFT algorithms require that the input array have dimensions that are a power of
two. One method for using these algorithms when the array dimensions are not powers of
two is to use a technique called “zero padding”. This technique simply increases the
memory size of the original array to the next power of two and initializes the extra space
to zero. The numerical accuracy of the DFT algorithm is essentially unaffected by these
“extra” zeros, and the result should be identical to other DFT methods. The primary

DIS Benchmarks Version 1.0 Specifications – Fourier Transform

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 88

trade-off is in terms of excess storage required for the technique that can become critical
for large input arrays.

4.2.4.3 Output

The output of this benchmark consists of an ASCII text file indicating the “mean frac-
tional error” of the individual transform tests. All values placed in the output file are
white-space-delimited (see Section 3.6 for the definition of “white space”). The first
value in the file is an integer that specifies the number of transform tests performed and
should match the corresponding value from the input file. The float values for the “mean
fractional error”, ε mfe, for each test are then listed in the order they were performed.

Table 4.2.4-3 shows a schematic of an output file.

Table 4.2.4-3: Fourier Transform Output Schematic

Value Description

integer number of transform tests, M

float mean fractional error of test 1

float mean fractional error of test 2

: :

float mean fractional error of test M

The “mean fractional error”, ε mfe, is defined to be

ε mfe =
1

XYZ

2 fxyz − ˆ f xyz

f xyz + ˆ f xyz + εx
∑

y
∑

z
∑ (4.2.4.2)

where f is the original input to the transform, ˆ f is the inverse of the transform of f , i.e.,

ˆ f = F−1 f() =
1

XYZ
e −2πik3z Z e−2πik 2y Ye −2πik1x X F k1 ,k2 , k3()

k1 =0

X

∑
k 2 =0

Y

∑
k3 =0

Z

∑ (4.2.4.3)

which differs from Equation 4.2.4.1 by simply changing the sign within the exponents
and dividing the result with the total size of the transform. The variable ε within Equa-
tion 4.2.4.2 is a small value used to prevent division by zero. The value ε mfe is then a

measure of the perturbation of the transformed data from the original. Note that it is not
necessary to implement an inverse DFT to calculate ˆ f . The array ˆ f can be calculated
from the identity,

ˆ f = F−1 f() = F * f *() (4.2.4.4)

where * indicates complex conjugation.

DIS Benchmarks Version 1.0 Specifications – Fourier Transform

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 89

4.2.4.4 Acceptance Test

A given input set will be considered successfully executed when each transform test suc-
cessfully passes the output provided with the benchmark. An individual transform test is
considered successfully executed when the value for ε mfe is less than or equal to the value

[To be supplied June 1999]. An input set is considered successfully executed when all of
the individual transform tests pass this same level of required accuracy.

4.2.4.5 Metrics

There are three metrics for this benchmark. The first, and primary, is the total time re-
quired to complete the input set. This should include the time for each transform test as
well as the I/O time required to load the randomly generated input and output the result.
The total time should not include the time necessary for the generation of the random
data. The second metric is the time required to complete the individual transform tests.
Again, this time should include any I/O time for loading of data and output of results.
The third metric measures the “mflops” [Johnson] of the individual transform tests. The
“mflops” for a given transform is defined to be

"mflops"=
5 X × Y × Z()log2 X × Y × Z()

time for one DFT in µs()
(4.2.4.5)

where X , Y , and Z are the lengths of the first, second, and third dimensions, respec-
tively. The rational behind using this metric is to provide a reasonable comparison be-
tween different architectures, implementations, and transform sizes. Note that the
“mflops” is not the MFLOPS (millions of floating-point operations per second), but an
estimate of that value which assumes a common baseline number of operations for any
implementation as

5 X × Y × Z() log2 X × Y × Z() +ϑ N() (4.2.4.6)

which is the radix-2 Cooley-Tukey FFT[Cooley]. This third metric is common in the
FFT literature and for more discussion of the reasoning behind the metric, the reader is
referred to [Johnson].

4.2.4.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/projectweb/dis.

4.2.4.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

4.2.4.8 Test Data Sets

Test data sets are available at http://www.aaec.com/projectweb/dis.

DIS Benchmarks Version 1.0 Specifications – Fourier Transform

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 90

4.2.4.9 References

[Duhamel90] Duhamel and Vetterli, “Fast Fourier transforms: a Tutorial Review and
State of the Art,” Signal Processing, vol. 19, pp.259-299, April 1990.

[Cooley] Cooley and Tukey, “An Algorithm for Machine Computation of Complex
Fourier Series,,” Math. Comp., vol. 19, pp.297-301, April 1965.

[Ganapa] Ganapathiraju, Hamaker, Picone and Skjellum, "Analysis and Characteri-
zation of Fast Fourier Transform Algorithms," MS State High Perform-
ance Computing Laboratory, Oct. 1997.

[Duhamel84] Duhamel and Hoolomann, “Split Radix FFT Algorithm,” Electronic Let-
ters, vol. 20, pp.14-16, Jan 1984.

[Rader] Rader, “Discrete Fourier Transforms when the Number of Data Samples is
Prime,” Proc. of the IEEE, vol. 56, pp.1107-1108, June 1968.

[Frigo] Frigo and Johnson, The FFTW web page, http://theory.lcs.mit.edu/~fftw

[Frigo99] Frigo, “A Fast Fourier Transform Compiler,” MIT Laboratory for Com-
puter Science, Feb. 16, 1999.

[Saidi] Saidi, “Decimation-In-Time-Frequency FFT Algorithm,” Proc. of Inter-
national Conference on Acoustics, Speech, and Signal Processing, vol. III,
pp.453-456, Adelaide, Australia, April 1994.

[Johnson] Frigo and Johnson, The BenchFFT web page,
http://theory.lcs.mit.edu/~benchfft

4.2.5 Data Management

The Data Management Benchmark measures application-level timing performance of
typical DBMS. This benchmark focuses on index management and ad hoc or content-
based queries since these two areas are the primary weaknesses of traditional DBMS.

The benchmark is implemented as a simplified object-oriented database with an R-Tree
indexing scheme. The R-Tree index is a height-balanced containment structure that uses
multidimensional hyper-cubes as keys. The intermediate nodes are built up by grouping
all of the hyper-cubes at the lower level. The grouping hyper-cube of the intermediate
node completely encloses all of the lower hyper-cubes, which may be points. The system
must respond to a set of command operations: Insert, Delete, and Query, queries being
either key-based or content-based. The commands are to be issued to the system in a
batch form as a data set.

The Insert command operation places a new data object into the database with the speci-
fied attribute values. Each Insert command contains all the information contained by the
data object, including the hyper-cube key and list of non-key attribute values.

The Query command operation searches the database and returns all data objects that are
consistent with a list of input data attribute values. The input attribute values can specify

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 91

attribute values which are key, non-key, or both. A data object is consistent with the
Query when the input values intersect the stored values of the data object.

The Delete command operation removes all objects from the database that are consistent
with a list of input data attribute values. The types and conditions of the input attribute
list, as well as the description for consistency, are the same as for the Query operation.

4.2.5.1 Input

The input for each test of this benchmark consists of one data set. All of the data sets
share a common format. Each set is a 8-bit ASCII character file and consists of a series
of sequentially issued commands delimited by a carriage return, i.e., each line of the file
represents a separate command. Table 4.2.5-1 gives the command operations, the char-
acter code used to designate the command, the data placed after the command code on the
rest of the line, the return expected from the application, and a brief description of the op-
eration.

Table 4.2.5-1: Command Operations

Command Code Line Elements Return Description

Initializa-
tion

0 Fan Size NULL Initializes the index
by specifying the fan
of the tree.

Insert 1 Object Type
Key Attribute
Key Attribute

:
Key Attribute
Non-Key Attribute
Non-Key Attribute

:
Non-Key Attribute

NULL Insert new entry into
database. See below
for discussion of the
Object Type and key
and non-key attrib-
utes.

Query 2 Attribute Code
Attribute Value
Attribute Code
Attribute Value
:
Attribute Code
Attribute Value

Data Object List Return all data ob-
jects that are consis-
tent with the input
attributes specified.
Note that attribute
codes and values al-
ways appear as pairs.

Delete 3 Attribute Code
Attribute Value
Attribute Code
Attribute Value
:
Attribute Code
Attribute Value

NULL Delete all data ob-
jects that are consis-
tent with the input
attributes specified.
Note that attribute
codes and values al-
ways appear as pairs.

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 92

Each data object has a set of attributes, where the first eight attributes are used by the R-
Tree index as the key and represent two points that specify a hyper-cube. Each point con-
sists of four 32-bit IEEE-formatted floating-point numbers denoting a four-dimensional
point in Euclidean space as the T-position, X-position, Y-position, and Z-position. Thus,
the index key, which consists of a “lower” and “upper” point, is eight 32-bit floating-
point numbers. Note that a point in hyper-space can be thought of as time (T) and a
three-dimensional point (X,Y,Z), but this is immaterial to this benchmark.

The total number of attributes assigned to a data object is the sum of the key and non-key
attributes. The number of non-key attributes for a given data object is determined by the
Object Type, and is given in the table below. The Object Type used by the Insert com-
mand specifies which of the three types of objects (Small, Medium, and Large) is being
inserted by the operation. Table 4.2.5-2 gives the character/byte code and the number of
non-key attributes for each data object type

Table 4.2.5-2: Data Object Types

Object Type Code No. of Non-Key Attributes

Small 1 10

Medium 2 17

Large 3 43

Data objects differ by the number of non-key attributes assigned to each. Each non-key
data attribute has an identical format that primarily consists of an 8-bit NULL-terminated
ASCII character sequence of maximum length 1024. Table 4.2.5-2 gives the number of
non-key attributes assigned to each object type. The maximum sizes for the Small (over-
head + 10 * 1024), Medium (overhead + 17 * 1024), and Large (overhead + 43 * 1024)
data objects are known beforehand, but the total size of the database is not determined
until the input is set. The database should be able to handle all three types of data object,
in any permutation. Note that the object type specification is placed at the beginning of
the Insert command as a convenience, since the number of attributes can be determined
by reading until the next carriage return, i.e., the end of the command.

The Delete and Query commands each reference a specified attribute by means of an At-
tribute Code. The following table gives the attribute code sequence for both the key and
non-key attributes. Also, each attribute is assigned a type and, if applicable, a name and
units.

Table 4.2.5-3 Attribute Codes and Descriptions

Attribute
Code

Name Type

0 T float

Lower 1 X float

Point 2 Y float

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 93

Key 3 Z float

Attributes 4 T float

Upper 5 X float

Point 6 Y float

7 Z float

8 property char string

9 property char string

Small : : :

16 property char string

17 property char string

18 property char string

Non-Key 19 property char string

Attributes Medium : : :

23 property char string

24 property char string

25 property char string

26 property char string

Large : : :

49 property char string

50 property char string

Only the Query commands result in a response from the database. The response is the set
of data objects that are appropriate for the corresponding Query. A description of the re-
sponse is given in the Output section of this benchmark specification.

The formal definition of each command input line is described in the following sections.
Each command line represents separate pieces of data, which are ASCII space-delimited
unless otherwise stated. References to integers and floats indicate 32-bit IEEE standards.
The first piece of data for every command line is the command code, which indicates the
specific operation. The rest of the line is relative to the command type and is described in
detail below.

4.2.5.1.1 Initialization

The Initialization command appears only once per data set and is always the first com-
mand. Only two pieces of information is provided for the command where the first is the
command type, which in this case is ‘0’. The second piece of data is the fan size, which
is an integer. A diagram of the Initialization command line is given below:

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 94

int int

code fan size

4.2.5.1.2 Insert

The Insert command is different from the Delete and Query commands, in that the Insert
command does not reference data attributes by the appropriate attribute code given in
Table 4.2.5-3. The Insert command does not need to specify the attribute code, since all
attributes are provided in the command line and are in the proper order. Thus, the Insert
command input line does not use the attribute codes in order to reduce the size of the in-
put data sets and to simplify the command line input.

The first piece of data in the command line is the command type, which is ‘1’ for the In-
sert operation. The next piece of data represents the object type, and can be the character
1, 2, or 3, for Small, Medium, or Large, respectively. The next eight pieces of data make
up the index key for the object as the floating-point values for T, X, Y, and Z, for the
“lower” and “upper” hyper-points, respectively. The remaining data are the individual
non-key attribute character sequences of the new object. Each attribute is space-
delimited, and is of variable length. The number of attributes on the line is dependent
upon the object type being read, and is given in Table 4.2.5-2. The maximum size for
any attribute on the command line is 1024, although in practice the attributes will be
smaller. A diagram of the Insert command line is given below:

��

int int float float float float float float float float char char � char

code type key attributes non- key attributes

4.2.5.1.3 Query

The Query command returns all data objects within the current database that are consis-
tent with the provided key and non-key attribute values. A data object is consistent when
the object’s attribute values “intersect” with the Query attribute values. The definition of
intersection is different for the key and non-key attributes. The attributes that make up
the index key are hyper-cubes and the definition for an intersection is an intersection of
the respective hyper-cubes, i.e., an intersection occurs whenever the input hyper-cube and
the stored hyper-cube share any of the hyper-space. The non-key attributes consist of
character sequences and the definition of an intersection is when any part of the stored
character sequence matches the entire input sequence.

The first piece of data is the command code, which is ‘2’ for Query. The rest of the
command line is a list of attribute code and value pairs. A diagram of the Query com-
mand line is given below:

��

int

code

int

attribute code

float / char

attribute value
�

int

attribute code

float / char

attribute value

The number of attribute code-value pairs ranges from 1 to 50, where an attribute code is
never repeated in a single command line. The attribute value type depends upon the at-

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 95

tribute code where an attribute code between zero and seven indicates a float and an at-
tribute code between eight and 50 indicates a character sequence. It is possible that a
Query will specify an attribute code that is not applicable to a specific data object. For
example, any attribute code greater than 17 for a Small object, or any attribute code
greater than 24 for a Medium object. The query search values for these cases should be
ignored, and should not prevent the candidate data object from inclusion in the Query
solution.

A key query, a search which uses the R-Tree index to search the database, requires a full
index key, i.e., all eight floating point values specifying the search hyper-cube. The
Query command input line need not contain all eight values for the search. If so, the
search hyper-cube uses “wild-card” values for the rest of the search hyper-cube that
match all possible stored values. An example of an incomplete key Query is

2 3 0.0 7 10.0

which searches the current database for all data objects which were between the Z-
positions of 0.0 and 10.0 for any values for the T-, X-, and Y-positions. Similarly, ad hoc
queries also use wild-card values for missing values of the search hyper-cube.

4.2.5.1.4 Delete

The Delete command removes all data objects in the database that are consistent with the
provided attributes. A data object is consistent when the object’s attribute values “inter-
sect” with the Query attribute values. The definition of intersection is different for the
key and non-key attributes. The attributes that make up the index key are hyper-cubes
and the definition for an intersection is an intersection of the respective hyper-cubes, i.e.,
an intersection occurs whenever the input hyper-cube and the stored hyper-cube share any
of the hyper-space. The non-key attributes consist of character sequences and the defini-
tion of an intersection is when any part of the stored character sequence matches with the
input sequence. This description of consistency is identical to the one given for the
Query command in the previous section.

The first piece of data is the command code, which is ‘3’ for the Delete operation. The
rest of the command line is a list of attribute code and value pairs and is identical to the
Query command given in the previous section. A diagram of the Delete command line is
given below.

��

int

code

int

attribute code

float / char

attribute value
�

int

attribute code

float / char

attribute value

The description of the attribute code-value pairs and the use of wild-card values is identi-
cal to the Query command given in the previous section.

4.2.5.2 Algorithmic Specification

The database consists of various combinations of the three types of data objects. The al-
gorithm requires the maintenance of an R-Tree index structure. The program shall re-
spond to the command operations: Insert, Query, and Delete. This section has three

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 96

parts: the data object description, R-Tree index structure and description, and R-Tree
variant discussion.

4.2.5.2.1 Data Object Description

Each entry in the database will be one of three types as discussed in section 4.2.5.1. A
data object has a set list of attributes, which are the sum of the key and non-key attributes.
The first eight attributes represent the index key and is specified as eight 32-bit IEEE
floating-point numbers representing the T, X, Y, and Z-positions of both the “lower” and
“upper” points of a hyper-cube, respectively. Finally, each object has a constant number
of attributes or parts. A non-key data object attribute is an 8-bit NULL-terminated ASCII
character sequence of maximum length 1024. The number of attributes assigned to each
data object type is given in Table 4.2.5-2. The attributes for a given data object reference
each other as a single-linked list and the data object holds a reference to the first attribute
in the list which is defined as the head. Separate indices that would use the non-key at-
tributes are not permitted for this benchmark. Thus, a Query operation which contains no
key search information will search the entire database for consistent entries.

4.2.5.2.2 R-Tree

This benchmark requires the implementation of a simplified object-oriented database and
an attendant R-Tree indexing structure. A general R-tree has the following properties:
1. All leaves are at the same level (height-balanced).
2. Every node contains between kM and M index entries unless it is the root. (M is the

order of the tree).
3. For each entry in an intermediate node, the sub-tree rooted at the node contains a hy-

per-cube if and only if the hyper-cube is “covered” by the node, i.e., containment.
4. The root has at least two children, unless it is a leaf.

This benchmark requires the R-Tree structure be maintained during execution of the da-
tabase implementation. However, the particular method used to maintain the R-Tree
(search, tree compacting, etc.) is left to the user.

This section gives a brief description of the R-Tree algorithm and two variants. One vari-
ant allows for concurrency assurance without a full index list update (R-Link tree); the
other seeks to minimize the overlap of the R-Tree with the offset of increasing the tree’s
height (R+-Tree). The user is encouraged to implement the standard R-Tree, variant de-
scribed here, or other variant, as is most suitable for the hardware being tested. Descrip-
tions given here are for illustrative purposes; they are not intended to dictate
implementation strategy.

The R-Tree index provides a multi-dimensional data indexing scheme. It is a direct ex-
tension of the B-Tree in k dimensions (where k = 4 for this benchmark). The structure is
a height-balanced containment tree, which consists of intermediate and leaf nodes. The
data objects are stored as leaf-nodes (requiring four-dimensional position information).
The intermediate nodes are built up by grouping all of the hyper-cubes at the lower level.
The grouping hyper-cube of the intermediate node completely encloses all of the lower
hyper-cubes and/or points. An example is the placement of rectangles in a Cartesian
plane given in Figure 4.2.5-1.

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 97

A
B

3

2

1

4

Figure 4.2.5-1: R-Tree 2D Example

This layout of rectangles would produce an index given in Figure 4.2.5-2.

2 3

B

1 4

A

Figure 4.2.5-2: R-Tree Structure Example

The first command operation to be detailed is Insert . The Insert is the method used to
place new data objects into the index and is the primary index management method, and
thus the most complex. The command operation Insert for a generic R-Tree is given in
Figure 4.2.5-3.

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 98

Method Insert(R, E)

Input: An R-Tree rooted at R and new data object with input hyper-cube E

Output: The new R-Tree after insertion of data object.

Method: Find where object should go and add to leaf nodes, splitting if
necessary.

1. Find leaf for insertion. If R is not a leaf, recursively descend R and find L
which is defined as the leaf node of R which gives the minimum penalty. The
penalty of “change in area” proposed by Guttman is defined as the difference
between the union of the hyper-cubes L and E and the area of L. The union of
two hyper-cubes is itself a hyper-cube which minimally spans its components.

2. Insert. If L is not full, install E on L. Otherwise split L. Splitting L consists of
separating L into two groups according to a similar “change in area” penalty.
One group is placed on the new node, and the other is Inserted into the parent,
splitting again if necessary.

3. Adjust Keys . Check the immediate parent of new node. If the key is already
accurate or if there is no parent, stop. Otherwise, modify the parent to be the union
of its children. Recursively ascend tree until root, R.

Figure 4.2.5-3 Insert

The “change in area” penalty is only one of several methods in choosing the leaf for in-
sertion and for splitting. The user is referred to [Guttman], [Kornacker], and [Sellis], for
a sampling of the different methods.

The second command operation detailed is the Query command, which is described in
Figure 4.2.5-4. The Query command recursively descends all paths of the R-Tree which
are consistent with the input search key returning all data objects which are consistent
with the same search key.

Method Query (R, K, A)

Input: An R-Tree rooted at R, search key K, and non-key search values A

Output: The set of objects which are consistent with search key K.

Method: Recursively descend all paths of R which are consistent with K.

1. Search. Check each subtree of R to see if K is consistent. If so, search on subtree
until leaf

2. Check Key Attributes . If current node is a leaf, check if K is consistent with
data object. If so, add data object to solution set

3. Check Non-Key Attributes . Remove all entries in current solution set which
are not consistent with non-key attributes of input values A.

4. Return. Return complete solution set

Figure 4.2.5-4: Query

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 99

The Query command detailed in Figure 4.2.5-4 is for key, non-key, and ad hoc queries.
Note that a non-key query will check the entire database for all consistent objects. The
method given in Figure 4.6 will work for a non-key query but will yield poor perform-
ance. Because of the default “wild-cards” for the non-specified search hyper-cube, the
second step of the method will return the entire database as a list, which will then be
searched by the third step. The creation of that list using the R-Tree index is not efficient
and the benchmark implementors are encouraged to have auxiliary lists or parallel
searches to improve the performance for non-key queries.

The final command operation detailed is the Delete operation, described in Figure
4.2.5-5. The purpose of the Delete command is to measure the performance of index
management when entries are removed. The Delete command presented here uses the
Query operation to determine the data objects that need to be removed, and so, the Delete
performance is also a measure of the Query performance.

Method Delete (R, K, A)

Input : An R-Tree rooted at R, search key K, and non-key search values A

Output: The new R-Tree after deletion of all consistent data objects.

Method : Remove all data objects consistent with both K and A.

1. Search . Query index for all entries, L, consistent with K and A.

2. Delete . Remove all entries in L from R

2.1. Remove: Remove entry in L from parent leaf, P.

2.2. Condense . Recursively ascend tree, from P, adjusting the keys to minimize
the penalty until the root, R.

3. Clean-up: If the root node has only one child, make child the new root.

Figure 4.2.5-5: Delete

4.2.5.2.3 R-Tree Variants

The user is constrained to implement the R-Tree structure as the indexing scheme for this
benchmark application. However, the user is encouraged to select any implementation or
variant of the R-Tree algorithm. Two variants, which may improve performance for a
specific hardware architecture, are the R-link tree and the R+-Tree; these are discussed
here.

The R-link tree variant uses a technique corresponding to the B-link tree to develop a
scheme that does not require parent node locking for concurrent operations on the tree.
Two differences from the base R-Tree are introduced for R-link trees. The first requires
that all nodes within a level are right-linked together for a singly linked list. The second
difference adds a logical sequence number (LSN) to each node which is unique within the
tree/partition. The R-link algorithm uses the LSN to provide a mechanism for determin-
ing when an operation’s understanding of a given node is obsolete, i.e., a node split has

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 100

occurred. If a split has occurred, the right-link is used to traverse the tree until a correct
or expected LSN is found.

The R+-Tree eliminates overlap by reducing any overlapping hyper-cubes into sub-cubes
and redistributing the tree. This provides a marked increase in search performance. The
increase is offset by a more complicated index maintenance and by an increase of ap-
proximately 10% for the space required for the index.

4.2.5.3 Output

The output of the database will be the responses to each Query operation.

The response to a Query operation consists of a set of data objects that are consistent with
the Query. Each data object in a response is represented as the list of its attributes in or-
der defined by Table 4.2.5-3. The list of attributes shall be written to an 8-bit ASCII
character file where each attribute is space delimited and with each list carriage return
delimited. The format is very similar to the Insert operation format for the input data sets
with the only difference being the omission of the command code. The set of data objects
returned by a Query must be placed in the output file continuously, i.e., in adjacent lines,
although the order of the set is not constrained.

4.2.5.4 Acceptance Test

A given data set will be considered successfully executed when the command operation
query responses match with the corresponding data set query responses provided by the
baseline results.

4.2.5.5 Metrics

The primary metric associated with the Data Management benchmark is total time for
accurate completion of a given input data set. A series of secondary metrics are the indi-
vidual times of the command operations: Insert, Delete, and Query. Best, worst, and av-
erage times should be reported for all operations for each data set.

The time for a non-response command operation to complete is defined as the difference
between the time immediately before the command is placed in the database input queue
and the time immediately before the next command is placed in the same input queue.
This time difference is essentially the rate at which each line of the input data set is read.
This definition is applied to the Insert and Delete command operations. The time for a
Query command operation to complete is defined as the difference between the time im-
mediately before the command is placed in the input queue to the time immediately after
the response is placed in the output queue.

4.2.5.6 Baseline Source Code

Baseline source code is available at http://www.aaec.com/projectweb/dis.

4.2.5.7 Baseline Performance Figures

Baseline performance figures are available at http://www.aaec.com/projectweb/dis.

DIS Benchmarks Version 1.0 Specifications – Data Management

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 101

4.2.5.8 Test Data Sets

Test data sets are available at http://www.aaec.com/projectweb/dis.

4.2.5.9 References

[Guttman] Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,”
Proc. ACM SIGMOID, pp. 47-57, June 1984.

[Kornacker] Kornacker, Banks, “High-Concurrency Locking in R-Trees,” Proceedings
of 21st International Conference on Very Large Data Bases, pp. 134-145,
September 1995.

[Sellis] Sellis , Roussopoulos, and Faloutsos, “The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects,” Proc. 13th International Conference on Very
Large Data Bases, pp. 507-518, Brighton, September 1987.

DIS Benchmarks PRELIMINARY Version 0.5 Contact Information

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 102

5 Contact Information

For questions about… Contact…

• Data-Intensive Systems program Dr. José Mu•oz
DARPA / ITO
3701 North Fairfax Drive
Arlington, VA 22203

• This Document

• Benchmarks

• Procedures

• Input/Output Data

• Baseline Performance

• Reporting of Results

• Multidimensional Fourier Transform
Benchmark

• Image Understanding Benchmark

• Data Management Benchmark

Joseph F. Musmanno
Atlantic Aerospace Electronics Corporation
470 Totten Pond Road
Waltham, MA 02451
Telephone: 781-890-4200x3218
Fax: 781-890-0224
Email: joe@aaec.com

• Method of Moments Benchmark Joseph W. Manke, Ph.D.
The Boeing Company
PO Box 3707 MC 7L-21
Seattle, WA 98124-2207
Telephone: 425-865-3163
Fax: 425-865-2966
Email: joseph.w.manke@boeing.com

• Ray-Tracing Benchmark Jon W. Harris
ERIM International, Inc.
PO Box 134008
Ann Arbor, MI 48113-4008
Telephone: 734-994-1200x3313
Fax: 313-994-5124
Email: jharris@erim-int.com

DIS Benchmarks PRELIMINARY Version 0.5 References

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 103

6 References

DIS Program

[DARPA] DARPA/ITO website http://www.darpa.mil/ito.

[Mu�oz] Dr. Jos� Mu�oz, presentation at Data-Intensive Systems Principal Investi-
gators’ meeting, 1 October, 1998,
http://www.darpa.mil/ito/research/pdf_files/dis_approved.pdf.

Benchmarking

[Honeywell] Honeywell, Inc., Benchmarking Tools and Assessment Environment for
Configurable Computing: Benchmark Definition Methodology Document,
submitted to USA Intelligence Center and Fort Huachuca under contract
number DABT63-96-C-0085, 19 February 1998.

[Weems] Weems, Riseman, and Hanson, The DARPA Image Understanding
Benchmark for Parallel Computers, Journal of Parallel and Distributed
Computing, 11, 24 January 1991.

[ASCII] Information Systems - Coded Character Sets - 7-bit American National
Standard Code for Information Interchange, ITI (NCITS), ANSI x3.4-
1986 (R1997).

[Float] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-
1985 (IEEE 754), published by the Institute of Electrical and Electronics
Engineers, Inc, 345 East 47th Street, New York, NY 10017, 1986.

Method of Moments

[Rokhlin-1] V. Rokhlin, “Diagonal Forms of Translation Operators for the Helmholtz
Equation in Three Dimensions”, Research Report YALEU/DCS/RR-894,
Dept. of Comp. Sci., Yale Univ., March, 1992.

[Rokhlin-2] R. Coifman, V. Rokhlin and S. Wandzura, “The Fast Multipole Method
for the Wave Equation: A Pedestrian Prescription”, IEEE Antennas and
Propagation Magazine, 35, No. 3, June 1993, pp. 7-12.

[Dembart-1] B. Dembart and E. L. Yip, “A 3-d Fast Multipole Method for Electromag-
netics with Multiple Levels”, ISSTECH-97-004, The Boeing Company,
December, 1994.

[Dembart-2] M. A. Epton. and B. Dembart, “Multipole Translation Theory for the 3-D
Laplace and Helmholtz Equations”, SIAM J. Sci. Comput. 16, No. 4, pp.
865-897, July, 1995.

[Dembart-3] M. A. Epton and B. Dembart, “Low Frequency Multipole Translation
Theory for the Helmholtz Equation”, SSGTECH-98-013, The Boeing
Company, August, 1998.

DIS Benchmarks PRELIMINARY Version 0.5 References

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 104

[Dembart-4] M. A. Epton and B. Dembart, “Spherical Harmonic Analysis and Synthe-
ses for the Fast Multipole Method”, SSGTECH-98-014, The Boeing
Company, August, 1998.

[Saad] Yousef Saad, “Iterative Methods for Sparse Linear Systems”, PWS Pub-
lishing Company, Boston, MA, 1996.

Simulated SAR Ray Tracing

Ray Tracing References

[1] K. Bouatouch and T. Priol. Parallel space tracing: An experience on an iPSC
hypercube. In N. Magnenat-Thalmann and D. Thalmann, editors, New Trends in
Computer Graphics (Proceedings of CG International ’88), pages 170–187,
New York, 1988. Springer-Verlag.

[2] J. G. Cleary, B. M. Wyvill, G. M. Birtwistle, and R. Vatti. Multiprocessor ray
tracing. Computer Graphics Forum, pages 3–12, 1986.

[3] F. C. Crow, G. Demos, J. Hardy, J. McLaugglin, and K. Sims. 3d image synthe-
sis on the connection machine. In Proceedings Parallel Processing for Com-
puter Vision and Display, Leeds, 1988.

[4] M. A. Z. Dipp´ e and J. Swensen. An adaptive subdivision algorithm and parallel
architecture for realistic image synthesis. ACM Computer Graphics, 18(3):149–
158, jul 1984.

[5] S. A. Green and D. J. Paddon. Exploiting coherence for multiprocessor ray trac-
ing. IEEE Computer Graphics and Applications, pages 12–27, nov 1989.

[6] H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura, and Y. Shigei. Load bal-
ancing strategies for a parallel ray-tracing system based on constant subdivision.
The Visual Computer, 4(4):197–209, 1988.

[7] A. J. F. Kok. Ray Tracing and Radiosity Methods for Photorealistic Image Syn-
thesis. PhD thesis, Delft University of Technology, jan 1994.

[8] T. T. Y. Lin and M. Slater. Stochastic ray tracing using SIMD processor arrays.
The Visual Computer, 7:187–199, 1991.

[9] D. J. Plunkett and M. J. Bailey. The vectorization of a ray-tracing algorithm for
improved execution speed. IEEE Computer Graphics and Applications, 5(8):52–
60, aug 1985.

[10] T. Priol and K. Bouatouch. Static load balancing for a parallel ray tracing on a
MIMD hypercube. The Visual Computer, 5:109–119, 1989.

[11] E. Reinhard. Hybrid scheduling for parallel ray tracing. TWAIO final report,
Delft University of Technology, jan 1996.

[12] I. D. Scherson and C. Caspary. A self-balanced parallel ray-tracing algorithm. In
P. M. Dew, R. A. Earnshaw, and T. R. Heywood, editors, Parallel Processing
for Computer Vision and Display, volume 4, pages 188–196, Wokingham, 1988.
Addison-Wesley Publishing Company.

[13] L. S. Shen, E. Deprettere, and P. Dewilde. A new space partition technique to
support a highly pipelined parallel architecture for the radiosity method. In Ad-

DIS Benchmarks PRELIMINARY Version 0.5 References

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 105

vances in Graphics Hardware V, proceedings Fifth Eurographics Workshop on
Hardware. Springer-Verlag, 1990.

[14] E. R. Frederik, W. Jansen . Rendering Large Scenes Using Parallel Ray Tracing.
Parallel Computing, pages 873-885, 1997

[15] T. Wilson, N. Doe. Acceleration Schemes for Ray Tracing. Report Number: CS-
TR-92-22, Department of Computer Science, University of Central Florida,
September 1992.

[16] R.L. Cook, T. Porter, L. Carpenter. Distributed Ray Tracing. Computer Graphics
(Proceedings of SIGGRAPH 1984), 18(3), 137-145, July 1984.

[17] R.L. Cook. Stochastic sampling in computer graphics, ACM Transaction in
Graphics 5(1), 51-72, January 1986.

[18] A. S. Glassner (Editor), An Introduction to Ray Tracing, Academic Press 1989.

[19] Ray Tracing Bibliography,
http://www.cm.cf.ac.uk/Ray.Tracing/RT.Bibliography.html

Simulated SAR References

[1] D.J. Andersh, M. Hazlett, S.W. Lee, D.D. Reeves, D.P. Sullivan and Y. Chu,
"Xpatch: A high fre-quency electromagnetic-scattering prediction code and envi-
ronment for complex three-dimensional objects," IEEE Antennas & Propaga-
tion. Magazine, vol. 36, pp.65-69, 1994.

[2] J. Baldauf, S.W. Lee, L. Lin, S.K. Jeng, S.M. Scarborough, and C.L. Yu, "High
frequency scattering from trihedral corner reflectors and other benchmark tar-
gets: SBR vs. experiment," IEEE Transacrions on Antennas and Propagation,
vol. 39, pp. 1345-1351, 1991.

[3] R. Bhalla and H. Ling, Image-domain ray tube integration formula for the
shooting and bouncing ray technique, University of Texas Report, NASA Grant
NCC 3-273, July 1993.

[4] R. Bhalla and H. Ling, "A fast algorithm for signature prediction and image
formation using the shooting and bouncing ray technique," to appear in IEEE
Transactions on Antennas and Propagation, 1995.

[5] G. Franceschetti, M. Migliaccio, D. Riccio, and G. Schirinzi, "SARAS: A Syn-
thetic Aperture Radar (SAR) Raw Signal Simulator," IEEE Transactions on
Geoscience and Remote Sensing, Vol. 30, No. 1, January 1992.

[6] G. Franceschetti, M. Migliaccio, and D. Riccio, "SAR Raw Signal Simulation of
Actual Ground Sites in Terms of Sparse Input Data," IEEE Transactions on
Geoscience and Remote Sensing, Vol. 32, No. 6, November 1994.

[7] D.E Herrick and I.J. LaHaie, SRIM Polarimetric Signature Modeling, ERIM
IR&D Final Report 675805-1-F, December 1988.

[8] D.E Herrick and B.J. Thelen, "Computer Simulation of Clutter in SAR Im-
agery," Proceedings of the Progress in Electromagnetics Research Symposium,
Cambridge, MA, July 1991

DIS Benchmarks PRELIMINARY Version 0.5 References

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 106

[9] D.E Herrick, "Computer Simulation of Polarimetric Radar and Laser Imagery,"
in Direct and Inverse Methods in Radar Polarimetry, W.-M. Boerner et al. (eds),
Klumer Academic Publishers, The Netherlands 1992.

[10] D.E Herrick, M.A. Ricoy, and W.D. Williams, "Modeling of Foliage Effects in
UHF SAR", Proceedings qfthe Ground Target Modeling and Validation Confer-
ence, Houghton, MI, August 1994.

[11] D.E Herrick, M.A. Ricoy, and W.D. Williams, "Synthesizing SAR Signatures of
Ground Vehicles with Complex Scattering Mechanisms", Proceedings of the
Ground Target Modeling and Validation Conference, Houghton, MI, August
1994.

[12] E.R. Keydel, D.E Henick, and W.D. Williams, "Interactive Countermeasures
Design and Analysis Tool," Proceedings of the Ground Target Modeling and
Validation Conference, Houghton, MI, August 1994.

[13] S.W. Lee and D.J. Andersh, On Nussbaum Method for Exponential Series, Elec-
tromagnetic Laboratory Technical Report ARTI-92-11, University of Illinois,
Urbana, November, 1992.

[14] H. Ling, R.C. Chou, and S.W. Lee, "Shooting and Bouncing Rays: Calculating
the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and
Propagation, vol. 37, pp. 194-05, 1989.

[15] J.M. Nasr and D. Vidal-Madjar, "Image Simulation of Geometric Targets for
Spaceborne Synthetic Aperture Radar", IEEE Transactions on Geoscience and
Remote Sensing, Vol. 29, No. 6, November 1991.

[16] N.D. Taket, S.M. Howarth, and R.E. Burge, "A Model For the Imaging of Urban
Areas by Synthetis Aperture Radar," IEEE Transactions on Geoscience and Re-
mote Sensing, Vol. 29, No. 3, May 1991.

[17] M.R. Wohlers, S.Hsiao, J. Mendelsohn, and G. Gerdner, "Computer Simulation
of Synthetic Aperture Radar Images of Three-Dimensional Objects," IEEE
Transactions on Aerospace and Electronic Systems, Vol. AES-16, No. 3, May
1980.

Image Understanding

[Castleman] Castleman, K., Digital Image Processing, Prentice-Hall, 1979.

[Maragos] Maragos, P., “Tutorial on advances in morphological image processing
and analysis,” Optical Engineering, vol. 26, no. 7, pp. 623-632, July 1987.

[Parker 94] Parker, J., Practical Computer Vision Using C, Wiley, 1994.

[Parker 97] Parker, J., Algorithms For Image Processing And Computer Vision, Wiley
Computer Publishing, 1997.

[Unser] Unser, M., “Sum and Difference Histograms for Texture Classification,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-8, 1:118-125, 1986

[Weeks] Weeks, A., Fundamentals of Electronic Image Processing, SPIE/IEEE
series on imaging science & engineering, 1996.

DIS Benchmarks PRELIMINARY Version 0.5 References

Atlantic Aerospace Electronics Corp. The Boeing Company ERIM International 107

Fourier Transform

[Duhamel90] Duhamel and Vetterli, “Fast Fourier transforms: a Tutorial Review and
State of the Art,” Signal Processing, vol. 19, pp.259-299, April 1990.

[Cooley] Cooley and Tukey, “An Algorithm for Machine Computation of Complex
Fourier Series,,” Math. Comp., vol. 19, pp.297-301, April 1965.

[Ganapa] Ganapathiraju, Hamaker, Picone and Skjellum, "Analysis and Characteri-
zation of Fast Fourier Transform Algorithms," MS State High Perform-
ance Computing Laboratory, Oct. 1997.

[Duhamel84] Duhamel and Hoolomann, “Split Radix FFT Algorithm,” Electronic Let-
ters, vol. 20, pp.14-16, Jan 1984.

[Rader] Rader, “Discrete Fourier Transforms when the Number of Data Samples is
Prime,” Proc. of the IEEE, vol. 56, pp.1107-1108, June 1968.

[Frigo] Frigo and Johnson, The FFTW web page, http://theory.lcs.mit.edu/~fftw

[Frigo99] Frigo, “A Fast Fourier Transform Compiler,” MIT Laboratory for Com-
puter Science, Feb. 16, 1999.

[Saidi] Saidi, “Decimation-In-Time-Frequency FFT Algorithm,” Proc. of Inter-
national Conference on Acoustics, Speech, and Signal Processing, vol. III,
pp.453-456, Adelaide, Australia, April 1994.

[Johnson] Frigo and Johnson, The BenchFFT web page,
http://theory.lcs.mit.edu/~benchfft

Data Management

[Guttman] Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,”
Proc. ACM SIGMOID, pp. 47-57, June 1984.

[Kornacker] Kornacker, Banks, “High-Concurrency Locking in R-Trees,” Proceedings
of 21st International Conference on Very Large Data Bases, pp. 134-145,
September 1995.

[Sellis] Sellis , Roussopoulos, and Faloutsos, “The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects,” Proc. 13th International Conference on Very
Large Data Bases, pp. 507-518, Brighton, September 1987

