
�-01 June 24, 1999

Roll Your Own Divide/Square Root Unit
J.P. Grossman

Project Aries Technical Memo ARIES-TM-01
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA

Basic Division

We begin with a review of the basic fully restoring binary division algorithm in order to (1)
establish a notation which will be used throughout, and (2) understand why it is slow and how it
can be improved. We define the following symbols:

 A - numerator ½ ≤ A < 1
 D - denominator ½ ≤ D < 1
 Qi - ith partial quotient (i digits of precision after the binary decimal point)
 qi - ith quotient digit, qi ∈ {0, 1}

 ∑
=

==
i

k

k
kii qqqqqQ

0
210 2. � (1)

 Ri - ith shifted remainder

The quotient and remainder are defined such that the invariant

 A = QiD + 2-iRi (2)

is satisfied at all times. The reason for working with an unshifted quotient and a shifted
remainder is that these are the representations that will actually be used in hardware. For
division-only circuits it is often easier to compute Q in a shift register, but for unified
division/square root circuits we will see that the unshifted quotient/root is required at each
iteration in order to compute the square root.

The rule for updating Q is simply

 Qi+1 = Qi + 2-i-1qi+1 (3)

and the rule for updating R can be derived from the invariant (2):

 Ri+1 = 2i+1(A – Qi+1D) = 2i+1(QiD + 2-iRi – QiD – 2-i-1qi+1D) = 2Ri – qi+1D (4)

The familiar constraint on Ri which guarantees convergence is 0 ≤ Ri < D. To choose qi+1 we
observe that Ri+1 must satisfy this same constraint, so we must have:

 0 ≤ 2Ri – qi+1D < D

This leads to the following selection rule:

�-01 2 Divide/Square Root Units

















<≤

<≤
=+

DRD

DR
q

i

i

i

2
:1

2
0:0

1 (5)

This division algorithm works, but it is slow for two reasons. First, it only produces one result
bit per iteration. We can reduce the number of iterations required by using radix r > 2, that is, by
treating q0.q1q2…qi as a base r representation of Qi rather than a base 2 representation.
Typically r is a power of two. The second reason the vanilla algorithm is slow is that we need an
exact comparison of Ri with D/2. There is no room for error; if we choose the wrong value for
qi+1 at any iteration then we will end up with an incorrect final result. This also means that we
need an exact value for Ri at each iteration, i.e. we must perform an exact subtraction to compute
Ri+1. To get around this constraint we will use a redundant digit set.

Redundant Digit Set Radix r Division

Rather than choosing qi+1 from the standard radix r digit set {0, 1, …, r-1}, we will choose from
the redundant digit set:

{-n, -(n-1), …, -1, 0, 1, …, n-1, n}

where 2n ≥ r. A given number may have more than one radix r representation of the form
q0.q1q2… with qi ∈ {-n, …, n}. This means that we can afford some sloppiness in the
determination of qi+1, as there may be more than one choice which will allow us to converge to
the correct answer.

We can easily reformulate equations 1-4 by replacing 2 with r:

 ∑
=

==
i

k

k
kii rqqqqqQ

0
210 . � (6)

 A = QiD + r-iRi (7)
 Qi+1 = Qi + r-i-1qi+1 (8)
 Ri+1 = rRi – qi+1D (9)

To derive the bounds on Ri which will ensure convergence to the correct answer, we observe that
given Qi = q0.q1q2…qi, there must exist choices for qi+1, qi+2, qi+3, … such that

q0.q1q2…qiqi+1qi+2… = A/D

Now the smallest possible choice for each qi is -n and the largest possible choice is n, so we have

q0.q1q2…qi(-n)(-n)(-n)… ≤ A/D ≤ q0.q1q2…qi(n)(n)(n)…

11 −

+≤≤
−

−⇒
−−

r
nrQ

D
A

r
nrQ

i

i

i

i (10)

�-01 3 Divide/Square Root Units

If we agree by convention to avoid representations of A/D with trailing repeated (-n) or (n) (for
example, if r = 4 and n = 3 then we will always write 0.2 instead of 0.13333333…), then the
inequalities can be made strict. Multiplying (10) by D and plugging in (7) for A:

D
r
nrDQRrDQD

r
nrDQ

i

ii
i

i

i

i 11 −
+<+<

−
−

−
−

−

 ⇒ D
r

nRD
r

n
i 11 −

<<
−

− (11)

This, then, is the constraint that must be satisfied so that it is always possible for Qi to converge
to A/D. Conversely, if the constraint is always satisfied then (7) shows that Qi will converge to
A/D. The constraint is all that we need to worry about in choosing quotient digits.

Quotient Digit Selection

To figure out how to choose the quotient digits we will turn things around a bit. Instead of
developing a set of rules of the form “If R is in this range then choose that digit” as in (5), we
will answer the question “When is it acceptable to choose qi+1 = d?". Our only constraint is

 D
r

nRD
r

n
i 11 1 −

<<
−

− + (11’)

so qi+1 = d is ok if

D
r

ndDrRD
r

n
i 11 −

<−<
−

−

 ⇔ D
r

nd
r

RD
r

nd
r i 







−
+<<







−
−

1
1

1
1 (12)

These intervals always have some overlap as there are 2n+1 of them, each of length D
r

n
r 1

21
−

,

all contained in the interval 






−−
− D

r
nD

r
n

1
,

1
 of length D

r
n
1

2
−

, and 2n+1 > r. This means

that, as expected with a redundant digit set, there is sometimes more than one possible choice for
qi+1 which allows us to be a bit sloppy in our comparisons. Specifically, it allows us to inspect
only the most significant bits of Ri when making the comparison.

Radix 4 Division

We will present the determination of the number of bits of accuracy required by way of example.
Consider radix 4 division with the digit set {-3, -2, -1, 0, 1, 2, 3} (n = 3). In this case we have:

 A = QiD + 4-iRi (13)
 Qi+1 = Qi + 4-i-1qi+1 (14)

�-01 4 Divide/Square Root Units

 Ri+1 = 4Ri – qi+1D (15)
and the constraint on Ri is
 -D < Ri < D (16)

Note that we can start with Q0 = 1 and R0 = A – D as ½ ≤ A < 1 and ½ ≤ D < 1 imply that

-D ≤ -½ < A – D < ½ ≤ D

so the constraint is satisfied for i = 0. From (12) we have the following seven rules:

 qi+1 = 3 ok if ½D < Ri < D (12a)
 qi+1 = 2 ok if ¼D < Ri < ¾D (12b)
 qi+1 = 1 ok if 0 < Ri < ½D (12c)
 qi+1 = 0 ok if -¼D < Ri < ¼D (12d)
 qi+1 = -1 ok if -½D < Ri < 0 (12e)
 qi+1 = -2 ok if -¾D < Ri < -¼D (12f)
 qi+1 = -3 ok if -D < Ri < -½D (12g)

The following strategy can be used to determine qi+1:

(1) Compare Ri to 0
(2) If Ri > 0, compare Ri to ½D

If Ri = 0, choose qi+1 = 0
If Ri < 0, compare Ri to -½D

Suppose we use k bits of precision after the binary decimal point. Using [X]k to denote X
truncated to k bits of precision, then we are really comparing [Ri]k to [X]k where X = 0 or ±½D.
Now for any number X we have

 [X]k ≤ X < [X]k + 2-k (17)
and in particular
 [Ri]k ≤ Ri < [Ri]k + 2-k (18)

We use (17) and (18) to analyze the three possible outcomes of a comparison of [Ri]k and [X]k:

 [Ri]k < [X]k ⇒ [Ri]k + 2-k ≤ [X]k ⇒ Ri < [X]k ≤ X (19)
sim. [Ri]k > [X]k ⇒ Ri > X (20)
 [Ri]k = [X]k ⇒ [X]k ≤ Ri < [X]k + 2-k ⇒ X – 2-k < Ri < X + 2-k (21)

The inaccuracy lies in the third case; if [Ri]k = [X]k then instead of being able to pinpoint Ri at
X, all we can say is that Ri lies within 2-k of X. However, the choice of qi+1 = 0 is valid as long as
-¼D < Ri < ¼D, so if 2-k ≤ ¼D then we can take qi+1 = 0 when [Ri]k = 0. Similarly, the choice of
qi+1 = ±2 is valid as long as Ri is within ¼D of ±½D, so again if 2-k ≤ ¼D then we can take qi+1 =
±2 when [Ri]k = [±½D]k. Since D ≥ ½, we can choose k = 3, so only three bits of precision are
needed. Furthermore, since D < 1 ⇒ ½D < ½, so only a 2.5 bit comparison is required.

�-01 5 Divide/Square Root Units

Using Carry Save Addition

Once it is realized that we only need the top few bits of Ri to select qi+1, there is no longer any
point in computing Ri exactly. Instead, we can use fast carry save addition at each iteration and
then use carry propagate addition to compute the upper bits as needed. We will write:

 Ri = Ri

+ - Ri
- (22)

Abusing our own notation slightly, define

 [Ri]k = [Ri

+]k – [Ri
-]k (23)

thus ignoring a possible borrow into the high k bits of Ri. From (17) we have

 [Ri

+]k ≤ Ri
+ < [Ri

+]k + 2-k
and
 [Ri

-]k ≤ Ri
- < [Ri

-]k + 2-k
thus
 [Ri

+]k – [Ri
-]k – 2-k < Ri

+ - Ri
- < [Ri

+]k – [Ri
-]k + 2-k

 ⇒ [Ri]k – 2-k < Ri < [Ri]k + 2-k (24)

As an aside, the reason for defining Ri as in (22) rather than Ri = Ri

a + Ri
b is that with a sum

formulation, (24) would read

 [Ri]k ≤ Ri < [Ri]k + 2·2-k

with a lower bound that is not as clean as that in (24). The carry save adder is almost identical to
the standard one; instead of solving the equation x + y + z = 2u + v for u, v it solves the equation
x – y + z = 2u – v.

Expressing Ri in this manner we still only need three bits for the comparison against 0 as

 [Ri]3 > 0 ⇒ [Ri]3 ≥ 1/8 ⇒ Ri > 0
 [Ri]3 < 0 ⇒ [Ri]3 ≤ -1/8 ⇒ Ri < 0
 [Ri]3 = 0 ⇒ -1/8 < Ri < 1/8

However for the comparisons against ±½D we are going to need an extra bit. This is because
(17) and (24) together yield

 [Ri]k = [X]k ⇒ [X]k – 2-k < Ri < [X]k + 2-k ⇒ X – 2·2-k < Ri < X + 2-k (25)

so the lower error margin has doubled. One extra bit suffices to compensate for this, and we
have the following four cases (using equation 25 to derive the bounds):

 (1) [Ri]4 = [½D]4 ⇒ ½D – 1/8 < Ri < ½D + 1/16 ⇒ ¼D < Ri < ¾D

�-01 6 Divide/Square Root Units

 (2) [Ri]4 = [½D]4 + 1/16 ⇒ ½D – 1/16 < Ri < ½D + 1/8 ⇒ ¼D < Ri < ¾D
 (3) [Ri]4 > [½D]4 + 1/16 ⇒ [Ri]4 ≥ [½D]4 + 1/8 ⇒ Ri > ½D
 (4) [Ri]4 < [½D]4 ⇒ [Ri]4 ≤ [½D]4 - 1/16 ⇒ Ri < ½D

In cases (1) and (2) we can choose qi+1 = 2, in case 3 we can choose qi+1 = 3, and in case (4) we
can choose qi+1 = 1. The cases when Ri < 0 are handled similarly.

One final and important note is that an extra bit is needed to the left of the decimal point to
represent Ri. If Ri is represented exactly then since | Ri| < D < 1 we can express Ri using 2’s
complement with one sign bit to the left of the decimal point, i.e.

 Ri = s.r1r2… (26)

However, it is not necessarily true that | Ri

+| < 1 and | Ri
-| < 1, for example we could have Ri

+ = 1
and Ri

- = 1/32. If Ri were expressed as in (26) then we would incorrectly compute

 [Ri]4 = 1.0000 = -1 (27)

However, from (24) it is certainly true that |[Ri]4| < |Ri| + 1/16 < 17/16, so one extra bit is more
than enough to apologize for cases such as 27. Thus, we can express Ri

+ and Ri
- as:

 Ri

+ = s+r0
+.r1

+r2
+…

 Ri

- = s-r0
-.r1

-r2
-…

There are still a few details that would need to be worked out in order to implement this radix 4
division algorithm as a fully functional divide unit, namely:

• Exactly how the comparisons are handled down at the bit level when Ri < 0
• If the final remainder is negative it may be desirable to do a bit of cleanup so that the unit

produces the same result that would come from a conventional fully restoring divider
• Handling integer division, specifically:

• How many iterations to perform
• How to back up by 1 bit if an odd number of quotient bits are required

These details are left as an exercise to the reader.

Square Root Algorithms

We can use the exact same approach as for the division algorithms to devise square root
algorithms. Once again the basic working principle is that we wish to produce one root digit per
iteration such that the partial root converges to the correct answer. Consider a radix r algorithm
with redundant digit set {-n, …, n}. Define Qi and Ri as before, where Qi now denotes a partial
square root rather than a partial quotient. Let A be the radicand. To avoid messing things up we
only want to normalize A by shifting two binary digits at a time, so assume that ¼ ≤ A < 1. Our
invariant is now:

�-01 7 Divide/Square Root Units

 A = Qi
2 + r-iRi (28)

As before, the update rule for Q is
 Qi+1 = Qi + r-i-1qi+1 (29)

We can use (28) to determine the update rule for R:

 Ri+1 = ri+1(A – Qi+1

2) = ri+1(Qi
2 + r-iRi – Qi

2 – 2Qiqi+1r-i-1 – qi+1
2r-2i-2)

 ⇒ Ri+1 = rRi – 2Qiqi+1 – qi+1

2r-i-1 (30)

To find the constraint on Ri we again have the following convergence requirement, almost
identical to the strict version of (10):

11 −

+<<
−

−
−−

r
nrQA

r
nrQ

i

i

i

i (31)

For i ≥ 1 the lower bound is positive (exercise left to the reader), so we can square all three terms
and plug in (28) for A:

2

22
2

2

11
2

11
2 





−

+
−

+<+<





−

+
−

−
−−

−
−−

r
nrQ

r
nrQRrQ

r
nrQ

r
nrQ

i

i

i

ii
i

i

i

i

i

i

 ⇒ i
ii

i
i r

r
nQ

r
nRr

r
nQ

r
n −− 







−
+

−
<<







−
+

−
−

22

11
2

11
2 (32)

Once again, this constraint is all that matters; as long as it is satisfied for each Ri the Qi will
converge to the correct square root value. We can now use (32) to determine the constraints for
selecting qi+1. Proceeding as before, we must have

 1
2

11
1

2

1 11
2

11
2 −−

++
−−

+ 






−
+

−
<<







−
+

−
− i

ii
i

i r
r

nQ
r

nRr
r

nQ
r

n (32’)

so, making use of (29) and (30), qi+1 = d is ok if

 () () 1
2

1121
2

1

11
22

11
2 −−−−−−−−−− 







−
++

−
<−−<







−
++

−
− ii

i
i

ii
ii

i r
r

ndrQ
r

nrddQrRr
r

ndrQ
r

n

⇔
2

2
2

2

11
2

11
2








−
++







−
+<<







−
−+







−
− −−−−

r
ndr

r
ndQ

r
R

r
ndr

r
ndQ

r
i

ii
i

i (33)

�-01 8 Divide/Square Root Units

Radix 4 Square Root

We will once again continue with an example. Consider radix 4 square root with the digit set
{-3, -2, -1, 0, 1, 2, 3} (n = 3). In this case we have:

 A = Qi

2 + 4-iRi (34)
 Qi+1 = Qi + 4-i-1qi+1 (35)
 Ri+1 = rRi – 2Qiqi+1 – qi+1

24-i-1 (36)
and the constraint on Ri is
 -2Qi + 4-i < Ri < 2Qi + 4-i (37)

We can start with Q0 = 0 and R0 = A, which satisfies equation (31) for i = 0. From (33) we have
the following seven rules:

 qi+1 = 3 ok if Qi + 4-i-1 < Ri < 2Qi + 4-i (33a)
 qi+1 = 2 ok if ½Qi + 4-i-2 < Ri < 3/2Qi + 9·4-i-2 (33b)
 qi+1 = 1 ok if 0 < Ri < Qi + 4-i-1 (33c)
 qi+1 = 0 ok if -½Qi + 4-i-2 < Ri < ½Qi + 4-i-2 (33d)
 qi+1 = -1 ok if -Qi + 4-i-1 < Ri < 0 (33e)
 qi+1 = -2 ok if -3/2Qi + 9·4-i-2 < Ri < -½Qi + 4-i-2 (33f)
 qi+1 = -3 ok if -2Qi + 4-i < Ri < -Qi + 4-i-1 (33g)

The following strategy, almost identical to the division strategy, can be used to determine qi+1:

(1) Compare Ri to 0
(2) If Ri > 0, compare Ri to Qi

 + 4-i-1
If Ri = 0, choose qi+1 = 0
If Ri < 0, compare Ri to -Qi

 + 4-i-1

Determining the margin of error for the comparisons was straightforward for division, but will
require a bit more work for square root. We make use of the following two lemmas:

lemma 1: Qi ≥ ½ for all i ≥ 1

proof: From (31) we have AQ i

i >+ −4 . But A ≥ ¼ so Qi > ½ - 4-i
⇒ 4iQi > 2·4i-1 – 1. But 4iQi is an integer, so 4iQi ≥ 2·4i-1 and the result follows.

lemma 2: If Ri < 0 then Qi ≥ ½ + 4-i

proof: Choose j ≤ i such that Rj < 0 but Rj-1 ≥ 0. This means that Rj < Rj-1 which, by

inspection of (36), can only be the case if qj ≥ 1. Thus Qj ≥ Qj-1 + 4-j ≥ ½ + 4-j
(applying lemma 1). Finally, since qk ≥ -3 for j < k ≤ i, we have

 Qi ≥ ½ + 4-j - 3·(4-j-1 + … + 4-i) = ½ + 4-i as required

�-01 9 Divide/Square Root Units

We can now determine the margins of error for each of the comparisons. We begin with the
comparison against 0. If Ri > 0, then from rule (33d) the margin of error is ½Qi + 4-i-2 ≥ ¼
(applying lemma 1). If Ri < 0, then the margin of error is ½Qi - 4-i-2 ≥ ¼ + ½·4-i – 4-i-2 > ¼
(applying lemma 2). In fact, if we apply lemma 1 to (33b) and lemma 2 to (33f), we find that all
margins of error are > ¼, so we only need two bits of precision for the comparison against 0 and
three bits of precision for the comparisons against ±Qi

 + 4-i-1, fewer precision bits than are
required for division! However, we end up doing the exact same amount of work as in the
division case since all three precision bits of ±Qi

 + 4-i-1 are compared against, and as we will see
shortly we need one extra bit to the left of the decimal point in the representation of Ri.

Bounding Ri

Unlike division, the bound (37) on Ri depends on i. However, it is not too difficult to change this
into a bound which is independent of i. We note that Qi < 1 ⇒ 4iQi < 4i. As in the proof of
lemma 1, 4iQi is an integer and so 4iQi ≤ 4i – 1 ⇒ Qi ≤ 1 – 4-i ⇒ 2Qi + 4-i ≤ 2 – 4i < 2. Thus,
from (37) we see that |Ri| < 2. As with division, an exact representation of Ri would only require
a sign bit and a 20 bit to the left of the binary decimal point, but for the carry save representation
we need a sign bit, a 20 bit and a 21 bit.

On-line Conversion of Qi

Since the digits qi are taken from a redundant digit set, at some point we must convert Q from
redundant digit to standard binary form. Furthermore, since Qi appears in the update rule (36)
for Ri, it is desirable to perform this conversion on-line so as to have the binary representation of
Qi available at every step.

We can accomplish this fairly easily by storing both Qi and Qi’ = Qi – 4i. Assuming that Qi and
Qi+1 are both stored in standard binary form, we can update them using the one of the following
three rules, depending on the sign of qi+1:

1) qi+1 > 0 Qi+1 = Qi + qi+14-i-1 Qi+1’ = Qi’ + (qi+1 – 1)·4-i-1
2) qi+1 = 0 Qi+1 = Qi Qi+1’ = Qi’ + 3·4-i-1
3) qi+1 < 0 Qi+1 = Qi’ + (4 + qi+1)·4-i-1 Qi+1’ = Qi’ + (3 + qi+1)·4-i-1

In each case Qi+1 and Qi+1’ are formed by adding one of {0, 4-i-1, 2·4-i-1, 3·4-i-1} to one of Qi, Qi’;
the update can therefore be accomplished by simply ORing in the new bits.

References

Stanislaw Majerski, “Square-Rooting Algorithms for High-Speed Digital Circuits”, IEEE
Transactions on Computers, Vol. C-34, No. 8, August 1985, pp. 724-733

Hosahalli R. Srinivas, Keshab K. Parhi, “A Floating Point Radix 2 Shared Division/Square Root
Chip”, Proc. International Conference on Computer Design, 1995, pp. 472-478

�-01 10 Divide/Square Root Units

Sau-Gee Chen, Chieh-Chih Li, “Efficient Designs of Unified 2’s Complement Division and
Square-root Algorithm and Architecture”, IEEE TENCON, 1994

Vitit Kantabutra, “A New Algorithm for Division in Hardware”, Proc. International Conference
on Computer Design, 1996, pp. 551-556

Tzu-His Pan, Hyon-Sok Kay, Youngsun Chun, Chin-Long Wey, “High-Radix SRT Division
with Speculation of Quotient Digits”, Proc. International Conference on Computer Design, 1995,
pp. 479-484

Jan Fandrianto, “Algorithm for High Speed Shared Radix 8 Division and Radix 8 Square Root”,
Proc. International Symposium on Computer Arithmetic, 1989, pp. 68-75

