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1 General Purpose 

Since the advent of computers capable of running 
several programs concurrently, data security has been 
an important issue in system design.  When different 
programs share the same hardware resources it is 
essential to ensure that they are not able to access or 
alter each other's data unless sharing is explicitly 
allowed by the programmer.  Data security within a 
single program is also desirable to the developer, as it 
eliminates potential sources of program errors. 
 
Traditionally, inter-process security has been 
addressed by maintaining a per-process set of page 
tables providing a translation from virtual address to 
physical location.  This gives each process a separate 
address space and allows the operating system to 
ensure that it is impossible for a process’ data to be 
inspected or corrupted by other applications.  While 
such an approach is functional, there are three main 
objections to it.  First, a process dependent address 
translation mechanism dramatically increases the 
amount of processor state associated with a given 
process.  This makes context switching 
correspondingly slower, thus increasing system 
overhead and reducing efficiency.  Second, data can 
only be shared between processes at the page 
granularity.  Finally, this mechanism does not 
provide security within a single context; a program is 
free to create and use invalid pointers. 
 
An alternate approach which addresses these 
problems is the use of guarded pointers [Carter94].  
A guarded pointer is an unforgeable capability 
[Fabry74] with all relevant permission and segment 
size bits contained in the pointer itself (we will use 
the term segment to denote an allocated block of 
memory and object to denote data within a segment).  
Since user programs are not permitted to create 
capabilities, this allows the use of a single shared 
virtual address space within the system.  
Furthermore, the inclusion of permission and 
segment size bits within the guarded pointer obviates 
the need to perform expensive table lookup 
operations for every memory reference and every 
pointer arithmetic operation.  Finally, the elimination 

of segment tables allows the use of an essentially 
unbounded number of segments without a prohibitive 
overhead; in particular object-based protection 
schemes become practical. 
 
One of the challenges of designing a guarded pointer 
scheme is to represent segment size in such a way 
that, given a pointer, a small number of bits are used 
to determine the base and size of the segment into 
which the pointer points.  In [Carter94] this is 
accomplished using only six bits by imposing the 
restrictions that all segment sizes should be powers of 
two, and all segments should be aligned to even 
multiples of their length.  The six bits are then used 
to store the base 2 logarithm of the segment size, 
allowing for segments as small as one byte or as large 
as the entire address space.   
 
This scheme is effective, but since the size of most 
objects is not a power of two, the restriction on 
segment size causes a large amount of internal 
fragmentation within the segments.  This reduces the 
likelihood of detecting pointer errors in programs 
since pointers can be incremented past the end of 
objects while remaining within the allocated segment.  
Furthermore, fragmentation causes the apparent 
amount of allocated memory to exceed the amount of 
in-use memory by as much as a factor of two.  This 
can seriously impact the performance of system 
memory management strategies such as garbage 
collection. 
 
This technology disclosure describes a modification 
to the guarded pointer format which allows for more 
flexibility in the size and alignment of segments.  15 
bits are used to derive segment size and base from a 
pointer.  The representation guarantees an internal 
fragmentation of less than 6%, and allows objects to 
be aligned at a granularity of less than 7% of their 
size.  Furthermore, additional bits may be used in the 
representation to make the internal fragmentation and 
alignment granularity arbitrarily small.  Finally, a 
single additional “increment-only” bit provides 
efficient hardware support for high-level constructs 
such as exact object bounds and sub-object data 
security. 
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2 Technical Description 

The following description assumes a 64 bit word size 
and a 64 bit address space, however the concepts are 
readily generalized.  Figure 1 shows the proposed 
pointer format, which is an extension of the guarded 
pointer scheme presented in [Carter94]. The pointer 
is stored in a 128 bit double word; one extra tag bit is 
used to indicate whether or not the double word 
represents a pointer. The low order 64 bit word 
contains the actual virtual address of the pointer, 
while the high order 64 bit word contains the segment 
descriptor and unused bits which are available to the 
operating system.  The figure shows 16 permission 
bits and 32 unused bits for purposes of illustration, 
but these fields are not important to the current 
discussion and no further mention of them will be 
made.  The remaining fields will be described in the 
following sections. 

Figure 1: Pointer Format 

2.1 Segment Size 
The representation of segment size resembles the 
floating point representation of real numbers. Each 
segment is divided into blocks of size 2B bytes where 
0 ≤ B ≤ 62. Blocks are aligned on even multiples of 
2B bytes. A segment consists of exactly (L+17) of 
these blocks where 0 ≤ L ≤ 15 (there is never any 
need to use 16 or fewer blocks as in these cases we 
can use twice as many blocks of half the size). With 
this representation the minimum segment size that 
can be represented is 17 bytes and the maximum size 
is 267 bytes. To represent objects which are between 
1 and 16 bytes in size we set B = 63 and take L+1 to 
be the size of the object in bytes; in this case the 
block size is 1 byte. 
 
These two cases can be easily unified in hardware. 
Define the bit b to be 0 if B = 63 and 1 otherwise. Let 
B' = B & 63b and L' = L | 16b; then in all cases the 
block size is 2B' and the segment size is (L' + 1)2B'. 
The hardware required for this transformation is a 6 
input NAND, 64 AND gates, and wires.  All further 
references to B and L will assume that this 
transformation has already been applied, unless 
otherwise stated. 
 

When a segment is allocated for an object, the size 
specified by B and L is the size of the segment; the 
actual size of the object may be smaller, in which 
case some memory is wasted due to internal 
fragmentation. To compute the amount of memory 
that is wasted, observe that the actual size of the 
object must be between L+16 and L+17 blocks (it can 
be no larger that its size in memory, and if it were 
smaller than L+16 blocks in size then a smaller value 
for L would be chosen). Thus, less than one block is 
wasted out of a total of L+17 blocks, so the fraction 
of wasted memory is less than 1/(L+17) ≤ 1/17 < 
5.9%. As noted in [Carter94], this is the maximum 
amount of virtual memory which is wasted; the 
amount of physical memory wasted will in general be 
smaller. 

2.2 Computing the Base Address 

A valid pointer can point anywhere within a segment. 
In particular, it can point to any of up to 32 blocks. 
Five bits are therefore required to recover the 
segment's base address from a pointer's value. Define 
a group of blocks to be a set of 32 consecutive 
blocks aligned to integer multiples of 32x2B. Any 64 
bit address can be broken up as follows: 

Figure 2: Breakdown of address bits 

The high (58-B) bits form the group index and 
indicate which group of blocks the pointer is pointing 
to. The next four bits form the block index which 
specify one of the blocks in the group. Finally, the 
lower B bits specify a byte offset into this block. 
 
Set K to be the index of the block within the segment 
which is currently being pointed to, where the first 
block in the object has index 0. Then 0 ≤ K ≤ 31. 
Since the offset F of a segment’s base address is 
always zero, the base address of a segment can be 
computed given B, K and a 64 bit address G:I:F as 
follows: 
 

base address = G:I:0 - 0:K:0 
 
Finding the base address of an object given an 
arbitrary pointer to the object is an important memory 
management operation which is essential for garbage 
collection. To implement this operation in hardware, 
let A be the 64 bit address and let A' = (A >> B) - K. 
Then the base address is Ab = A' << B. The hardware 
required for this operation is therefore a 64 bit right 
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shifter, a 64 bit integer adder (where one of the 
summands is only 4 bits), and a 64 bit left shifter. 

2.3 Pointer Arithmetic 
It is allowable to add/subtract an integer value 
to/from a pointer so long as the modified pointer 
remains within the bounds of the segment in memory. 
The hardware must perform bounds checking for 
every pointer arithmetic operation to ensure that it is 
impossible to create an invalid pointer. When adding 
an integer C to an address A, the bounds check can 
be performed in parallel with this addition in two 
steps: 
 
1. Compute the offset of A from the base address of 

the object 
2. Add C to this offset and verify that it does not go 

below zero or above the size of the object 
 
If A = G:I:F then the offset of A from the base 
address of the segment is 0:K:F. Thus, if C = G':I':F', 
we must compute (0:K:F) + (G':I':F') and verify that 
it is at least zero but less than 0:(L+1):0 (the segment 
is L+1 blocks in size). 
 
To perform this computation, begin by observing that 
the sum F+F' is already formed when A and C are 
added, so only (0:K) + (G':I') needs to be computed 
using as a carry-in the carry into the Bth bit in the 
sum A+C. 
 
Next, note that G' must be either 0 or -1; any other 
value for G' will be guaranteed to violate the object 
bounds. If G' is 0 or -1, then the group index of the 
sum (0:K:F) + (G':I':F') will be one of {-1, 0, 1}. If it 
is -1 or 1 then the object bounds have certainly been 
violated. It follows that in performing the 
computation only one bit needs to be used for the 
group index (since there is no need to distinguish 
between -1 and 1 in the group index of the sum). 
 
If the group index bit of the sum is 0 (which 
immediately implies that the sum is ≥ 0), it must be 
verified that the sum is less than (L'+1):0, which is 
true if and only if the block index of the sum is less 
than or equal to L'. This can be checked with a single 
5 bit comparison. 
 
The hardware required for this computation is (in 
addition to the 64 bit adder used the generate the new 
address A') a 64 bit MUX to select the appropriate 
carry, a 64 bit right shifter to shift C to the right by B 
bits, two 59 input gates which inspect the high bits of 
the shifted value to ensure that G' is 0 or -1, a 6 bit 
adder to compute (0:K) + (G':I'), and a 5 bit 

comparator. This is illustrated in Figure 3. Note that 
the 6 bit adder will produce a 5 bit result which 
replaces K in the modified pointer. 

Figure 3: Hardware required for pointer arithmetic 

2.4 Increment-Only 
A single bit R can be used to mark the pointer as 
increment-only.  It is an error to add a negative 
integer (or subtract a positive integer) from an 
increment-only pointer; in all other respects an 
increment-only pointer behaves identically to a 
normal pointer.  The hardware implementation is 
trivial; all that is required is the addition of a two 
input gate to figure 3 to disallow the case G’ = -1 for 
increment-only pointers.  Increment-only pointers 
provide a simple mechanism for implementing exact 
object bounds and sub-object security. 

2.4.1 Exact Object Bounds 
As previously mentioned, it is desirable from a 
programming standpoint to minimize internal 
fragmentation within a segment, as this helps 
eliminate sources of program error.  By using 
increment-only pointers it is possible to provide exact 
object bounds: when a segment of size k is allocated 
for an object of size m (k ≥ m), the object is placed at 
an offset of k-m within the segment, and an 
increment-only pointer to the object is created.  This 
method works for arbitrarily-sized objects, with the 
result that it is impossible for a user program to 
access the unused portion of the segment.  Thus, for 
example, it is possible to allocate an array and have 
the hardware perform exact bounds checking. 

2.4.2 Sub-object Security 
Object oriented languages provide a model of sub-
object security by allowing object members to be 
declared as public or private.  These declarations are 
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typically used at compile time only, and on hardware 
that supports pointer arithmetic it is still possible for 
untrusted code to access private object members at 
run time.  Increment-only pointers allow sub-object 
security to be strictly enforced at run time by placing 
all private information at the start of the object and 
sharing the object via increment-only pointers to the 
start of the public data.  This mechanism is also 
advantageous to programmers as it again eliminates a 
potential source of program error. 

3 Advantages over Existing 
Methods 

The use of guarded pointers improves both system 
efficiency and system programmability.  The 
inclusion of segment information within pointers 
obviates the need for expensive segment tables and 
lookaside buffers.  There is no cost associated with a 
large number of segments beyond the creation of a 
large number of pointers, so it becomes feasible to 
implement object-based security by creating a new 
segment for every object.  Since guarded pointers are 
unforgeable capabilities, there is no need to maintain 
a separate virtual address space for every process.  
This reduces system overhead provides a natural and 
efficient mechanism for sharing data between 
processes.  Finally, unforgeable capabilities improve 
system programmability by eliminating the 
possibility of creating invalid pointers, a common 
source of errors in programs. 
 
Guarded pointers were originally described by 
[Carter94]. Their format includes a six bit segment 
length field which specifies the size of a pointer's 
valid range as a power of two. This results in a worst 
case memory wastage due to internal fragmentation 
of 50%. The current scheme allows segments to be 
allocated in sizes which are closer to actual object 
sizes, resulting in a worst case memory wastage of 
less than 6%. Moreover, this percentage can be made 
as small as desired by adding more bits to the L and 
K fields. For example, if seven bits are used for L and 
eight for K, then the worst case memory wastage is 
less than 0.8%. 
 
It is observed in [Carter94] that the amount of 
physical memory wasted is in general less than the 
amount of virtual memory wasted. However, internal 
fragmentation of the virtual memory space is still a 
concern for reasons of memory management 
efficiency and error detection.  The memory system 
works with segments rather than objects, so each time 
a segment is relocated in the virtual or physical 
address space, and each time a segment is moved to 
or from disk, internal fragmentation causes 

unnecessary extra work to be performed.  Software 
errors are often detected when they manifest 
themselves as a segment bounds violation, for 
example when a pointer is incremented past the end 
of an array. Internal fragmentation reduces the 
effectiveness of this error detection, for when objects 
are much smaller than the segments in which they 
reside it becomes increasingly probable that an 
incorrect pointer will remain within its segment and 
thus pass unnoticed.  Thus, system efficiency and 
programmability are further improved by the 
reduction in internal fragmentation provided by the 
proposed guarded pointer format. 
 
The increment-only extension to the guarded pointer 
format has negligible architectural overhead and 
provides efficient hardware support for exact object 
bounds and sub-object security.  Each of these high-
level constructs plays an important role in modern 
object oriented languages.  The described mechanism 
allows such language features to be faithfully 
implemented without software overhead. 

4 Commercial Applications 

The proposed pointer format provides fine-grained 
data security, enhanced programmability and greater 
overall system efficiency.  Since these are all crucial 
considerations in the design of any architecture, the 
technology described herein is broadly applicable to 
any commercial computer system.  For the purposes 
of illustration we outline several domains for which 
this technology is particularly well suited. 
 
1. Object Oriented Computing.  The proposed 

format is naturally suited to systems which make 
use of an object model for data.  Each object can 
be placed in a unique segment with only a small 
amount of internal fragmentation.  The use of a 
single virtual address space allows objects to be 
shared between processes simply by copying 
pointers.  Increment-only pointers provide a 
natural protection scheme for private object data. 

 
2. Strict Bounds Semantics.  Many programming 

languages such as Java [Gosling96] specify that 
array bounds are strictly checked at run time.  
With increment-only pointers, these checks can 
be implicitly performed in hardware with no 
software overhead.  Commercial systems are 
judged in part by the programming environments 
which they support; the proposed format enables 
these important environments to be supported 
efficiently. 
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3. Garbage Collected Memory Systems.  Two 
operations fundamental to garbage collection are 
the extraction of a segment’s base address and 
the copying of data in memory.  The proposed 
format provides efficient support for both of 
these operations.  A segment’s base address can 
be quickly extracted from a pointer to anywhere 
within the segment.  The tight bounds on 
segment size minimize internal fragmentation of 
segments and thus avoid wasted effort when a 
segment is copied. 

 
4. Secure Computing.  In a secure computing 

environment, extreme emphasis is placed on data 
security.  Any commercial system which is 
intended for secure computing should be able to 
enforce confinement [Karger88]; the proposed 
format provides unforgeable capabilities with 
enough permission bits to do so.  It is also 
important to provide flexible mechanisms for 
sharing data without compromising security.  
The described format provides two such 
mechanisms: increment-only pointers allow a 
segment to be partly shared and partly hidden, 
and the flexible nature of a segment’s base and 
length make it practical to support a “restriction” 
operation, whereby a new capability is created 
which provides access to a restricted window 
within an object. 

 
Of significance is the fact that Java, which is the 
language of choice for web programming and is 
becoming increasingly important as a standalone 
development environment, lies in the intersection of 
these four domains.  Java is a garbage-collected 
object-oriented language which, as previously 
mentioned, specifies strict bounds semantics for 
arrays.  Since Java is designed to execute on client 
machines, security is a critical issue.  A natural 
application of the described pointer format is 
therefore the implementation and/or improvement of 
systems which are specifically designed to run Java 
efficiently (such systems are already under 
development, e.g. [Tremblay99]). 
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