
�-02 September 14, 1999

An Implementation of Guarded Pointers with Tight Bounds on
Segment Size

J.P. Grossman, Jeremy Brown, Andrew Huang, Tom Knight

Project Aries Technical Memo ARIES-TM-02
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA

1 General Purpose

Since the advent of computers capable of running
several programs concurrently, data security has been
an important issue in system design. When different
programs share the same hardware resources it is
essential to ensure that they are not able to access or
alter each other's data unless sharing is explicitly
allowed by the programmer. Data security within a
single program is also desirable to the developer, as it
eliminates potential sources of program errors.

Traditionally, inter-process security has been
addressed by maintaining a per-process set of page
tables providing a translation from virtual address to
physical location. This gives each process a separate
address space and allows the operating system to
ensure that it is impossible for a process’ data to be
inspected or corrupted by other applications. While
such an approach is functional, there are three main
objections to it. First, a process dependent address
translation mechanism dramatically increases the
amount of processor state associated with a given
process. This makes context switching
correspondingly slower, thus increasing system
overhead and reducing efficiency. Second, data can
only be shared between processes at the page
granularity. Finally, this mechanism does not
provide security within a single context; a program is
free to create and use invalid pointers.

An alternate approach which addresses these
problems is the use of guarded pointers [Carter94].
A guarded pointer is an unforgeable capability
[Fabry74] with all relevant permission and segment
size bits contained in the pointer itself (we will use
the term segment to denote an allocated block of
memory and object to denote data within a segment).
Since user programs are not permitted to create
capabilities, this allows the use of a single shared
virtual address space within the system.
Furthermore, the inclusion of permission and
segment size bits within the guarded pointer obviates
the need to perform expensive table lookup
operations for every memory reference and every
pointer arithmetic operation. Finally, the elimination

of segment tables allows the use of an essentially
unbounded number of segments without a prohibitive
overhead; in particular object-based protection
schemes become practical.

One of the challenges of designing a guarded pointer
scheme is to represent segment size in such a way
that, given a pointer, a small number of bits are used
to determine the base and size of the segment into
which the pointer points. In [Carter94] this is
accomplished using only six bits by imposing the
restrictions that all segment sizes should be powers of
two, and all segments should be aligned to even
multiples of their length. The six bits are then used
to store the base 2 logarithm of the segment size,
allowing for segments as small as one byte or as large
as the entire address space.

This scheme is effective, but since the size of most
objects is not a power of two, the restriction on
segment size causes a large amount of internal
fragmentation within the segments. This reduces the
likelihood of detecting pointer errors in programs
since pointers can be incremented past the end of
objects while remaining within the allocated segment.
Furthermore, fragmentation causes the apparent
amount of allocated memory to exceed the amount of
in-use memory by as much as a factor of two. This
can seriously impact the performance of system
memory management strategies such as garbage
collection.

This technology disclosure describes a modification
to the guarded pointer format which allows for more
flexibility in the size and alignment of segments. 15
bits are used to derive segment size and base from a
pointer. The representation guarantees an internal
fragmentation of less than 6%, and allows objects to
be aligned at a granularity of less than 7% of their
size. Furthermore, additional bits may be used in the
representation to make the internal fragmentation and
alignment granularity arbitrarily small. Finally, a
single additional “increment-only” bit provides
efficient hardware support for high-level constructs
such as exact object bounds and sub-object data
security.

�-02 2 Capabilities Technology Disclosure

2 Technical Description

The following description assumes a 64 bit word size
and a 64 bit address space, however the concepts are
readily generalized. Figure 1 shows the proposed
pointer format, which is an extension of the guarded
pointer scheme presented in [Carter94]. The pointer
is stored in a 128 bit double word; one extra tag bit is
used to indicate whether or not the double word
represents a pointer. The low order 64 bit word
contains the actual virtual address of the pointer,
while the high order 64 bit word contains the segment
descriptor and unused bits which are available to the
operating system. The figure shows 16 permission
bits and 32 unused bits for purposes of illustration,
but these fields are not important to the current
discussion and no further mention of them will be
made. The remaining fields will be described in the
following sections.

Figure 1: Pointer Format

2.1 Segment Size
The representation of segment size resembles the
floating point representation of real numbers. Each
segment is divided into blocks of size 2B bytes where
0 ≤ B ≤ 62. Blocks are aligned on even multiples of
2B bytes. A segment consists of exactly (L+17) of
these blocks where 0 ≤ L ≤ 15 (there is never any
need to use 16 or fewer blocks as in these cases we
can use twice as many blocks of half the size). With
this representation the minimum segment size that
can be represented is 17 bytes and the maximum size
is 267 bytes. To represent objects which are between
1 and 16 bytes in size we set B = 63 and take L+1 to
be the size of the object in bytes; in this case the
block size is 1 byte.

These two cases can be easily unified in hardware.
Define the bit b to be 0 if B = 63 and 1 otherwise. Let
B' = B & 63b and L' = L | 16b; then in all cases the
block size is 2B' and the segment size is (L' + 1)2B'.
The hardware required for this transformation is a 6
input NAND, 64 AND gates, and wires. All further
references to B and L will assume that this
transformation has already been applied, unless
otherwise stated.

When a segment is allocated for an object, the size
specified by B and L is the size of the segment; the
actual size of the object may be smaller, in which
case some memory is wasted due to internal
fragmentation. To compute the amount of memory
that is wasted, observe that the actual size of the
object must be between L+16 and L+17 blocks (it can
be no larger that its size in memory, and if it were
smaller than L+16 blocks in size then a smaller value
for L would be chosen). Thus, less than one block is
wasted out of a total of L+17 blocks, so the fraction
of wasted memory is less than 1/(L+17) ≤ 1/17 <
5.9%. As noted in [Carter94], this is the maximum
amount of virtual memory which is wasted; the
amount of physical memory wasted will in general be
smaller.

2.2 Computing the Base Address

A valid pointer can point anywhere within a segment.
In particular, it can point to any of up to 32 blocks.
Five bits are therefore required to recover the
segment's base address from a pointer's value. Define
a group of blocks to be a set of 32 consecutive
blocks aligned to integer multiples of 32x2B. Any 64
bit address can be broken up as follows:

Figure 2: Breakdown of address bits

The high (58-B) bits form the group index and
indicate which group of blocks the pointer is pointing
to. The next four bits form the block index which
specify one of the blocks in the group. Finally, the
lower B bits specify a byte offset into this block.

Set K to be the index of the block within the segment
which is currently being pointed to, where the first
block in the object has index 0. Then 0 ≤ K ≤ 31.
Since the offset F of a segment’s base address is
always zero, the base address of a segment can be
computed given B, K and a 64 bit address G:I:F as
follows:

base address = G:I:0 - 0:K:0

Finding the base address of an object given an
arbitrary pointer to the object is an important memory
management operation which is essential for garbage
collection. To implement this operation in hardware,
let A be the 64 bit address and let A' = (A >> B) - K.
Then the base address is Ab = A' << B. The hardware
required for this operation is therefore a 64 bit right

1 Unused: 32 Address: 64 P:16 B:6 L:4 K:5

high word low word

available to OS

log block
size

permission
bits

length
(blocks)

current
index

tag bit

R:1
increment
only

G : (58 – B) bits I : 4 F : B

63 B+4 B 0

group index block index offset

�-02 3 Capabilities Technology Disclosure

shifter, a 64 bit integer adder (where one of the
summands is only 4 bits), and a 64 bit left shifter.

2.3 Pointer Arithmetic
It is allowable to add/subtract an integer value
to/from a pointer so long as the modified pointer
remains within the bounds of the segment in memory.
The hardware must perform bounds checking for
every pointer arithmetic operation to ensure that it is
impossible to create an invalid pointer. When adding
an integer C to an address A, the bounds check can
be performed in parallel with this addition in two
steps:

1. Compute the offset of A from the base address of

the object
2. Add C to this offset and verify that it does not go

below zero or above the size of the object

If A = G:I:F then the offset of A from the base
address of the segment is 0:K:F. Thus, if C = G':I':F',
we must compute (0:K:F) + (G':I':F') and verify that
it is at least zero but less than 0:(L+1):0 (the segment
is L+1 blocks in size).

To perform this computation, begin by observing that
the sum F+F' is already formed when A and C are
added, so only (0:K) + (G':I') needs to be computed
using as a carry-in the carry into the Bth bit in the
sum A+C.

Next, note that G' must be either 0 or -1; any other
value for G' will be guaranteed to violate the object
bounds. If G' is 0 or -1, then the group index of the
sum (0:K:F) + (G':I':F') will be one of {-1, 0, 1}. If it
is -1 or 1 then the object bounds have certainly been
violated. It follows that in performing the
computation only one bit needs to be used for the
group index (since there is no need to distinguish
between -1 and 1 in the group index of the sum).

If the group index bit of the sum is 0 (which
immediately implies that the sum is ≥ 0), it must be
verified that the sum is less than (L'+1):0, which is
true if and only if the block index of the sum is less
than or equal to L'. This can be checked with a single
5 bit comparison.

The hardware required for this computation is (in
addition to the 64 bit adder used the generate the new
address A') a 64 bit MUX to select the appropriate
carry, a 64 bit right shifter to shift C to the right by B
bits, two 59 input gates which inspect the high bits of
the shifted value to ensure that G' is 0 or -1, a 6 bit
adder to compute (0:K) + (G':I'), and a 5 bit

comparator. This is illustrated in Figure 3. Note that
the 6 bit adder will produce a 5 bit result which
replaces K in the modified pointer.

Figure 3: Hardware required for pointer arithmetic

2.4 Increment-Only
A single bit R can be used to mark the pointer as
increment-only. It is an error to add a negative
integer (or subtract a positive integer) from an
increment-only pointer; in all other respects an
increment-only pointer behaves identically to a
normal pointer. The hardware implementation is
trivial; all that is required is the addition of a two
input gate to figure 3 to disallow the case G’ = -1 for
increment-only pointers. Increment-only pointers
provide a simple mechanism for implementing exact
object bounds and sub-object security.

2.4.1 Exact Object Bounds
As previously mentioned, it is desirable from a
programming standpoint to minimize internal
fragmentation within a segment, as this helps
eliminate sources of program error. By using
increment-only pointers it is possible to provide exact
object bounds: when a segment of size k is allocated
for an object of size m (k ≥ m), the object is placed at
an offset of k-m within the segment, and an
increment-only pointer to the object is created. This
method works for arbitrarily-sized objects, with the
result that it is impossible for a user program to
access the unused portion of the segment. Thus, for
example, it is possible to allocate an array and have
the hardware perform exact bounds checking.

2.4.2 Sub-object Security
Object oriented languages provide a model of sub-
object security by allowing object members to be
declared as public or private. These declarations are

B L K

B L K’

G’ I’ F’ G I F

+

>>

G’ I’

check

+

A’

≥≥≥≥

C A

�-02 4 Capabilities Technology Disclosure

typically used at compile time only, and on hardware
that supports pointer arithmetic it is still possible for
untrusted code to access private object members at
run time. Increment-only pointers allow sub-object
security to be strictly enforced at run time by placing
all private information at the start of the object and
sharing the object via increment-only pointers to the
start of the public data. This mechanism is also
advantageous to programmers as it again eliminates a
potential source of program error.

3 Advantages over Existing
Methods

The use of guarded pointers improves both system
efficiency and system programmability. The
inclusion of segment information within pointers
obviates the need for expensive segment tables and
lookaside buffers. There is no cost associated with a
large number of segments beyond the creation of a
large number of pointers, so it becomes feasible to
implement object-based security by creating a new
segment for every object. Since guarded pointers are
unforgeable capabilities, there is no need to maintain
a separate virtual address space for every process.
This reduces system overhead provides a natural and
efficient mechanism for sharing data between
processes. Finally, unforgeable capabilities improve
system programmability by eliminating the
possibility of creating invalid pointers, a common
source of errors in programs.

Guarded pointers were originally described by
[Carter94]. Their format includes a six bit segment
length field which specifies the size of a pointer's
valid range as a power of two. This results in a worst
case memory wastage due to internal fragmentation
of 50%. The current scheme allows segments to be
allocated in sizes which are closer to actual object
sizes, resulting in a worst case memory wastage of
less than 6%. Moreover, this percentage can be made
as small as desired by adding more bits to the L and
K fields. For example, if seven bits are used for L and
eight for K, then the worst case memory wastage is
less than 0.8%.

It is observed in [Carter94] that the amount of
physical memory wasted is in general less than the
amount of virtual memory wasted. However, internal
fragmentation of the virtual memory space is still a
concern for reasons of memory management
efficiency and error detection. The memory system
works with segments rather than objects, so each time
a segment is relocated in the virtual or physical
address space, and each time a segment is moved to
or from disk, internal fragmentation causes

unnecessary extra work to be performed. Software
errors are often detected when they manifest
themselves as a segment bounds violation, for
example when a pointer is incremented past the end
of an array. Internal fragmentation reduces the
effectiveness of this error detection, for when objects
are much smaller than the segments in which they
reside it becomes increasingly probable that an
incorrect pointer will remain within its segment and
thus pass unnoticed. Thus, system efficiency and
programmability are further improved by the
reduction in internal fragmentation provided by the
proposed guarded pointer format.

The increment-only extension to the guarded pointer
format has negligible architectural overhead and
provides efficient hardware support for exact object
bounds and sub-object security. Each of these high-
level constructs plays an important role in modern
object oriented languages. The described mechanism
allows such language features to be faithfully
implemented without software overhead.

4 Commercial Applications

The proposed pointer format provides fine-grained
data security, enhanced programmability and greater
overall system efficiency. Since these are all crucial
considerations in the design of any architecture, the
technology described herein is broadly applicable to
any commercial computer system. For the purposes
of illustration we outline several domains for which
this technology is particularly well suited.

1. Object Oriented Computing. The proposed

format is naturally suited to systems which make
use of an object model for data. Each object can
be placed in a unique segment with only a small
amount of internal fragmentation. The use of a
single virtual address space allows objects to be
shared between processes simply by copying
pointers. Increment-only pointers provide a
natural protection scheme for private object data.

2. Strict Bounds Semantics. Many programming

languages such as Java [Gosling96] specify that
array bounds are strictly checked at run time.
With increment-only pointers, these checks can
be implicitly performed in hardware with no
software overhead. Commercial systems are
judged in part by the programming environments
which they support; the proposed format enables
these important environments to be supported
efficiently.

�-02 5 Capabilities Technology Disclosure

3. Garbage Collected Memory Systems. Two
operations fundamental to garbage collection are
the extraction of a segment’s base address and
the copying of data in memory. The proposed
format provides efficient support for both of
these operations. A segment’s base address can
be quickly extracted from a pointer to anywhere
within the segment. The tight bounds on
segment size minimize internal fragmentation of
segments and thus avoid wasted effort when a
segment is copied.

4. Secure Computing. In a secure computing

environment, extreme emphasis is placed on data
security. Any commercial system which is
intended for secure computing should be able to
enforce confinement [Karger88]; the proposed
format provides unforgeable capabilities with
enough permission bits to do so. It is also
important to provide flexible mechanisms for
sharing data without compromising security.
The described format provides two such
mechanisms: increment-only pointers allow a
segment to be partly shared and partly hidden,
and the flexible nature of a segment’s base and
length make it practical to support a “restriction”
operation, whereby a new capability is created
which provides access to a restricted window
within an object.

Of significance is the fact that Java, which is the
language of choice for web programming and is
becoming increasingly important as a standalone
development environment, lies in the intersection of
these four domains. Java is a garbage-collected
object-oriented language which, as previously
mentioned, specifies strict bounds semantics for
arrays. Since Java is designed to execute on client
machines, security is a critical issue. A natural
application of the described pointer format is
therefore the implementation and/or improvement of
systems which are specifically designed to run Java
efficiently (such systems are already under
development, e.g. [Tremblay99]).

References
[Bishop77] Peter B. Bishop, “Computer Systems with a

Very Large Address Space and Garbage
Collection”, Ph.D. Thesis, Dept. of EECS,
M.I.T., May 1977.

[Carter94] Nicholas P. Carter, Stephen W. Keckler,
William J. Dally, "Hardware Support for
Fast Capability-based Addressing", Proc. 6th
International Conference on Architectural

Support for Programming Languages and
Operating Systems, 1994.

[Fabry74] R. Farby, "Capability-based addressing",
Communications of the ACM, 17,7, July
1974, pp. 403-412.

[Gosling96] James Gosling, Bill Joy, Guy L. Steele Jr.,
The Java Language Specification, Addison-
Wesley Publication Co., Sept. 1996, 825pp.

[Karger88] Paul Karger, “Improving Security and
Performance for Capability Systems”,
Technical Report No. 149, University of
Cambridge Computer Laboratory, October
1988 (Ph. D. thesis).

[Tremblay99] Marc Tremblay, “An Architecture for the
New Millenium”, Proc. Hot Chips XI, Aug.
15-17, 1999.

