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Abstract 

Data placement is an extremely important issue in 
parallel machines.  In order to obtain good 
performance, it is often necessary to distribute a 
single object (such as a large array) across many 
nodes in a system.  Traditional mechanisms for 
achieving this distribution are expensive as they 
require the mapping from virtual addresses to 
physical locations to be globally visible and 
coherent. 
 
This paper presents Multistriped Addressing, a novel 
technique for mapping virtual addresses to physical 
nodes which allows contiguous portions of the virtual 
address space to be striped across the system at 
varying granularities.  Multistriped addressing has 
low hardware overhead and eliminates the need for 
global translation tables.  It can be used to improve 
the efficiency of both cache-coherent and cacheless 
shared memory systems.  

1 Introduction 

Parallel processing can be used to speed up many 
applications by several orders of magnitude.  
Massively parallel shared memory machines with 
hundreds or thousands of processor/memory nodes 
have been built (e.g. [Dally98],  [Laudon97], [SGI]); 
in the future we will see machines with millions 
([IBM00]) or even billions of nodes.  In such large-
scale systems, the layout of data in physical memory 
is crucial to achieving the maximum possible 
speedup.  In particular, many good parallel 
algorithms require data structures to be distributed 
across multiple nodes in the system. 
 
Typically, a fixed set of bits in the physical address 
(usually the highest bits) is used to determine the 
“home node” on which a piece of data resides.  This 
scheme has the advantages of being simple and 
allowing data to be arbitrarily placed in the system on 
a page granularity.  However, it has the significant 
disadvantage of requiring that every node be able to 
make arbitrary virtual to physical address 
translations.  The address translation table for such a 
system is, in effect, a massive global data structure 
shared by all nodes.  Translation lookaside buffers 

are caches specific to this data structure which must 
be kept coherent.  This approach therefore has 
significant implied hardware complexity, and is 
inherently limited in its scalability. 
 
From a hardware designer’s point of view, it is 
clearly much more appealing to use bits in the virtual 
address to locate home nodes.  Address translation is 
then a local rather than a global mechanism, and no 
longer affects the scalability of the system.  A minor 
objection is that this requires remote nodes to 
perform “extra work” to service remote memory 
requests.  In reality, however, the same amount of 
work is being performed; it is simply being 
performed in a different (and in our opinion more 
natural) location.  A more serious objection is that 
distributing an object across multiple nodes requires 
allocating many non-contiguous blocks of the virtual 
address space for the single object, complicating both 
memory management and object references.  It is this 
problem on which we focus our attention. 
 
In this paper we introduce Multistriped Addressing, 
a novel mapping from virtual addresses to physical 
nodes which enables data from a contiguous chunk of 
the virtual address space to be distributed in a flexible 
manner without the use of global address translation 
tables.  The node ID is directly embedded into the 
virtual address at a controllable offset.  This has the 
effect of partitioning virtual memory into a number 
of equally sized spaces, each of which is striped 
across the nodes of the system using a different 
granularity.  This method has minimal hardware 
overhead and provides a convenient and efficient 
mechanism for distributing parallel data structures. 
 
The following section describes Multistriped 
Addressing in detail including hardware 
requirements.  In section 3 we discuss the advantages 
and disadvantages of Multistriped Addressing in 
comparison to other strategies.  Finally, in section 4 
we conclude and outline the context in which 
Multistriped Addressing was developed. 

2 Technical Description 

The simplest way to divide a large virtual address 
space among the nodes of a distributed-memory 
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system is to allocate a fixed set of bits within the 
address to indicate the node ID (Figure 1a).  This has 
the advantage of being extremely easy to implement 
in hardware (the node ID can be extracted using 
wires alone), but has the disadvantage of forcing 
distributed objects to occupy multiple non-contiguous 
portions of the virtual address space.  This presents 
several difficulties: 
 
1. Allocation, deallocation, and garbage collection 

(if applicable) of objects is much more expensive 
when the objects are non-contiguous in memory. 

2. For systems implementing capabilities 
([Fabry74], [Carter94]), the description and 
implementation of a capability is complicated by 
the need to provide access to non-continguous 
addresses while simultaneously preventing 
access to in-between addresses. 

3. Indexing arbitrary data within the object is more 
expensive as the bits of the index need to be 
rearranged before they are added to the base 
address of the object. 

 
Multistriped Addressing is an alternate approach 
which provides a flexible means for striping 
contiguous chunks of the virtual address space across 
physical nodes in the system.  The top five bits (S) of 
a sixty four bit virtual address are used as an index 
into the address itself; they specify the location of the 
node ID within the address (Figure 1b). 
  

Figure 1: (a) Node ID (N) defined by a fixed set of 
virtual address bits.  (b) Location of N within virtual 
address determined by striping granularity S. 

The described format accomplishes two goals: 
 
1. By providing a fixed mapping from virtual 

addresses to nodes, the need for system-wide 
global address translation tables is obviated. 

2. Placing the node index within the address itself 
has the effect of striping data in a contiguous 
virtual address space across the nodes with a 
granularity of 2S bytes. 

Since S ranges from 0 to 31, data may be striped with 
any power-of-two granularity ranging from 1 byte to 
2 Gigabytes. For systems with up to 256 million 
nodes, the node index N will have at most 28 bits, 
hence the fields S and N will never overlap.  Note 
that the five bit field S is part of the address.  The 
presence of this field does not reduce the size of the 
address space; rather it divides the 64 bit address 
space into 32 equally sized portions, each of which is 
striped across the processing nodes with a different 
granularity. 
 
The only hardware required to extract node indices 
from addresses is a 59 bit right shifter, as shown in 
figure 2.  Note that 59 is an upper bound on the size 
of the shifter; if the system supports up to 2n nodes 
then a 31 + n bit shifter is required. 

Figure 2: A 59 bit right shifter extracts the node index 
from the address. 

2.1 Local Virtual Address 
Once an address reaches a node, it is no longer 
desirable to have the node index in the middle of the 
address, as this can lead to sparsely populated pages.  
For example, suppose a one megabyte data structure 
is striped across a 256 node system at a granularity of 
16 bytes.  If the page size is 4096 bytes, then the 
addresses of this data structure which are mapped to a 
node N are of the form shown in Figure 3. 

Figure 3: A one megabyte data structure is 
striped across 256 nodes at a granularity of 16 
bytes    (S = 4).  The addresses mapped to a 
given node consist of upper bits which are 
constant across the data structure, eight node 
index bits (nnn…) embedded in the address, and 
twelve bits (xxx…) that vary across the data 
structure. 
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Note that the upper eight bits of the page offset are 
fixed (they form the node ID N), while the lower four 
bits of the page offset and the lower eight bits of the 
virtual page number vary across the data structure.  
As a result, the 4096 bytes of the structure which are 
mapped to a given node occupy exactly 16 bytes in 
each of 256 different pages.  This leads to a rather 
inefficient use of physical memory. 

Figure 4: A local virtual address (b) is formed 
from the virtual address (a) by excising the node 
index N. 

To fix this problem, we excise the node index to form 
a local virtual address as shown in Figure 4.  Note 
that the original virtual address can be recovered 
using S and N, so this is a one to one mapping from 
virtual addresses to local virtual addresses.  
Continuing with the previous example, the data 
structure now occupies exactly one page on each 
node. 

Figure 5: Hardware required to excise N.  The 
virtual address is right shifted n bits.  The high 
32 bits of the shifted address are copied directly 
into the local virtual address.  The low 32 bits of 
the shifted address are combined with the low 32 
bits of the unshifted address using 32 two-input 
multiplexors.  The multiplexors are controlled by 
a decoder which outputs 1’s in bits 0, 1, …, S-1 
and 0’s in bits S, S+1, …, 31. 

Performing this transformation involves selecting the 
appropriate bits from a shifted and unshifted version 
of the virtual address (in Figure 4, the bits in S and α 
are selected from the shifted address and the bits in ß 
are selected from the unshifted address).  If N is n 
bits long then we need to compute an n bit right shift 
of the virtual address.  If the exact size of the system 
(and therefore n) is known in advance then this can 
be done with wires, but it is usually desirable to be 
able to use the same hardware for systems with 
various numbers of nodes.  Thus, the hardware 
required is a 64 bit right shifter (with only five bits of 
control as n < 32), a 32 bit decoder which generates 
1’s below a given index and 0’s elsewhere, and 32 
two-input multiplexors, as shown in Figure 5. 

3 Discussion 

An alternate approach to data distribution is to use 
the simple mapping of figure 1a and rely on coherent 
virtually-addressed data caches to move data to 
where it is needed.  This approach combines the 
flexible demand-based data migration of a cache 
coherent shared memory multiprocessor (such as 
DASH [Lenoski92] or FLASH [Kuskin94]) with the 
advantages of a fixed virtual address to physical node 
mapping, namely the elimination of global translation 
tables.  However, if a large shared object resides on a 
single home node, this node can become a system 
bottleneck as it must handle all cache coherence 
protocol messages related to the object.  Thus, even 
cache-coherent systems can benefit from multistriped 
addressing as it allows such bottlenecks to be 
avoided. 
 
Other striping mechanisms have been implemented in 
existing architectures.  The M-Machine provides a 
global translation mechanism which allows large 
portions of the virtual address space to be mapped 
over rectilinear subsets of the system’s three 
dimensional array of nodes [Dally94].  Translation 
table entries contain 37 bits which specify the 
location and power of two extents of the subset in all 
three directions, as well as the amount of data per 
node.  The Tera Computer System [Alverson90] 
essentially employs a one dimensional version of this 
scheme, using segment tables to distribute 
consecutive virtual addresses in a segment among 
any power of two number of memory units.  Both of 
these methods rely on a global translation mechanism 
and therefore incur a much greater hardware cost 
than multistriped addressing. 
 
A limitation of any scheme which makes use of a 
fixed virtual address to physical node mapping is the 
inability to change a piece of data’s home node.  For 
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cache coherent systems this is not so much of an 
issue as data migration is automatic and the role of 
multistriped addressing is simply to avoid bottlenecks 
in the coherency protocol.  For systems with local 
cache only or even no cache at all (such as Tera 
[Alverson90]), inter-node data migration is more 
difficult as it necessitates a change in the object’s 
virtual address.  One possible solution to this problem 
is the use of memory forwarding [Luk99]. 

4 Conclusion 

Multistriped addressing is an efficient mechanism for 
controlling the layout of data in large scale shared 
memory systems.  The fixed mapping of virtual 
addresses to physical nodes eliminates the need for 
expensive global address translation mechanisms.  
Embedding home node IDs at controllable offsets 
within virtual addresses incurs small hardware costs 
and allows data to be striped across the system in a 
flexible manner. 
 
Multistriped addressing was developed as part of an 
effort to find area efficient alternatives to traditional 
architectural mechanisms.  In contrast to today’s 
scalar architectures which make use of the entire area 
on a silicon die for a single monolithic processor, 
tomorrow’s parallel architectures will place multiple 
processors on a single die in an attempt to maximize 
the overall parallelism of the system.  In this domain 
area efficiency translates directly to performance by 
allowing greater parallelism at the same cost.  Such a 
parallel architecture, which makes use of multistriped 
addressing, is currently under development. 
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