
�-03 April 13, 2000

Multistriped Addressing
J.P. Grossman, Jeremy Brown, Andrew Huang, Tom Knight

Project Aries Technical Memo ARIES-TM-03
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA

Abstract

Data placement is an extremely important issue in
parallel machines. In order to obtain good
performance, it is often necessary to distribute a
single object (such as a large array) across many
nodes in a system. Traditional mechanisms for
achieving this distribution are expensive as they
require the mapping from virtual addresses to
physical locations to be globally visible and
coherent.

This paper presents Multistriped Addressing, a novel
technique for mapping virtual addresses to physical
nodes which allows contiguous portions of the virtual
address space to be striped across the system at
varying granularities. Multistriped addressing has
low hardware overhead and eliminates the need for
global translation tables. It can be used to improve
the efficiency of both cache-coherent and cacheless
shared memory systems.

1 Introduction

Parallel processing can be used to speed up many
applications by several orders of magnitude.
Massively parallel shared memory machines with
hundreds or thousands of processor/memory nodes
have been built (e.g. [Dally98], [Laudon97], [SGI]);
in the future we will see machines with millions
([IBM00]) or even billions of nodes. In such large-
scale systems, the layout of data in physical memory
is crucial to achieving the maximum possible
speedup. In particular, many good parallel
algorithms require data structures to be distributed
across multiple nodes in the system.

Typically, a fixed set of bits in the physical address
(usually the highest bits) is used to determine the
“home node” on which a piece of data resides. This
scheme has the advantages of being simple and
allowing data to be arbitrarily placed in the system on
a page granularity. However, it has the significant
disadvantage of requiring that every node be able to
make arbitrary virtual to physical address
translations. The address translation table for such a
system is, in effect, a massive global data structure
shared by all nodes. Translation lookaside buffers

are caches specific to this data structure which must
be kept coherent. This approach therefore has
significant implied hardware complexity, and is
inherently limited in its scalability.

From a hardware designer’s point of view, it is
clearly much more appealing to use bits in the virtual
address to locate home nodes. Address translation is
then a local rather than a global mechanism, and no
longer affects the scalability of the system. A minor
objection is that this requires remote nodes to
perform “extra work” to service remote memory
requests. In reality, however, the same amount of
work is being performed; it is simply being
performed in a different (and in our opinion more
natural) location. A more serious objection is that
distributing an object across multiple nodes requires
allocating many non-contiguous blocks of the virtual
address space for the single object, complicating both
memory management and object references. It is this
problem on which we focus our attention.

In this paper we introduce Multistriped Addressing,
a novel mapping from virtual addresses to physical
nodes which enables data from a contiguous chunk of
the virtual address space to be distributed in a flexible
manner without the use of global address translation
tables. The node ID is directly embedded into the
virtual address at a controllable offset. This has the
effect of partitioning virtual memory into a number
of equally sized spaces, each of which is striped
across the nodes of the system using a different
granularity. This method has minimal hardware
overhead and provides a convenient and efficient
mechanism for distributing parallel data structures.

The following section describes Multistriped
Addressing in detail including hardware
requirements. In section 3 we discuss the advantages
and disadvantages of Multistriped Addressing in
comparison to other strategies. Finally, in section 4
we conclude and outline the context in which
Multistriped Addressing was developed.

2 Technical Description

The simplest way to divide a large virtual address
space among the nodes of a distributed-memory

�-03 2 Multistriped Addressing

system is to allocate a fixed set of bits within the
address to indicate the node ID (Figure 1a). This has
the advantage of being extremely easy to implement
in hardware (the node ID can be extracted using
wires alone), but has the disadvantage of forcing
distributed objects to occupy multiple non-contiguous
portions of the virtual address space. This presents
several difficulties:

1. Allocation, deallocation, and garbage collection

(if applicable) of objects is much more expensive
when the objects are non-contiguous in memory.

2. For systems implementing capabilities
([Fabry74], [Carter94]), the description and
implementation of a capability is complicated by
the need to provide access to non-continguous
addresses while simultaneously preventing
access to in-between addresses.

3. Indexing arbitrary data within the object is more
expensive as the bits of the index need to be
rearranged before they are added to the base
address of the object.

Multistriped Addressing is an alternate approach
which provides a flexible means for striping
contiguous chunks of the virtual address space across
physical nodes in the system. The top five bits (S) of
a sixty four bit virtual address are used as an index
into the address itself; they specify the location of the
node ID within the address (Figure 1b).

Figure 1: (a) Node ID (N) defined by a fixed set of
virtual address bits. (b) Location of N within virtual
address determined by striping granularity S.

The described format accomplishes two goals:

1. By providing a fixed mapping from virtual

addresses to nodes, the need for system-wide
global address translation tables is obviated.

2. Placing the node index within the address itself
has the effect of striping data in a contiguous
virtual address space across the nodes with a
granularity of 2S bytes.

Since S ranges from 0 to 31, data may be striped with
any power-of-two granularity ranging from 1 byte to
2 Gigabytes. For systems with up to 256 million
nodes, the node index N will have at most 28 bits,
hence the fields S and N will never overlap. Note
that the five bit field S is part of the address. The
presence of this field does not reduce the size of the
address space; rather it divides the 64 bit address
space into 32 equally sized portions, each of which is
striped across the processing nodes with a different
granularity.

The only hardware required to extract node indices
from addresses is a 59 bit right shifter, as shown in
figure 2. Note that 59 is an upper bound on the size
of the shifter; if the system supports up to 2n nodes
then a 31 + n bit shifter is required.

Figure 2: A 59 bit right shifter extracts the node index
from the address.

2.1 Local Virtual Address
Once an address reaches a node, it is no longer
desirable to have the node index in the middle of the
address, as this can lead to sparsely populated pages.
For example, suppose a one megabyte data structure
is striped across a 256 node system at a granularity of
16 bytes. If the page size is 4096 bytes, then the
addresses of this data structure which are mapped to a
node N are of the form shown in Figure 3.

Figure 3: A one megabyte data structure is
striped across 256 nodes at a granularity of 16
bytes (S = 4). The addresses mapped to a
given node consist of upper bits which are
constant across the data structure, eight node
index bits (nnn…) embedded in the address, and
twelve bits (xxx…) that vary across the data
structure.

N

0 63

S : 5 N

0 S 58 63

(a)

(b)

S

>>

≤ 59 5

≤ 28

N

N

xxxx nnnnnnnn xxxxxxxx 00100 fixed bits

page offset virtual page
b

�-03 3 Multistriped Addressing

Note that the upper eight bits of the page offset are
fixed (they form the node ID N), while the lower four
bits of the page offset and the lower eight bits of the
virtual page number vary across the data structure.
As a result, the 4096 bytes of the structure which are
mapped to a given node occupy exactly 16 bytes in
each of 256 different pages. This leads to a rather
inefficient use of physical memory.

Figure 4: A local virtual address (b) is formed
from the virtual address (a) by excising the node
index N.

To fix this problem, we excise the node index to form
a local virtual address as shown in Figure 4. Note
that the original virtual address can be recovered
using S and N, so this is a one to one mapping from
virtual addresses to local virtual addresses.
Continuing with the previous example, the data
structure now occupies exactly one page on each
node.

Figure 5: Hardware required to excise N. The
virtual address is right shifted n bits. The high
32 bits of the shifted address are copied directly
into the local virtual address. The low 32 bits of
the shifted address are combined with the low 32
bits of the unshifted address using 32 two-input
multiplexors. The multiplexors are controlled by
a decoder which outputs 1’s in bits 0, 1, …, S-1
and 0’s in bits S, S+1, …, 31.

Performing this transformation involves selecting the
appropriate bits from a shifted and unshifted version
of the virtual address (in Figure 4, the bits in S and α
are selected from the shifted address and the bits in ß
are selected from the unshifted address). If N is n
bits long then we need to compute an n bit right shift
of the virtual address. If the exact size of the system
(and therefore n) is known in advance then this can
be done with wires, but it is usually desirable to be
able to use the same hardware for systems with
various numbers of nodes. Thus, the hardware
required is a 64 bit right shifter (with only five bits of
control as n < 32), a 32 bit decoder which generates
1’s below a given index and 0’s elsewhere, and 32
two-input multiplexors, as shown in Figure 5.

3 Discussion

An alternate approach to data distribution is to use
the simple mapping of figure 1a and rely on coherent
virtually-addressed data caches to move data to
where it is needed. This approach combines the
flexible demand-based data migration of a cache
coherent shared memory multiprocessor (such as
DASH [Lenoski92] or FLASH [Kuskin94]) with the
advantages of a fixed virtual address to physical node
mapping, namely the elimination of global translation
tables. However, if a large shared object resides on a
single home node, this node can become a system
bottleneck as it must handle all cache coherence
protocol messages related to the object. Thus, even
cache-coherent systems can benefit from multistriped
addressing as it allows such bottlenecks to be
avoided.

Other striping mechanisms have been implemented in
existing architectures. The M-Machine provides a
global translation mechanism which allows large
portions of the virtual address space to be mapped
over rectilinear subsets of the system’s three
dimensional array of nodes [Dally94]. Translation
table entries contain 37 bits which specify the
location and power of two extents of the subset in all
three directions, as well as the amount of data per
node. The Tera Computer System [Alverson90]
essentially employs a one dimensional version of this
scheme, using segment tables to distribute
consecutive virtual addresses in a segment among
any power of two number of memory units. Both of
these methods rely on a global translation mechanism
and therefore incur a much greater hardware cost
than multistriped addressing.

A limitation of any scheme which makes use of a
fixed virtual address to physical node mapping is the
inability to change a piece of data’s home node. For

S

S

α

α

ß

ß

N (a)

(b)

S

S

α

α

ß

ß

N

>> n

Decoder

32 low bits

32 low bits 32 high bits

32 multiplexors

�-03 4 Multistriped Addressing

cache coherent systems this is not so much of an
issue as data migration is automatic and the role of
multistriped addressing is simply to avoid bottlenecks
in the coherency protocol. For systems with local
cache only or even no cache at all (such as Tera
[Alverson90]), inter-node data migration is more
difficult as it necessitates a change in the object’s
virtual address. One possible solution to this problem
is the use of memory forwarding [Luk99].

4 Conclusion

Multistriped addressing is an efficient mechanism for
controlling the layout of data in large scale shared
memory systems. The fixed mapping of virtual
addresses to physical nodes eliminates the need for
expensive global address translation mechanisms.
Embedding home node IDs at controllable offsets
within virtual addresses incurs small hardware costs
and allows data to be striped across the system in a
flexible manner.

Multistriped addressing was developed as part of an
effort to find area efficient alternatives to traditional
architectural mechanisms. In contrast to today’s
scalar architectures which make use of the entire area
on a silicon die for a single monolithic processor,
tomorrow’s parallel architectures will place multiple
processors on a single die in an attempt to maximize
the overall parallelism of the system. In this domain
area efficiency translates directly to performance by
allowing greater parallelism at the same cost. Such a
parallel architecture, which makes use of multistriped
addressing, is currently under development.

References
[Alverson90] Robert Alverson, David Callahan, Daniel

cummings, Brian Koblenz, Allan Perterfield,
Burton Smith, “The Tera Computer
System”, Proc. 1990 ACM International
Conference on Supercomputing, June 1990.

[Carter94] Nicholas P. Carter, Stephen W. Keckler,
William J. Dally, "Hardware Support for
Fast Capability-based Addressing", Proc. 6th
International Conference on Architectural
Support for Programming Languages and
Operating Systems, 1994.

[Dally94] William J. Dally, Stephen W. Keckler, Nick
Carter, Andrew Chang, Marco Fillo, Whay
S. Lee, “M-Machine Architecture v1.0”,
MIT Concurrent VLSI Architecture Memo
58, Dept. of EECS, MIT, August 24, 1994.

[Dally98] William J. Dally, Andrew Chang, Andrew
Chien, Stuart Fiske, Waldemar Horwat, John
Keen, Richard Lethin, Michael Noakes,

Peter Nuth, Ellen Spertus, Deborah Wallach,
D. Scott Wills, “The J-Machine: A
Retrospective”, 25 Years of the International
Symposia on Computer Architecture -
Selected Papers, pp. 54-58

[Fabry74] R.S. Fabry, “Capability-Based Addressing”,
Communications of the ACM, Volume 17,
Number 7, pp. 403-412, July 1974.

[IBM00] IBM, “Blue Gene Architecture”, IBM press
release, available at http://www.research.
ibm.com/news/detail/architecture_fact.html

[Kuskin94] Jeffrey Kuskin, David Ofelt, Mark Heinrich,
John Heinlein, Richard Simoni, Kourosh
Gharachorloo, John Chapin, David
Nakahira, Joel Baxter, Mark Horowitz,
Anoop Gupta, Mendel Rosenblum, John
Hennessy, “The Stanford FLASH
Multiprocessor”, Proc. ISCA ’94, April
1994, pp. 302-313

[Laudon97] James Laudon, Daniel Lenoski, “The SGI
Origin: A ccNUMA Highly Scalable
Server”, Proc. ISCA ’97, pp. 241-251

[Lenoski92] Daniel Lenoski, James Laudon, Truman Joe,
David Nakahira, Luis Stevens, Anoop
Gupta, John Hennessy, “The DASH
Prototype: Implementation and
Performance”

[Luk99] Chi-Keung Luk, Todd C. Mowry, “Memory
Forwarding: Enabling Aggressive Layout
Optimizations by Guaranteeing the Safety of
Data Relocation”, Proc. ISCA ’99, pp. 88-
99.

[SGI] SGI, “Performance of the Cray T3ETM
Multiprocessor”, SGI technical white paper,
http://www.sgi.com/t3e/performance.html

