
g-005 April 14, 2000

A capability representation with embedded address
and nearly-exact object bounds

Jeremy Brown J.P. Grossman Andrew Huang Thomas F. Knight, Jr.

Abstract

We present a capability format which improves upon prior
capability formats by simultaneously providing four key
features. First, address and bounds information are em-
bedded directly in the capability representation. Second,
a capability may point to an arbitrary word in its segment.
Third, internal fragmentation due to segment/object size
mismatch is less than 6%; with a simple, high-locality
allocation scheme, total fragmentation is less than 12%.
Fourth, objects of 32 or fewer words, e.g. most class
instances in object-oriented systems, may be allocated
with no fragmentation and will thus have precise hardware
bounds-checking. These features make it entirely practi-
cal to use a capability-guarded segment per allocated ob-
ject, thus ensuring robust inter- and intra-program mem-
ory protection. Additionally, we describe the implemen-
tation and application of increment-only pointers which
enable precise hardware-only bounds-checking for Java-
style objects/arrays. Finally, we also demonstrate how to
generate capabilities for sub-segments from which the en-
closing segment can be recovered by system routines.

1 Introduction

Fine-grained capability-addressing systems offer signif-
icant data-integrity advantages over conventional com-
puter architectures. A capability is a hardware-recognized
token which denotes a region of memory – a segment – as
well as some permissions controlling the operations that
may be performed on that segment. Since capabilities are
distinguishable from other data, it is always dynamically
detectable when a program accidentally confuses them,
e.g. by trying to treat an integer as a pointer. In a fine-
grained capability system, each object may reside in its

Project Aries Technical Memo ARIES-TM-005
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA USA

Research performed under
DARPA/AFOSR Contract Number F306029810172

own segment; this dramatically reduces the incidence of
undetected intra-program problems such as buffer over-
runs. At the inter-program level, per-object protection
eliminates the need for per-process virtual address spaces;
this both eliminates the need for expensive TLB and cache
flushes during context-switches, and enables data sharing
between programs at the granularity of individual objects.

These advantages have traditionally been offset by
the difficulty of efficiently representing capabilities,
and in particular efficiently representing object bounds.
In many capability systems, a microcoded capability-
dereferencing operation performs multiple memory ref-
erences to verify object bounds; this overhead is unac-
ceptably high in modern RISC architectures. A few capa-
bility representations include embedded object, or more
precisely,segment, bounds in the capability word itself.
This approach enables pipelined bounds-checked opera-
tions on object references, but the schemes proposed to
date suffer either from the requirement that a capability
must point to the first word of a segment, or else from a
high degree of fragmentation due to segments which may
be much larger than the objects they contain.

Our core contribution in this paper is a format for em-
bedded segment bounds which overcomes both of these
limitations. We use a floating-point size field to main-
tain a close relationship between segment and object sizes
(within 6%); we use a specialfingerfield to enable a capa-
bility to point to an arbitrary address within its segment.

In addition to our basic capability format, we introduce
increment-only capabilities with which precise bounds-
checking may be implemented for languages such as Java.
We also present a method for generating capabilities de-
scribing sub-segments from which the original segment
may be reconstructed; sub-segments are thus compatible
with segment-relocation due to, for instance, compacting
garbage collection.

The remainder of this paper is structured as follows: in
Section2, we describe some important points in the his-
tory of capability formats. In Section3, we present our
capability representation, describe the function of each
field, explain how to perform important operations, and
discuss hardware implementation issues. In Section4,
we describe increment-only capabilities and their appli-



cations. In Section5, we explain how to generate sub-
segment capabilities from which the original segment can
be reconstructed. Finally, in section6 we conclude with a
brief discussion of applications of, and variations on, our
capability format.

2 Prior capability representations

The idea of usingcapabilities for addressing first ap-
peared formally in a paper by Fabry ([Fab74].) In con-
cept, each capability specifies a segment of memory and a
set of permissions detailing the operations permitted upon
that region. Fabry’s scheme represents each capability
as a set of permissions and a segment-identifying unique
ID. A hash table keyed on UIDs contains segments’ base
and bounds information; a small associative cache pre-
serves mappings for the most recently accessed segments.
Fabry’s approach is thus efficient when using small num-
bers of segments but inappropriate to a system in which
every independently-allocated object is placed in its own
segment.

A number of early capability systems used centralized
tables mapping from capabilities to segment addresses;
several are described in [Lev84]. While some of these ma-
chines segregate non-capability data from capabilities in
distinct segments, the evolutionary trend is clearly toward
tagging capabilities in a hardware-recognizable fashion so
that they may be freely intermingled with other data.

Most modern capability systems have avoided the cen-
tralized table by embedding object addresses directly in
the capability representation. We will not attempt to list
them all here, but rather to provide a small number of ex-
amples representing key points in the design spectrum.

The Symbolics 3600 Lisp Machine architecture
([Moo85]) features per-object pointers which directly ref-
erence the first word of their target objects. Rather than
encoding bounds information in these pointers, however,
the object size is encoded in the object’s first word; per-
forming bounds-checking on object references requires an
extra memory reference.1

The M-machine [FKD+95] uses a guarded pointer for-
mat described in [CKD94] to encode permissions, an ad-
dress, and a segment length descriptorL. The upper bits
of the address are fixed, while the lowerL bits are muta-
ble by pointer arithmetic; the segment is thus of size and
alignment2L, and the capability may point to any address
within it. This scheme requires hardware-recognized (i.e.
tagged) capabilities, and a small amount of hardware sup-
port in the processor to verify bounds information in par-
allel with performing pointer arithmetic. Notably, it re-

1Since a Symbolics pointer contains no permissions bits, it is a fairly
degenerate form of “capability” – possession of a pointer implies per-
mission to perform any and all operations on its target object.

quires neither indirections through a central table, nor the
embedding of size information in an object representation.

Two disadvantages of this scheme both arise from the
exponentiated segment sizes. First, for an object only
slightly larger than some power of two, nearly half of the
segment allocated to hold it will be unused; this internal
fragmentation both wastes space2 and means that accesses
which overrun the end of the object will not immediately
be detected as they will still fall into the segment.

Second, due to the strict alignment requirement, a sim-
ple allocation strategy based on advancing a pointer may
wind up wasting nearly half of memory due to external
fragmentation. Together, external and internal fragmenta-
tion combined could, in the worst case, waste nearly 75%
of memory. On the other hand, space-efficient “buddy-
system” allocators may place consecutively allocated ob-
jects nowhere near one another in memory. This failure of
locality is unfortunate: “...several studies have shown that
objects should be laid out in the heap in such a way that
objects that refer to each other, or are related in some other
way, are placed in close proximity in order to reduce the
size of the program’s working set. There is considerable
evidence that allocation order is a good indicator of such
a relationship between objects...”([JL96], pages 113-114.)

An alternate set of tradeoffs appear in the ORSLA
capability-system described in [Bis77]. In ORSLA, a ca-
pability contains (in addition to permissions bits) the ad-
dress of the first word of an object, and a small size field
(5-9 bits.)

The first bit of the size field distinguishes small and
large objects. For small objects, the remaining bits simply
represent the size in words. For large objects, the remain-
ing bits are divided into exponent and mantissa compo-
nents; this floating-point number can describe (at coarser
granularities) much larger segments than can an integer
represented with the same number of bits. Rather than
setting the size field’s value to be slightly larger than the
number of words in the contained object, ORSLA sets it
to be slightly smaller; the object’s precise size is stored in
the object itself. When a reference to the last few words
of a large object violates the capability’s size field, mi-
crocode performs additional memory references to check
the precise size stored in the object.

This scheme gives ORSLA precise object bounds at the
cost of an extra memory reference for words toward the
end of an object. Object allocation is extremely easy in
ORSLA – objects may be allocated consecutively by sim-
ply advancing a shared allocation pointer. However, com-

2Note that internal fragmentation only wastes real memory up to the
level of a page; any whole page which is unused need not be allocated
physical resources. Since our interest is in placing each object in its
own capability-guarded segment, we must expect most fragmentation
to cost physical memory, since most objects will be small enough that
fragmentation will waste physical memory.

g-005 2 Capability Representation



pared to guarded pointers, ORSLA capabilities are limited
in that the embedded addresses must always point to the
first word of their objects.

3 Our capability representation

Our capability representation takes inspiration from both
the M-machine’s guarded pointers and ORSLA’s floating-
point-bounded capabilities. Our goal is to define a repre-
sentation encoding both address and size information such
that:
• No memory references are ever required to check seg-

ment bounds.
• The segment defined by a capability is not signif-

icantly larger than the contained object in order to
avoid wasting memory.

• The segment defined by a capability has loose align-
ment requirements in order to simplify allocation and
thereby improve locality of reference.

• A capability may contain an address pointing to any
location in the segment it describes.

◦ None

We propose a 128-bit capability composed of a 64-bit
addressfield, a 15-bitboundsfield, a 1-bitincrement-only
field, a 16-bitpermissionsfield, and a 32-bitmiscella-
neousfield available to the operating system; a special
129th capability tag bit distinguishes capabilities from
other data. This section will focus entirely upon the
bounds field. Section4 will discuss the increment-only
field. We will not discuss the use of the permissions
bits beyond mentioning that we favor the “take-diminish”
scheme described in [Sha99]. In Section5, we will de-
scribe the use of some of the themiscellaneousbits to
enable sub-segmentation.

3.1 Representing size

Although we intend to use a 15-bit bounds field, we begin
by introducing a 16-bit version; we will reduce it to 15
bits in the following section.

In the 16-bit version, shown in Figure1, a capability’s
bounds field is divided into subfieldsL, B, andF ; we
shall defer discussion of the 5-bit finger fieldF until Sec-
tion 3.5. L andB together specify that the segment con-
sists ofL + 1 blocks of2B words, aligned on2B-word
boundaries.3 We suggest 5 bits for lengthL and 6 bits
for log-block-sizeB, in which case the bounds field is 16

3The size field may alternately be viewed as a floating point number
with mantissaL and exponentB – indeed, we use this terminology in
overviews of the representation – but this viewpoint obscures the block-
alignment requirement.

Capability:

Segment:

misc: 32 P:16 Address: 64

block: 2
B
 words

segment: L+1 aligned blocks

0 1 L

bounds:16

permissions

B:6 F:5L:5

block
size 
exponent

 length
 (blocks) finger

1

capability
tag bit

I:1

increment-
only

Figure 1:A simple, 129+1 bit version of a capability iden-
tifying a memory segment.

bits and a segment may be as large as25 ∗ 226−1 = 268

words.4

3.2 A more efficient size representation

Note that any segment whose size can be represented as
L1, B1 whereB1 > 0 andL1 < 16 can also be repre-
sented with finer granularity blocks asL2 = L1 ∗ 2 + 1,
B2 = B1 − 1. By requiring that sizes always be repre-
sented at the finest possible granularity, we can re-encode
the size field asL′,B′, whereL′ is only 4 bits, thus saving
one bit over theL, B representation.

4In other words, we can describe a segment which is larger than our
entire address space.

segment: L’+1 words

0

"Small"
Segment:

1 2 3 4 5 6 7 8 9 10

misc: 32 P:16 Address: 64

Capability:

B’:6 F:5L’:41

B’=63 L’=10

I:1

Figure 2: A compressed-bounds format (128+1 bits) ca-
pability identifying an 11-word memory segment (B = 0,
L = 10; B′ = 63, L′ = 10).

g-005 3 Capability Representation



block: 8 words

segment: L’+17 aligned blocks

0 1 27

"Large"
Segment:

misc: 32 P:16 Address: 64

Capability:

B’:6 F:5L’:41

B’=3 L’=11

I:1

Figure 3: A compressed-bounds format capability iden-
tifying a 224-word memory segment (B = 3, L = 27;
B′ = 3, L′ = 11).

We split this compressed-bounds encoding into two
cases: small segments, and large segments. A small seg-
ment is between 1 and 16 words, and is represented by
settingB′ = 63 and takingL′+1 to be the size of the seg-
ment in words (see Figure2.) A large segment consists of
exactlyL′ + 17 blocks of2B′ words, where0 ≤ L ≤ 15
and0 ≤ B′ ≤ 62. (See Figure3.) With this encoding the
largest segment representable is267 words.

The hardware to translate from compressed size to reg-
ular size is quite simple. If theith bit of B′ is b′i, let
s = (B′ 6= 63) = b′5 · b′4 · b′3 · b′2 · b′1 · b′0; we can com-
putes with a 6-input NAND gate.

Given s, B is easily calculated with six AND gates:
bi = b′i · s. Finally, no additional gates are necessary to
compute L, which is represented simply withl5 = s, and
li = l′i for 0 ≤ i ≤ 4.

In the remainder of this paper we will generally speak
in terms ofB andL because they have simpler seman-
tics thanB′ andL′ – we will, however, always assume
that segment sizes are represented at their finest possible
granularities.

3.3 Segment/object size mismatches and
wasted memory

Although our “floating point” size representation clearly
gives a better fit between segment and object sizes than
a purely exponential representation, for objects of more
than 32 words there is still the possibility that the segment
will be larger than the object it contains – i.e. one of the
blocks of the segment will not be entirely covered by the
object the segment contains. Large objects always have at
least 17 blocks, and less than one block is wasted, so the
worst-case memory loss due to this internal fragmentation
is less than1/17 (less than 5.9%). By adding bits to the
mantissaL we could further reduce the degree of waste;

for instance, one additional bit would reduce internal frag-
mentation to less than1/33 (about 3%.)

3.4 The alignment requirement, allocation,
and more wasted memory

We have specified that the blocks of a segment must be
block-aligned – i.e. for a block of size2B , the lowerB
bits of the address of the first word of the block must all
be zero. We justify this requirement in the next section,
but we shall explore its implications for allocation in this
one.

In particular, we would like to be able to allocate ob-
jects by simply advancing a counter on demand; this style
of allocation is extremely simple and provides desirable
spatial locality between consecutively allocated objects.
Unfortunately, when a large object is allocated immedi-
ately following a small object, the last word of the small
object may occupy a slot that would otherwise be the first
word of a block for the large object. This forces the large
object to be allocated at the next large block alignment
boundary, wasting most of the large block preceding it.
Since large segments consist of at least 17 blocks, at worst
less than one block in 18 (less than 5.6%) is lost to this ex-
ternal fragmentation.

Combined with internal fragmentation due to ob-
ject/segment size mismatches, the systemic worst-case
space wastage is less than 2 blocks in 18, or less than
11.2% total wastage. Of course, like internal fragmenta-
tion, external fragmentation only wastes real memory up
to the level of a page; again, though, our goal is to place
each object in its own capability-guarded segment, and
so we must still expect fragmentation to waste physical
memory, since most objects will be too small to generate
page-sized, page-aligned fragments.5

3.5 The finger field

With floating-point size representations, it is not possible
to compute the base of a segment from an arbitrary ad-
dress pointing into it; as a result, systems like ORSLA
can only store capabilities which point to segment bases.

We overcome this limitation in our capability represen-
tation with thefingerfield F . The address in a capability
may point to an arbitrary word in the target segment; as
shown in Figure4, the finger field records the fact that
the pointed-to word is contained in theF th block in the
segment. Using our 5-bit size-field mantissaL (4-bit L′),
an address can point into any of up to 32 blocks;F must
therefore be 5 bits long.

5Specifically, an object must be more than 32 pages in length in order
to potentially generate page-level fragmentation. The derivation of the
number 32 is left as an exercise for the reader.

g-005 4 Capability Representation



block: 2
B
 words

Capability:

segment: L aligned blocks

0 1 L

Segment:

2 (F)

misc: 32 P:16 Address: 64B’:6 F:5L’:41

F=2

I:1

Figure 4:The finger fieldF identifies the block of a seg-
ment into which a capability points.

Another way to viewF is as the high bits of the offset
of the capability’s addressA from the segment baseS; i.e.
if we decompose the 64-bit addressA as

A = U :Z (1)

wheresize(Z) = B, we can exploit the fact that the seg-
ment is block-aligned to expressA as

A = S + F :Z (2)

where the termF :Z is padded with leading 0’s to match
A’s 64-bit length.

3.5.1 Pointer arithmetic

Using the finger field, we can add an arbitrary integer off-
setX, where

X = Ux:Zx (3)

to a capabilityC1 while simultaneously verifying that the
address in the resulting capabilityC2 still points within
the segment bounds; note thatX may be negative. The
complete datapath for this operation is shown in Figure5;
the explanation of the datapath follows.

We compute the new addressA2 in straightforward
fashion using a 64-bit adder:

A2 = A1 + X (4)

We can computeF2 more efficiently than is immedi-
ately obvious. Using Equations2 and3, we can rewrite
Equation4 as

A2 = S + F1:Z1 + Ux:Zx (5)

If we subtractS from both sides of Equation5, and
right-shift the result byB bits, we discover that

F2 = F1 + Ux + (Z1 + Zx) >> B (6)

A1

B1

C1

F1L1

X

64:1

ASR
>>

+
64

+
6 CIN

A2

B2

F2

L2

C2

UX 5:0

<=

0000...?
1111...?

UX 64:5

c
a
r
r
y
s

fault

fault

fault

e
t
c
.

Figure 5: The datapath for adding signed constant offset
X to capabilityC1 to produce capabilityC2. Note that
this diagram uses the simpleB,L size encoding.

g-005 5 Capability Representation



The last term of Equation6 is simply the carry-bit re-
sulting from adding the firstB bits of A1 andX. Thus,
we can computeF2 using a 64:1 multiplexor to steal the
correct carry bit, a 64-bitarithmeticright shift unit to ex-
tract Ux while preserving its sign, and a 64-bit adder to
sumUx andF2.

As it turns out, we can actually replace the 64-bit adder
with smaller quantities of hardware. We first observe that
if Ux is positive, it must be smaller than 32 or it is guar-
anteed to causeF2 to be larger thanL; if Ux obeys this
requirement, bitsui for i ≥ 5 will all be 0. Similarly,
if Ux is negative, its magnitude can be at most 31 since
otherwiseF2 is certain to be negative; ifUx obeys this
requirement, bitsui for i ≥ 5 will all be 1.

Based on these observations, we can perform simple
checks on the high bits ofUx to ensure that they meet one
or the other of these criteria; if they fail, a bounds-check
interrupt is raised. To compute the valid-positive-value
check requires a 64-input NOR; to compute the valid-
negative-value check requires a 64-input AND.

If the checks on the high bits ofUx pass, we can com-
pute Equation6 using only the 6 lowest bits (5 value bits
and one sign bit) ofUx. Hence, we use a 64-bit AND,
a 64-bit NOR, and a 6-bit adder, all instead of a 64-bit
adder. Of course, if the result of the 6-bit addition gener-
ates a carry, we signal a bounds violation.

Having finally computedF2, we now compare it toL
with a 5-bit comparator. IfF2 < 0 or F2 ≥ L, there is a
bounds violation and an interrupt must be signaled; if not,
A2 andF2 are valid and may be composed, along withB1

andL1, to form the new capabilityC2.

3.5.2 Computing a segment’s base address

An important operation for garbage collection is quickly
discovering an object’s base address. If we subtractF :Z
from both sides of Equation2 to produce

S = A− F :Z (7)

we see that it is simple to compute a segment’s base
address using the pointer-math hardware of the previous
section; we just subtractF :Z from A. AssemblingF :Z
in hardware requires a mask operation to extractZ from
A; a shift operation to moveF to the appropriate bitwise
position; and finally an OR operation to merge the two
values.

4 Increment-only capabilities and
front-padded allocation

Although our bounds on wasted space are fairly tight, seg-
ments will still sometimes be larger than the objects they

contain. Because the bounds-checking hardware checks
segment bounds rather than object bounds, languages
such as Java which must precisely bounds-check array ac-
cesses are stuck performing software checks. In this sec-
tion we offer a solution to this problem: increment-only
capabilities combined with front-padded allocation.

A single bitI is set to mark a capability as increment-
only; if I is set, only positive offsets may be added to
the capability. For example, a routine which receives an
increment-only capability pointing to the middle of an ar-
ray can only access the second half of that array; it cannot
add negative offsets to the capability to access the first
half.

Front-padded allocation simply means that when we al-
locate an object of sizeN into a segment of sizeM where
M > N , the first word of the object is located at word
M − N of the segment, causing the last word of the ob-
ject to coincide with the last word of the segment. In other
words, all of the wasted space (padding) is at the front of
the segment, rather than at the end.

We can get precise bounds-checking on objects by us-
ing an allocator which returns increment-only capabilities
to the first words of front-padded objects. This approach
works perfectly for languages such as Java which only
store pointers to the first words of objects and arrays. Ob-
viously we can not use the increment-only bit with lan-
guages such as C that allow arbitrary pointer math; how-
ever, front-padded allocation still has the potential to be
helpful since most loops move from the front to the end
of an object (array), rather than vice-versa, and thus the
danger of accidental bounds-overrun is greatest at the end
of an object.

The increment-only check is easily performed in hard-
ware simply by examining the high bit of any (signed)
constant being added to a capability, and throwing an in-
terrupt if it is 1.

Increment-only pointers may be useful in other appli-
cations. For instance, we can protect an object’s “private”
fields from broken or malevolent code by placing them at
its head. When passing a capability to untrusted code, we
pass an increment-only capability which points just after
the private fields, thus giving access only to the public
fields in the latter part of the object.

5 Sub-segmentation with original
segment recovery

In some cases, one might wish to allocate a large object,
and then create a capability whose base and bounds infor-
mation denote a sub-segment of that object; for instance,
one might allocate an array of objects, and wish to gen-
erate a capability for exactly one of the objects in the

g-005 6 Capability Representation



original segment 

0 1 L

Segment:

2 (F)

sub-segment

sub-segment
block

original
segment
block

Capability:

P:16 Address: 64B’:6 F:5L’:4

F=2

B’:6 F:5L’:4

original
segment
bounds

sub-segment
bounds

I:1

Figure 6: Sub-segmentation: the original segment’s
bounds are preserved; the original fingerF identifies the
block in which the sub-segment begins.

array. Generating such a capability is trivial, subject to
alignment requirements: in the new capability, the address
points into the sub-segment, and the bounds information
denotes the sub-segment’s bounds.

Uncontrolled sub-segmentation can generate problems
in the presence of segment relocations which may hap-
pen, for instance, due to compacting garbage collection.
A garbage collector faced with a variety of capabilities
which overlap to varying degrees would have a great deal
of difficulty ensuring that each segment was copied ex-
actly once with no duplication of sub-segments.

To solve this problem we adopt a simple strategy: when
a sub-segment capability is generated, the bounds infor-
mation for the original segment are stored into some of
the previously unusedmiscellaneousbits in the capabil-
ity as shown in Figure6. In particular, the original seg-
ment’s size fieldsB′ andL′ are preserved; the fingerF
which is preserved identifies the original block in which
the sub-segment begins. Thus, given a sub-segment ca-
pability, privileged routines such as the garbage collector
can generate a capability for the original segment by first
finding the base of the sub-segment, and then using the
stored bounds information to recover the base and size of
the original segment.

Either a tag bit must be dedicated to distinguish sub-
segment capabilities from normal capabilities, or else nor-
mal capabilities must include copies of their size infor-
mation in the “original bounds” fields so that garbage
collection routines may treat all capabilities uniformly.
Regardless, no special hardware is required to employ
sub-segmentation; the operating system, allocation, and
garbage-collection routines must simply agree upon the

convention.

6 Conclusions

In this paper we have presented a capability format which
improves upon prior formats by simultaneously providing
four key features:
• Address and bounds information are embedded di-

rectly in the capability representation.
• A capability may point to an arbitrary word in its seg-

ment.
• Internal fragmentation due to segment/object size mis-

match is less than 6%; with a simple, high-locality al-
location scheme, total fragmentation is less than 12%.

• Objects of 32 or fewer words, e.g. most class in-
stances in object-oriented systems, may be allocated
with no fragmentation and will thus have precise hard-
ware bounds-checking.

◦ None

These features make it entirely practical to use a
capability-guarded segment per allocated object, thus en-
suring robust inter- and intra-program memory protection.

In addition to our basic capability format, we
have described the implementation and application of
increment-only pointers which enable precise hardware-
only bounds-checking for Java-style objects/arrays. We
have also demonstrated how to generate capabilities for
sub-segments from which the enclosing segment can be
recovered by system routines.

We should note that our capabilities may even be used
with non-object-oriented code to improve software ro-
bustness. For instance, most programs written in C could
run on our architecture; themalloc routine would return
capabilities, and many classes of pointer-manipulation er-
ror traditionally undetected at the point of error would be
caught by hardware bounds-checking.

Finally, for some applications our 128+1 bit capability
format is unnecessarily large. A 64-bit encoding com-
prised of a 15 bounds-field, an increment-only bit, and
a 48-bit address would provide several of the most im-
portant features of our format. Such an encoding might
be particularly appealing for insuring intra-program data
integrity in an environment in which inter-program in-
tegrity is provided by conventional disjoint virtual address
spaces.

References

[Bis77] Peter B. Bishop.Computer Systems With A
Very Large Address Space And Garbage Col-
lection. PhD thesis, Massachusetts Institute
of Technology, May 1977.

g-005 7 Capability Representation



[CKD94] Nicholas P. Carter, Stephen W. Keckler, and
William J. Dally. Hardware support for fast
capability-based addressing. InProceedings
of the 6th International Conference on Archi-
tectural Support for Programming Languages
and Operating Systems (ASPLOS VI), pages
319–27, October 1994.

[Fab74] R. S. Fabry. Capability-based addressing.
Communications of the ACM, 17(7):403–12,
July 1974.

[FKD+95] Marco Fillo, Stephen W. Keckler, William J.
Dally, Nicholas P. Carter, Andrew Chang,
Yevgeny Gurevich, and Whay S. Lee. The m-
machine multicomputer. InProc. 28th Annual
International Symposium on Microarchitec-
ture, pages 146–156, 1995.

[JL96] Richard Jones and Rafael Lins.Garbage
Collection: Algorithms for Dynamic Memory
Management. John Wiley & Sons, 1996.

[Lev84] Henry M. Levy. Capability-based computer
systems. Digital Press, 1984.

[Moo85] David A. Moon. Architecture of the symbolic
3600. In12th Annual International Sympo-
sium on Computer Architecture Conference
Proceedings, pages 76–83, 1985.

[Sha99] Jonathan Strauss Shapiro.EROS: A Capabil-
ity System. PhD thesis, University of Penn-
sylvania, 1999.

g-005 8 Capability Representation


	Introduction
	Prior capability representations
	Our capability representation
	Representing size
	A more efficient size representation
	Segment/object size mismatches and wasted memory
	The alignment requirement, allocation, and more wasted memory
	The finger field
	Pointer arithmetic
	Computing a segment's base address


	Increment-only capabilities and front-padded allocation
	Sub-segmentation with original segment recovery
	Conclusions

