Y-005 April 14, 2000

A capability representation with embedded address
and nearly-exact object bounds

Jeremy Brown J.P. Grossman Andrew Huang Thomas F. Knight, Jr.

Abstract own segment; this dramatically reduces the incidence of

undetected intra-program problems such as buffer over-
We present a capability format which improves upon prigiins. At the inter-program level, per-object protection
capability formats by simultaneously providing four kegliminates the need for per-process virtual address spaces;
features. First, address and bounds information are &fils both eliminates the need for expensive TLB and cache
bedded directly in the capability representation. Seconilishes during context-switches, and enables data sharing
a capability may point to an arbitrary word in its segmengetween programs at the granularity of individual objects.
Third, internal fragmentation due to segment/object sizéThege advantages have traditionally been offset by
mismatch is less than 6%; with a simple, high-localie gifficulty of efficiently representing capabilities,
allocation scheme, total fragmentation is less than 124 in particular efficiently representing object bounds.
Fourth, objects of 32 or fewer words, e.g. most clags many capability systems, a microcoded capability-
instances in object-oriented systems, may be allocaifgeferencing operation performs multiple memory ref-
with no fragmentation and will thus have precise hardwaggances to verify object bounds; this overhead is unac-
bounds-checking. These features make it entirely pragiiptaply high in modern RISC architectures. A few capa-
cal to use a capability-guarded segment per allocated gy representations include embedded object, or more
ject, thus ensuring robust inter- and intra-program mefyacisely, segmentbounds in the capability word itselr.
ory protection. Additionally, we describe the implemenryis approach enables pipelined bounds-checked opera-
tation and application of increment-only pointers whicfions on object references, but the schemes proposed to
enable precise hardware-only bounds-checking for Jayate suffer either from the requirement that a capability
style objects/arrays. Finally, we also demonstrate howQ,st point to the first word of a segment, or else from a
generate capabilities for sub-segments from which the gy degree of fragmentation due to segments which may
closing segment can be recovered by system routines. pe much larger than the objects they contain.

Our core contribution in this paper is a format for em-
1 Introduction bedded segment bounds which overcomes both of these
limitations. We use a floating-point size field to main-

Fine-grained capability-addressing systems offer signifin a close relationship between segment and object sizes
icant data-integrity advantages over conventional cof¥ithin 6%); we use a speciéihgerfield to enable a capa-
puter architectures. A capability is a hardware-recognizB#ty to point to an arbitrary address within its segment.
token which denotes a region of memory — a segment — a$n addition to our basic capability format, we introduce
well as some permissions controlling the operations thagrement-only capabilities with which precise bounds-
may be performed on that segment. Since capabilities afecking may be implemented for languages such as Java.
distinguishable from other data, it is always dynamical¥¥e also present a method for generating capabilities de-
detectable when a program accidentally confuses thes@ribing sub-segments from which the original segment
e.g. by trying to treat an integer as a pointer. In a fingday be reconstructed; sub-segments are thus compatible
grained capability system, each object may reside in Wth segment-relocation due to, for instance, compacting
garbage collection.

The remainder of this paper is structured as follows: in
Section?, we describe some important points in the his-

Project Aries Technical Memo ARIES-TM-005
Artificial Intelligence Laboratory

Department of Electrical Engineering and Computer Science tory Of papability form_ats- In Se_CtidEv we pre-sent our
Massachusetts Institute of Technology capability representation, describe the function of each
Cambridge, MA USA field, explain how to perform important operations, and
Research performed under discuss hardware implementation issues. In Seion

DARPA/AFOSR Contract Number F306029810172 we describe increment-only capabilities and their appli-

cations. In Sectioff] we explain how to generate subguires neither indirections through a central table, nor the
segment capabilities from which the original segment cambedding of size information in an object representation.
be reconstructed. Finally, in sectiBiwe conclude witha Two disadvantages of this scheme both arise from the
brief discussion of applications of, and variations on, ogkponentiated segment sizes. First, for an object only
capability format. slightly larger than some power of two, nearly half of the
segment allocated to hold it will be unused; this internal
. .- . fragmentation both wastes spAe@md means that accesses
2 Prior capability representations which overrun the end of the object will not immediately
)) o)] be detected as they will still fall into the segment.
The idea of usingcapabilities for addressing first ap- gecong, due to the strict alignment requirement, a sim-
peared formally in a paper by Fabrf@b74.) In con- ¢ 5ji0cation strategy based on advancing a pointer may
cept, each capability specifies a segment of memory anghigy p wasting nearly half of memory due to external
set of permissions detailing the operations permitted UpPBy mentation. Together, external and internal fragmenta-
that region. Fabry's scheme represents each capabiify, combined could, in the worst case, waste nearly 75%
as a set of permissions and a segmeqt-ldentlfylng Unigkt€memory. On the other hand, space-efficient “buddy-
ID. A hash table keyed on UIDs contains segments’ bagesiem allocators may place consecutively allocated ob-
and bounds information; a small associative cache P[&s nowhere near one another in memory. This failure of
serves mappings for the most recently accessed segmegiSjivy is unfortunate: *...several studies have shown that
Fabry's approach is thus efficient when using small nurgiects should be laid out in the heap in such a way that
bers of segments but inappropriate to a system in whighie (s that refer to each other, or are related in some other
every independently-allocated object is placed in its OV\V/vrby, are placed in close proximity in order to reduce the
segment. o . size of the program’s working set. There is considerable
A number of early capability systems used centralizedijence that allocation order is a good indicator of such

tables mapping from capabilities to segment addressgse|ationship between objects. J(98, pages 113-114.)
several are described ibgv84]. While some of these ma- An alternate set of tradeoffs ‘éppear in the ORSLA

chines segregate non-capability data from capabilitiese’ nability-system described iBi77]. In ORSLA, a ca-

distinct segments, the evolutionary trend is clearly towa6 bility contains (in addition to permissions bits) the ad-

tagging capabilities in a hardware-recognizable fashiona;r%ss of the first word of an object, and a small size field
that they may be freely intermingled with other data. (5-9 bits.) '

Most modern capability systems have avoided the cen-

tralized table b beddi biect add directlv.i The first bit of the size field distinguishes small and
ralized table by embedding object addresses direc ylé{?ge objects. For small objects, the remaining bits simply

the capability representation. We will not attempt to Ii%present the size in words. For large objects, the remain-
them all here, but rather to provide a small number of e; !

amples representing key points in the design spectrumm-g bits are divided into exponent and mantissa compo-
. .) . hents; this floating-point number can describe (at coarser
The Symbolics 3600 Lisp Machine architectur gp (

Sranularities) much larger segments than can an integer

((MaoB3) fez_atures per-objec_:t pointers V_VhiCh directly reffe resented with the same number of bits. Rather than
erence the first word of their target objects. Rather th

g tting the size field’s value to be slightly larger than the

Umber of words in the contained object, ORSLA sets it

the object size is encoded in the object’s first word, PSG be slightly smaller; the object’s precise size is stored in

forming bounds-checking on object references requires,ga object itself. When a reference to the last few words
extra memory referenc.

The M hineFKD 05 ded poi ; of a large object violates the capability’s size field, mi-
€ Mi-machinew i uses a guar e .pomter Ocrocode performs additional memory references to check
mat described inCKD94] to encode permissions, an ad

dress, and a segment length descrigtoiThe upper bits the precise size stored in the object.
of the address are fixed, while the lowkibits are muta- This scheme gives ORSLA precise object bounds at the

; .) .) cqst of an extra memory reference for words toward the
ble by pointer arithmetic; the segment is thus of size aga y

) I e . d of an object. Object allocation is extremely easy in
alllgrjm.ena N and the capabﬂny may point o any ".’lddre.saRSLA — objects may be allocated consecutively by sim-
within it. This scheme requires hardware-recognized (I'F(ﬁ' advancing a shared allocation pointer. However, com-
tagged) capabilities, and a small amount of hardware sup}(' ’

port in the processor to verify bounds information in par- 2Note that internal fragmentation only wastes real memory up to the
allel with performing pointer arithmetic. Notably, it relevel of a page; any whole page which is unused need not be allocated
physical resources. Since our interest is in placing each object in its

1since a Symbolics pointer contains no permissions bits, it is a faidwn capability-guarded segment, we must expect most fragmentation
degenerate form of “capability” — possession of a pointer implies peo-cost physical memory, since most objects will be small enough that
mission to perform any and all operations on its target object. fragmentation will waste physical memory.

Y-005 2 Capability Representation

pared to guarded pointers, ORSLA capabilities are limited block
in that the embedded addresses must always point to the Sze 'E?géts fier
first word of their objects. exponent (blocks) — fing

| B:6f L5] Fs|

T . ability: \ !

3 Our capability representation copebity \ :
1| misc: 32 | P:16 |I:1| bounds:16 Address: 64

1] | P16] I

Our capability representation takes inspiration from botht]
the M-machine’s guarded pointers and ORSLA's floatingeapability permissions. .
point-bounded capabilities. Our goal is to define a repr&9 bit :;,ﬁ;,anm _
sentation encoding both address and size information such
that:
¢ No memory references are ever required to check segsegment: block: 2° words
ment bounds. T T T S)
e The segment defined by a capability is not signif-

icantly larger than the contained object in order to < >
avoid wasting memory. segment: L+1 aligned blocks
e The segment defined by a capability has loose align-
ment requirements in order to simplify allocation and. . . . S
thereby improve locality of reference. E|g_ure 1:A simple, 129+1 bit version of a capability iden-
e A capability may contain an address pointing to arﬂ’y'ng amemory segment.
location in the segment it describes.

o None bits and a segment may be as largeas 22°~! = 268

We propose a 128-bit capability composed of a 64-ords?
addresdield, a 15-bitbounddield, a 1-bitincrement-only
field, a 16-bitpermissiondfield, and a 32-bitmiscella- 3.2 A more efficient size representation
neousfield available to the operating system; a special .
129th capability tag bit distinguishes capabilities fromNOt€ that any segment whose size can be represented as
other data. This section will focus entirely upon th&1: Bi whereB, > 0-andL; < 16 can also be repre-
bounds field. Sectiod will discuss the increment-only Sentéd with finer granularity blocks ds = L1 * 2 + 1,
field. We will not discuss the use of the permissionléz = B — 1-_ By requiring that sizes always be repre-
bits beyond mentioning that we favor the “take-diminishP€nted at the finest possible granularity, we can re-encode
scheme described i8ha99. In SectionB, we will de- the size field ad’,B’, whereL’ |s_only4 bits, thus saving
scribe the use of some of the theiscellaneousits to ON€ bit over thel, B representation.

enable sub-segmentation. “4In other words, we can describe a segment which is larger than our
entire address space.

3.1 Representing size N
Capability:

Although we intend to use a 15-bit bounds field, we begin
by introducing a 16-bit version; we will reduce it to 15
bits in the following section.

In the 16-bit version, shown in Figulg a capability’s
bounds field is divided into subfields, B, and F; we S;j';nal;n
shall defer discussion of the 5-bit finger figlduntil Sec- IO o
tion3.8 L and B together specify that the segment con- 011 2] 3] 4[5]6[7]8]9[19
sists of L + 1 blocks of2” words, aligned or2”-word B -
boundarie$ We suggest 5 bits for length and 6 bits segment: L' +1words
for log-block-sizeB, in which case the bounds field is 16

B'=63 L'=10
|1| misc: 32 | P:16|I:1|B’:6|L':4| F:5| Address: 64

3The size field may alternately be viewed as a floating point nuqu[gure 2:-A compressed-bounds format (128+1 bits) ca-
with mantissal. and exponen3 — indeed, we use this terminology in bility identifying an 11-word memory segmei & 0

overviews of the representation — but this viewpoint obscures the blogg ; ,
alignment requirement. L =10; B' =63, L' = 10).

Y-005 3 Capability Representation

Capability: B'=3 L'=11 for instance, one additional bit would reduce internal frag-
1] misc: 32 [Pa6[1:1[B 6L 4] F:5] Address 64 | mentation to less thaty 33 (about 3%.)
3.4 The alignment requirement, allocation,
"Large and more wasted memory
Segment: block: 8 words
— .
R T R - - - We have specified that the blocks of a segment must be
block-aligned — i.e. for a block of siz2?, the lowerB
T T 4 - - - S bits of the address of the first word of the block must all

segment: L’ +17 aligned blocks be zero. We justify this requirement in the next section,
but we shall explore its implications for allocation in this

0
Figure 3: A compressed-bounds format capability iden-
tifying a 224-word memory segmenB(= 3, L = 2T,
B' =3, L' =11).

ne.

In particular, we would like to be able to allocate ob-
jects by simply advancing a counter on demand; this style

of allocation is extremely simple and provides desirable
spatial locality between consecutively allocated objects.

We split this compressed-bounds encoding into tv\llénfortunatgly, when a Iar_ge object is allocated immedi-

cases: small segments, and large segments. A small %?y following a small object, the last worq of the Sm"?‘”
ect may occupy a slot that would otherwise be the first

ment is between 1 and 16 words, and is represented : .
settingB’ — 63 and takingl + 1 to be the size of the seg-W rd of a block for the large object. This forces the large

ment in words (see Figui2) A large segment consists ofb)bjecé to be allt(_)cated étt t?(tahnelxt Iar%? bLOCk al'%nme.?t
exactlyL’ 4+ 17 blocks of22" words, whered < L < 15 oundary, wasting most of the farge biock preceding it.

and0 < B’ < 62. (See Figur8) With this encoding the lSlnctehIarge seglmekn.ts ;gnls Ist %at I;ag;r/l? blloctkts, ;lt'worst
largest segment representableis words. ess than one blockin 18 (less than 5.6%) is lost to this ex-

. ternal fragmentation.
The hardware to translate from compressed size to regbombined with internal fraamentation due to ob-
ular size is quite simple. If théth bit of B is b, let . : . 9 .
, T ject/segment size mismatches, the systemic worst-case
s = (B # 63) = b - bl - b5 - b, - b - b); we can com- . d
. : space wastage is less than 2 blocks in 18, or less than
putes with a 6-input NAND gate. 11.2% total wastage. Of course, like internal fragmenta-
Given s, B is easily calculated with six AND gates:,. ge ' 9

b — b Finallv. no additional qates are necessar 'Fon, external fragmentation only wastes real memory up
505 ljtéSL whichyis represented gim ly With— andy 8 the level of a page; again, though, our goal is to place
P 5), for 0’< i< 4 P Pl =5 each object in its own capability-guarded segment, and

0 we must still expect fragmentation to waste physical

_ In the refmamdder 0; this papir Wi will g_enelrally S'Deajﬁemory, since most objects will be too small to generate
in terms of B and L because they have simpler sema age-sized, page-aligned fragmehts.

tics thanB’ and L’ — we will, however, always assum
that segment sizes are represented at their finest possible))
granularities. 3.5 The finger field

With floating-point size representations, it is not possible
3.3 Segment/object size mismatches ando compu_te_ the_ bas_e of a segment from an _arbitrary ad-
wasted memory dress pointing into |t_;.ias a rgsult, §ystems like ORSLA
can only store capabilities which point to segment bases.
Although our “floating point” size representation clearly We overcome this limitation in our capability represen-
gives a better fit between segment and object sizes tlaiion with thefingerfield £. The address in a capability
a purely exponential representation, for objects of mamgay point to an arbitrary word in the target segment; as
than 32 words there is still the possibility that the segmestiown in Figurdd, the finger field records the fact that
will be larger than the object it contains — i.e. one of tHée pointed-to word is contained in tifth block in the
blocks of the segment will not be entirely covered by treegment. Using our 5-bit size-field mantidsg4-bit L'),
object the segment contains. Large objects always havamt@ddress can point into any of up to 32 blocksnust
least 17 blocks, and less than one block is wasted, so tinerefore be 5 bits long.
worst-case memory oss due to this internal fragmentatlo”58pecifically, an object must be more than 32 pages in length in order

is Ies_s tham/17 (less than 5.9%). By adding bits to th% potentially generate page-level fragmentation. The derivation of the
mantissal. we could further reduce the degree of wasteymber 32 is left as an exercise for the reader.

Y-005 4 Capability Representation

Capability: F=2

[1] misc:32 | Pa6i:1[B6[L 4] 5[Address 64
. AB
_S_egment: o -block.2 words_
0 1 29 L

segment: L aligned blocks

Figure 4:The finger fieldF identifies the block of a seg-
ment into which a capability points.

sl B
Another way to viewF is as the high bits of the offset @

of the capability’s addresd from the segment bast i.e.

if we decompose the 64-bit addredss

A=U:Z 1)

wheresize(Z) = B, we can exploit the fact that the seg-
ment is block-aligned to expreskas

A=S+F:Z @)

where the term¥f': Z is padded with leading 0’s to match
A's 64-bit length.

3.5.1 Pointer arithmetic

Using the finger field, we can add an arbitrary integer off-
setX, where
X =U,:2Z, 3

to a capabilityC; while simultaneously verifying thatthe y B,y Loy
address in the resulting capabilify, still points within
the segment bounds; note thEtmay be negative. The
complete datapath for this operation is shown in Fifijre
the explanation of the datapath follows.

We compute the new address, in straightforward

fashion using a 64-bit adder: Figure 5: The datapath for adding signed constant offset
X to capabilityC; to produce capability’;. Note that
A=A+ X (4) this diagram uses the simplg, L size encoding.

We can computd, more efficiently than is immedi-
ately obvious. Using EquatiofBand[3, we can rewrite
Equatiorid as

A2:S+F1121+UIZZ$ (5)

If we subtractS from both sides of EquatioB, and
right-shift the result byB3 bits, we discover that

FB=FR+U,+(Z1+Z,)>>B (6)

Y-005 5 Capability Representation

The last term of Equatiofl is simply the carry-bit re- contain. Because the bounds-checking hardware checks
sulting from adding the firsB bits of A; and X. Thus, segment bounds rather than object bounds, languages
we can computds, using a 64:1 multiplexor to steal thesuch as Java which must precisely bounds-check array ac-
correct carry bit, a 64-birithmeticright shift unit to ex- cesses are stuck performing software checks. In this sec-
tract U, while preserving its sign, and a 64-bit adder ttion we offer a solution to this problem: increment-only
sumU, andF5. capabilities combined with front-padded allocation.

As it turns out, we can actually replace the 64-bit adderA single bit I is set to mark a capability as increment-
with smaller quantities of hardware. We first observe thatly; if I is set, only positive offsets may be added to
if U, is positive, it must be smaller than 32 or it is guathe capability. For example, a routine which receives an
anteed to causé’, to be larger tharL; if U, obeys this increment-only capability pointing to the middle of an ar-
requirement, bits:; for ¢ > 5 will all be 0. Similarly, ray can only access the second half of that array; it cannot
if U, is negative, its magnitude can be at most 31 sinadd negative offsets to the capability to access the first
otherwiseF;, is certain to be negative; i/, obeys this half.
requirement, bits,; for i > 5 will all be 1. Front-padded allocation simply means that when we al-

Based on these observations, we can perform simfgeate an object of siz& into a segment of siz& where
checks on the high bits @f,, to ensure that they meetonel/ > N, the first word of the object is located at word
or the other of these criteria; if they fail, a bounds-chedly — N of the segment, causing the last word of the ob-
interrupt is raised. To compute the valid-positive-valyect to coincide with the last word of the segment. In other
check requires a 64-input NOR; to compute the valigrords, all of the wasted space (padding) is at the front of
negative-value check requires a 64-input AND. the segment, rather than at the end.

If the checks on the high bits @f, pass, we can com- We can get precise bounds-checking on objects by us-
pute Equatioi using only the 6 lowest bits (5 value bitgng an allocator which returns increment-only capabilities
and one sign bit) ot/,. Hence, we use a 64-bit AND,to the first words of front-padded objects. This approach
a 64-bit NOR, and a 6-bit adder, all instead of a 64-hijorks perfectly for languages such as Java which only
adder. Of course, if the result of the 6-bit addition genestore pointers to the first words of objects and arrays. Ob-
ates a carry, we signal a bounds violation. viously we can not use the increment-only bit with lan-

Having finally computedrz, we now compare it td. guages such as C that allow arbitrary pointer math; how-
with a 5-bit comparator. If; < 0 or F» > L, there is a ever, front-padded allocation still has the potential to be
bounds violation and an interrupt must be signaled; if néfelpful since most loops move from the front to the end
A, andF; are valid and may be composed, along With of an object (array), rather than vice-versa, and thus the

andL;, to form the new capability’s. danger of accidental bounds-overrun is greatest at the end
of an object.
3.5.2 Computing a segment’s base address The increment-only check is easily performed in hard-

ware simply by examining the high bit of any (signed)

An important operation for garbage collection is quicklyynciant being added to a capability, and throwing an in-
discovering an object’s base address. If we subtfaét terrupt if it is 1.

from both sides of Equatid#ito produce Increment-only pointers may be useful in other appli-

cations. For instance, we can protect an object’s “private”

fields from broken or malevolent code by placing them at
we see that it is simple to compute a segment's bdiehead. When passing a capability to untrusted code, we

address using the pointer-math hardware of the previdi@S an increment-only capability which points just after

section; we just subtradf:Z from A. AssemblingF:Z the pr.|vate fields, thus giving access only to the public

in hardware requires a mask operation to extéadtom fi€lds in the latter part of the object.

A; a shift operation to mové’ to the appropriate bitwise

osition; and finally an OR operation to merge the tw,
Salues. g P ? 5 Sub-segmentation with original

segment recovery

S=A-F:Z @)

4 Increment-only Capabllltles and In some cases, one might wish to allocate a large object,

front-padded allocation and then create a capability whose base and bounds infor-
mation denote a sub-segment of that object; for instance,
Although our bounds on wasted space are fairly tight, semre might allocate an array of objects, and wish to gen-
ments will still sometimes be larger than the objects theyate a capability for exactly one of the objects in the

Y-005 6 Capability Representation

Capability: convention.

F=2
~ [Bi6]ra] Fis[pas]ii]e e[L 4] F5] Addressied |
“oigra > DT 6 Conclusions
segment bounds
bounds In this paper we have presented a capability format which
o improves upon prior formats by simultaneously providing
O”Qrmt sub-segment four key features:
Pt block l e Address and bounds information are embedded di-
_ Segment: i L i rectly in the capability representation.
0 1 2(F) L e A capability may point to an arbitrary word in its seg-
o o i ment.
‘W’ . Interna_l fragmentation du_e to se_:gment/(_)bject siz_e mis-
< — » match is less than 6%; with a simple, high-locality al-
original segment

location scheme, total fragmentation is less than 12%.
e Objects of 32 or fewer words, e.g. most class in-
stances in object-oriented systems, may be allocated
with no fragmentation and will thus have precise hard-
ware bounds-checking.
o None

Figure 6: Sub-segmentation: the original segment’s
bounds are preserved; the original findéidentifies the
block in which the sub-segment begins.

These features make it entirely practical to use a

array. Generating such a capability is trivial, subject &Rpability-guarded segment per allocated object, thus en-
alignment requirements: in the new capability, the addres$#ing robust inter- and intra-program memory protection.

points into the sub-segment, and the bounds informatiorin addition to our basic capability format, we
denotes the sub-segment’s bounds. have described the implementation and application of

Uncontrolled sub-segmentation can generate problefigement-only pointers which enable precise hardware-

in the presence of segment relocations which may hé)&_ly bounds-checking for Java-style objects/arrays. We

pen, for instance, due to compacting garbage collectibigve also demonstrate_d how to gene_rate capabilities for
A garbage collector faced with a variety of capabilities!P-segments from which the enclosing segment can be
which overlap to varying degrees would have a great d&§fOvered by systemroutines.
of difficulty ensuring that each segment was copied ex-"V€ should note that our capabilities may even be used
actly once with no duplication of sub-segments. with non—objegt—orlented code to improve softyvare ro-
To solve this problem we adopt a simple strategy: Wthstness. For mstance, most programs written in C could
un on our architecture; thealloc routine would return

a sub-segment capability is generated, the bounds infor. on © . . .
. . . c?pabmtles, and many classes of pointer-manipulation er-
mation for the original segment are stored into some 0

the previously unusethiscellaneousits in the capabil- ror traditionally undetected at the point of error would be

ity as shown in Figur@ In particular, the original se _caught by hardware bounds-checking.
y S g, , P ' i gin: 9 Finally, for some applications our 128+1 bit capability
ment’s size fieldsB’ and L’ are preserved; the fingdr

T format is unnecessarily large. A 64-bit encoding com-
which is preserved identifies the original block in Whlcérised of a 15 bounds-field, an increment-only bit, and

the sub-segment begins. Thus, given a sub-segment tge i - ress would provide several of the most im-

pability, privileged routines such as the garbage coIIectorrtant features of our format. Such an encoding might

can generate a capability for the original segment by fi%:é articularly appealing for insuring intra-proaram data
finding the base of the sub-segment, and then using P y app 9 9 brog

e - 7 . : Lo .
: . .2 Intégrity in an environment in which inter-program in-
stored bounds information to recover the base and siz g?g ty In an environment ch inter-progra
the original segment.
paces.

%egrity is provided by conventional disjoint virtual address
s
Either a tag bit must be dedicated to distinguish sub-

segment capabilities from normal capabilities, or else nor-

mal capabilities must include copies of their size infoReferences

mation in the “original bounds” fields so that garbage

collection routines may treat all capabilities uniformlyBis77] Peter B. Bishop.Computer Systems With A

Regardless, no special hardware is required to employ Very Large Address Space And Garbage Col-
sub-segmentation; the operating system, allocation, and lection PhD thesis, Massachusetts Institute
garbage-collection routines must simply agree upon the of Technology, May 1977.

Y-005 7 Capability Representation

[CKD94]

[Fab74]

[FKD*95]

[JL96]

[Lev84]

[Moo085]

[Sha99]

Y-005

Nicholas P. Carter, Stephen W. Keckler, and
William J. Dally. Hardware support for fast
capability-based addressing. Rroceedings
of the 6th International Conference on Archi-
tectural Support for Programming Languages
and Operating Systems (ASPLOS,\fiages
319-27, October 1994.

R. S. Fabry. Capability-based addressing.

Communications of the ACM.7(7):403-12,
July 1974.

Marco Fillo, Stephen W. Keckler, William J.
Dally, Nicholas P. Carter, Andrew Chang,
Yevgeny Gurevich, and Whay S. Lee. The m-
machine multicomputer. IRroc. 28th Annual
International Symposium on Microarchitec-
ture, pages 146-156, 1995.

Richard Jones and Rafael LinsGarbage
Collection: Algorithms for Dynamic Memory
ManagementJohn Wiley & Sons, 1996.

Henry M. Levy. Capability-based computer
systemsDigital Press, 1984.

David A. Moon. Architecture of the symbolic
3600. In12th Annual International Sympo-
sium on Computer Architecture Conference
Proceedingspages 76—83, 1985.

Jonathan Strauss ShapiEROS: A Capabil-
ity System PhD thesis, University of Penn-
sylvania, 1999.

Capability Representation

	Introduction
	Prior capability representations
	Our capability representation
	Representing size
	A more efficient size representation
	Segment/object size mismatches and wasted memory
	The alignment requirement, allocation, and more wasted memory
	The finger field
	Pointer arithmetic
	Computing a segment's base address

	Increment-only capabilities and front-padded allocation
	Sub-segmentation with original segment recovery
	Conclusions

