
�-07 May 22, 2000

Proposed Model for Multithreading and Event Handling in the
Aries Architecture

J.P. Grossman

Project Aries Technical Memo ARIES-TM-07
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA

1 Overview

At the heart of the Aries architecture is a
multithreaded processor which must support efficient
processing in the presence of frequent context
switches and asynchronous events. In this document
we propose the use of writeback buffers to support
efficient multithreading. Writeback buffers are a
mechanism which permit multiple threads of
execution to co-exist in the functional unit pipelines
while allowing only a single thread to access the
register file on any given cycle. We argue for a new
model of traps and executions, collectively referred
to as events, which treats them as local rather than
global phenomena. We propose a hardware/software
organization in which one hardware context is
reserved for a software event handler. The handler
polls a hardware event queue for events and deals
with them using short non-blocking sequences of
instructions. Potentially blocking memory operations
are avoided by converting them to an explicitly split-
phase form in which the return event invokes a
continuation. [October 19, 2000: writeback buffers
are probably a bad idea, but I’ve left the section in
there for completeness].

2 Multithreading

A single thread of execution typically cannot issue
instructions on every cycle due to cache misses and
branch mispredictions. This problem is compounded
in architectures which do not provide branch
prediction or data caches (such as the Aries
architecture). Hardware multithreading can recover
many of these lost cycles and improve silicone
efficiency by allowing different threads to issue
instructions on consecutive cycles, thus allowing
bubbles in one thread to be filled by another. An
additional potential benefit is the elimination of the
context switch overhead normally required to service
asynchronous interrupts. If a hardware context is
reserved for handling events, then no state needs to
be saved when an interrupt occurs or restored when
the handler exits, and both context switches occur in
a single cycle.

The benefits of hardware multithreading are
compelling, but must be weighed against two
significant costs:

1. Cache and/or local memory must be shared

between a number of different threads
2. Registers must be duplicated for each hardware

context

There is no good solution to the first problem. A
dangerous temptation is to increase the size of the
cache/local memory to compensate for the extra
threads. However, to do this is to forget that the goal
of multithreading is to provide improved silicon
efficiency. If both the registers and memory are to be
duplicated, then one might as well improve
performance significantly at a small additional cost
by using multiple single-threaded processors rather
than a single multithreaded one. A hardware
designer completely blind to reality might then
propose the next logical step which is to add some
additional registers to each of these processors to
make them multithreaded… lather, rinse, repeat.

The second cost is not quite as large as it seems.
Although the registers must be duplicated, the
dominant cost in a multi-ported register file is not
registers but wires. A register file with m read ports
and n write ports requires m+n control lines per
register and m+n bit lines per bit (Figure 1a). A
naïve approach to duplicating the register file k times
is to simply duplicate all the control lines, resulting in
a register file k times as large (Figure 1b). However,
if only one thread can issue instructions on a given
cycle then only one thread can read from the register
file on a given cycle. Hence, m read control lines can
be shared by k registers, so the number of control
lines required is only m+kn per register (Figure 1c).
Typically m ≈ 2n, so this reduces the number of
control lines from 3kn to (2+k)n. For k = 4, this
represents a factor of two savings in area.

We can further reduce the area overhead by imposing
the restriction that on a given cycle at most one
thread can read or write the register file. This allows

�-07 2 Multithreading and Event Handling

both read and write control lines to be shared by k
registers, eliminating most area overhead (Figure 1d).
However, this restriction implies that all pipelines
must be drained before performing a context switch,
since otherwise instructions from one thread may
complete and need to write to the register file on the
same cycle that another thread is reading from the
register file. Consequently, much of the advantage of
hardware multithreading is lost since the original
motivation was to be able to fill small (say 1-5 cycle)
pipeline bubbles.

Figure 1: Read and write ports

2.1 Writeback Buffers

It is possible to share both read and write control
lines without sacrificing single-cycle context
switches by placing writeback buffers at the end of
each functional unit pipeline. There is one writeback
buffer per hardware context in each pipeline. The
purpose of the buffers is to temporarily store results
belonging to one thread while a different thread has
control of the register file.

Each buffer is structured as a FIFO queue. Results
enter the queue as they are produced, and they exit
the queue when the corresponding thread has control
of the register file. If the correct thread has control
when the result is produced and the queue is empty,
then the writeback buffer may be bypassed
altogether.

Figure 2: Writeback buffers

A key observation is that only small queues are
required; in particular, the number of entries in each
queue should be the same as the number of stages in
the corresponding pipeline. If a pipeline has t stages
then the pipeline and buffers combined would never
contain more than t instructions belonging to a single
thread. To see this, note that when a (t+1)th
instruction is issued the thread has control of the
register file and at least one instruction will be ready
to write back (since the pipeline has t stages). Hence,
on the same cycle an instruction will write back and
exit the pipeline/buffer, so the number of instructions
in progress will never exceed t.

2.2 Alternate Approach
The motivation for writeback buffers is to allow write
control lines to be shared, reducing the number of
control lines per register from m+kn to m+n. An
alternate approach to reducing the number of control
lines is to attempt to minimze n. Indeed, we see that
there is much more to be gained from reducing the
number of write ports than from reducing the number
of read ports. These considerations can help guide
the search for a reasonable register file-functional
unit connectivity pattern (a search which must be
undertaken regardless since it is probably impractical
to provide full connectivity to four or more functional
units).

It is difficult to say a-priori which approach is better.
An informed decision will require simulated
performance comparisons of various register file-
functional unit connectivities. If good performance
can be achieved with only one or two write ports, the
writeback buffers are probably undesirable. If more
write ports are required, then control line sharing may
provide enough of an area savings to justify the
implementation of writeback buffers.

3 Events

Historically, interrupts, traps and exceptions, which
we collectively refer to as events, have been viewed

m+n

m+n

(a)

4m+4n

m+n

(b)

m+4n

m+n

(c)

m+n

m+n

(d)

+ *

register file

�-07 3 Multithreading and Event Handling

as catastrophic occurrences which bring the entire
system to a halt. The active thread is suspended at a
well-defined point and swapped out. Control is
transferred to a handler which services the event;
when the handler finishes it swaps in a user thread
(the same one that was previously running or a
different one). This is a global model in that
whatever part of the system generates the event, the
effects are immediately visible everywhere, and no
computation is allowed to proceed until the event has
been atomically serviced. While this model is
conceptually simple and convenient for debugging, it
has a number of drawbacks:

• Complex hardware is required to maintain the

illusion of precise interrupts in out-or-order,
superscalar or VLIW processors

• Stringent restrictions are placed on the compiler
concerning the reordering of instructions that
might generate exceptions

• Useful computation at various pipeline stages
must be aborted when an event occurs

• When an asynchronous event occurs, it is
necessary to abort or complete all active
instructions before the handler can take over.
This includes long latency and/or non-local
operations such as remote reads in a shared
memory machine.

An alternate model for events which avoids these
problems is to treat them as local phenomena which
affect, and are visible to, only those
instructions/hardware components which directly
depend on the hardware/software operation that
caused the event. As an example of the difference
between the global and local models, consider the
program flow graph shown in Figure 3, and suppose
that the highlighted instruction generates an
exception. In the global model, there is a strict
division of instructions into two sets: those that
precede the faulting instruction in program order, and
those that do not (Figure 3a). The hardware must
support the semantics that at the time the exception
handler begins execution, all instructions in the first
set have completed and none of the instructions in the
second set have been initiated. In the local model,
only those instructions which have true data
dependencies on the faulting instruction are
guaranteed to be uninitiated (Figure 3b). All other
instructions are unaffected by the exception, and the
handler cannot make any assumptions about their
states.

Figure 3: Global (a) vs. local (b) exceptions

The local model is better suited to parallel and
distributed computing, in which the execution of a
single thread may be physically distributed across the
machine. Another example of the difference between
the two models is provided by memory traps. In the
Aries architecture, tag bits are associated with every
128 bit memory word which can cause a trap when
that word is accessed. With a global exception
model, a thread would have to stall on every remote
memory reference. If a remote memory reference
completes successfully, the thread is allowed to
continue. If a trap is raised, this information must be
returned to the processor where the thread is
preempted by the trap handler. With a local
exception model, a thread may continue processing
while waiting for a remote memory reference to
complete. If the reference causes a trap, the trap is
serviced on the remote node, independent of the
thread that caused it, and the trap handler completes
the memory request manually. This is transparent to
the thread; the entire sequence is indistinguishable
from an unusually long-latency memory operation.

Local events are much easier to implement in
hardware, they allow the compiler to produce better
code and they improve overall performance.
However, they also eliminate the precise interrupts
which can be so useful for debugging. This is
unfortunate, but in our opinion local events are a
necessary step in the evolution of computer
architecture. The sooner we accept this and start
investigating novel debugging paradigms, the less
painful it will be in the long run.

3.1 Event Handling in the Aries
Architecture

The challenge of architecting an event handling
mechanism is to simultaneously address all of the
following issues:

• The overhead of invoking an event handler

should be as low as possible

• Specific events must be correctly mapped to
specific event handlers

(a) (b)

�-07 4 Multithreading and Event Handling

• Events which occur while a handler is already
running must be handled correctly

• The hardware must be able to deal with events
caused by event handlers

Imagine an ideal processor with an infinite number of
hardware contexts available for handling events. In
this processor, every event can be handled
immediately by a new context. No state needs to be
saved, so there is no context switching overhead.
There are always more contexts available, so there is
no need to worry about nested events, i.e. events that
are caused by a handler or that occur asynchronously
while a handler is running.

We can achieve a similar effect with only a single
event-handling context by maintaining an event
queue of events waiting to be handled. A privileged
thread runs in an endless loop, polling for events and
handling them when they occur (Figure 4). A special
polling instruction is provided which suspends the
context when the event queue is empty. For the most
part, this arrangement appears to the rest of the
processor as an infinite number of event handling
contexts, where some events take longer to handle
than others. It also has the advantage that no
hardware “trap vectors” are required since the task of
starting up the correct handler is performed by
software. However, it forces events to be handled in
sequential order, which raises the possibility of
deadlock. For example, if an event handler causes a
page fault on a read, then it will stall indefinitely
waiting for the read to complete, and the page fault
will never be serviced.

Figure 4: Event queue and event handler context

We can eliminate the possibility of deadlock by
guaranteeing (in software) that event handlers do not
block and finish executing in a finite (preferably
small) amount of time. This ensures that forward
progress can always be made independent of the
pattern of events which occur. For the most part this
is easy to do; software exceptions can be avoided
through a combination of careful programming and
masking, preventing the handler from blocking
unexpectedly. The difficulty lies in performing
memory operations, since every memory reference

can potentially generate a page fault. Before
presenting a solution to this problem, we first review
the Aries memory model.

3.2 Memory Operations in the Aries
Architecture

In a conventional system, memory references take a
fixed amount of time and can be performed
atomically in a pre-determined number of cycles. In
a distributed shared-memory system this is not the
case, and remote references can take an arbitrarily
long time to complete. Because of this, memory
references become split phase operations; a request is
placed on the network (or sent directly to local
memory), and some (potentially large) number of
cycles later a reply is sent back to the processor. If
the thread which issued the request needs the result
long before it is available, it is desirable to be able to
swap the thread out to memory so that the processor
may continue to perform useful computation.
However, this introduces the complication that when
a memory reply arrives at a processor, the target
thread may not be in one of the active hardware
contexts.

In the Aries architecture, memory requests include a
return address to which the reply is sent. Return
addresses consist of a processor ID, a processor-
dependent thread ID, and the name of the destination
register specified by the memory instruction that
generated the request. If the thread ID matches one
of the active contexts, the result is stored directly in
the appropriate register, and the “present” bit for that
register is set. If the thread ID does not match any of
the active contexts, then an event is generated so that
the reply is handled by software.

3.3 Split Phase Memory Operations
and Continuations

We can take advantage of the mechanism described
in the preceding section to convert potentially
blocking memory operations into an explicitly split-
phase form. All that is needed is a privileged
instruction which allows the event handler thread to
set the contents of its thread ID register. We also
assume that replies to context 0 memory requests are
always placed on the event queue (there are several
easy ways to do this). A memory operation then
consists of the following steps:

1. Save the event handler’s state to local memory

2. Replace the thread ID register with a pointer to
this state

Handle
event

Poll
queue

Event Queue
Network

Memory

Software

Context 0Events

�-07 5 Multithreading and Event Handling

3. Initiate the memory operation

4. Jump back to the start of the event handling loop
to handle the next event

Eventually, the event handler will pick up the reply to
this memory operation which will include the pointer
to the saved state. This pointer serves as a
continuation and allows event processing to resume
where it left off by restoring the state and then
jumping to the instruction following the jump-back
(4, above).

The only apparent problem with this approach is that
it requires two sets of memory operations; saving the
handler’s state to memory, and then retrieving it
when the reply event is processed. Clearly these
memory operations cannot be handled in the same
way, or we end up with an infinite recursion. Note
that the memory operations are local; the handler can
therefore explicitly check to see if the required page
is in-core before attempting to save/restore the state.
If it is, then it is safe to proceed as no page fault will
be generated. If it isn’t, then the handler can initiate
the required page transfers and simply wait for them
to complete. This is drastic as it has the effect of
freezing the processor to wait for one or more page
transfers, but it ought to be rare if one or two pages
are reserved specifically for saving/restoring handler
state, and if the kernel makes an attempt to keep a
certain percentage of pages free at all times (as all
good little kernels do).

3.4 Finite Queue Size
Another important difference between the ideal
infinite context model and the more practical event
queue model is that finite event queues can
potentially fill up. This can have serious
performance consequences, as it can cause any
combination of hardware thread contexts, memory
banks and the network interface to freeze up waiting
to place an event on the queue. It is therefore
important to choose the size of the event queues so
that the probability of being filled is small. It is also
necessary to prove that there is no possibility for
system deadlock when many or all event queues fill
up simultaneously.

