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1 Overview 

At the heart of the Aries architecture is a 
multithreaded processor which must support efficient 
processing in the presence of frequent context 
switches and asynchronous events.  In this document 
we propose the use of writeback buffers to support 
efficient multithreading.  Writeback buffers are a 
mechanism which permit multiple threads of 
execution to co-exist in the functional unit pipelines 
while allowing only a single thread to access the 
register file on any given cycle.  We argue for a new 
model of traps and executions, collectively referred 
to as events, which treats them as local rather than 
global phenomena.  We propose a hardware/software 
organization in which one hardware context is 
reserved for a software event handler.  The handler 
polls a hardware event queue for events and deals 
with them using short non-blocking sequences of 
instructions.  Potentially blocking memory operations 
are avoided by converting them to an explicitly split-
phase form in which the return event invokes a 
continuation.  [October 19, 2000: writeback buffers 
are probably a bad idea, but I’ve left the section in 
there for completeness]. 

2 Multithreading 

A single thread of execution typically cannot issue 
instructions on every cycle due to cache misses and 
branch mispredictions.  This problem is compounded 
in architectures which do not provide branch 
prediction or data caches (such as the Aries 
architecture).  Hardware multithreading can recover 
many of these lost cycles and improve silicone 
efficiency by allowing different threads to issue 
instructions on consecutive cycles, thus allowing 
bubbles in one thread to be filled by another.  An 
additional potential benefit is the elimination of the 
context switch overhead normally required to service 
asynchronous interrupts.  If a hardware context is 
reserved for handling events, then no state needs to 
be saved when an interrupt occurs or restored when 
the handler exits, and both context switches occur in 
a single cycle. 

 
The benefits of hardware multithreading are 
compelling, but must be weighed against two 
significant costs: 
 
1. Cache and/or local memory must be shared 

between a number of different threads 
2. Registers must be duplicated for each hardware 

context 
 
There is no good solution to the first problem.  A 
dangerous temptation is to increase the size of the 
cache/local memory to compensate for the extra 
threads.  However, to do this is to forget that the goal 
of multithreading is to provide improved silicon 
efficiency.  If both the registers and memory are to be 
duplicated, then one might as well improve 
performance significantly at a small additional cost 
by using multiple single-threaded processors rather 
than a single multithreaded one.  A hardware 
designer completely blind to reality might then 
propose the next logical step which is to add some 
additional registers to each of these processors to 
make them multithreaded… lather, rinse, repeat. 
 
The second cost is not quite as large as it seems.  
Although the registers must be duplicated, the 
dominant cost in a multi-ported register file is not 
registers but wires.  A register file with m read ports 
and n write ports requires m+n control lines per 
register and m+n bit lines per bit (Figure 1a).  A 
naïve approach to duplicating the register file k times 
is to simply duplicate all the control lines, resulting in 
a register file k times as large (Figure 1b).  However, 
if only one thread can issue instructions on a given 
cycle then only one thread can read from the register 
file on a given cycle.  Hence, m read control lines can 
be shared by k registers, so the number of control 
lines required is only m+kn per register (Figure 1c).  
Typically m ≈  2n, so this reduces the number of 
control lines from 3kn to (2+k)n.  For k = 4, this 
represents a factor of two savings in area.   
 
We can further reduce the area overhead by imposing 
the restriction that on a given cycle at most one 
thread can read or write the register file.  This allows 
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both read and write control lines to be shared by k 
registers, eliminating most area overhead (Figure 1d).  
However, this restriction implies that all pipelines 
must be drained before performing a context switch, 
since otherwise instructions from one thread may 
complete and need to write to the register file on the 
same cycle that another thread is reading from the 
register file.  Consequently, much of the advantage of 
hardware multithreading is lost since the original 
motivation was to be able to fill small (say 1-5 cycle) 
pipeline bubbles. 

Figure 1: Read and write ports 

2.1 Writeback Buffers 

It is possible to share both read and write control 
lines without sacrificing single-cycle context 
switches by placing writeback buffers at the end of 
each functional unit pipeline.  There is one writeback 
buffer per hardware context in each pipeline.  The 
purpose of the buffers is to temporarily store results 
belonging to one thread while a different thread has 
control of the register file. 
 
Each buffer is structured as a FIFO queue.  Results 
enter the queue as they are produced, and they exit 
the queue when the corresponding thread has control 
of the register file.  If the correct thread has control 
when the result is produced and the queue is empty, 
then the writeback buffer may be bypassed 
altogether. 
 
 

Figure 2: Writeback buffers 

A key observation is that only small queues are 
required; in particular, the number of entries in each 
queue should be the same as the number of stages in 
the corresponding pipeline.  If a pipeline has t stages 
then the pipeline and buffers combined would never 
contain more than t instructions belonging to a single 
thread.  To see this, note that when a (t+1)th 
instruction is issued the thread has control of the 
register file and at least one instruction will be ready 
to write back (since the pipeline has t stages).  Hence, 
on the same cycle an instruction will write back and 
exit the pipeline/buffer, so the number of instructions 
in progress will never exceed t. 

2.2 Alternate Approach 
The motivation for writeback buffers is to allow write 
control lines to be shared, reducing the number of 
control lines per register from m+kn to m+n.  An 
alternate approach to reducing the number of control 
lines is to attempt to minimze n.  Indeed, we see that 
there is much more to be gained from reducing the 
number of write ports than from reducing the number 
of read ports.  These considerations can help guide 
the search for a reasonable register file-functional 
unit connectivity pattern (a search which must be 
undertaken regardless since it is probably impractical 
to provide full connectivity to four or more functional 
units). 
 
It is difficult to say a-priori which approach is better.  
An informed decision will require simulated 
performance comparisons of various register file-
functional unit connectivities.  If good performance 
can be achieved with only one or two write ports, the 
writeback buffers are probably undesirable.  If more 
write ports are required, then control line sharing may 
provide enough of an area savings to justify the 
implementation of writeback buffers. 

3 Events 

Historically, interrupts, traps and exceptions, which 
we collectively refer to as events, have been viewed 
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as catastrophic occurrences which bring the entire 
system to a halt.  The active thread is suspended at a 
well-defined point and swapped out.  Control is 
transferred to a handler which services the event; 
when the handler finishes it swaps in a user thread 
(the same one that was previously running or a 
different one).  This is a global model in that 
whatever part of the system generates the event, the 
effects are immediately visible everywhere, and no 
computation is allowed to proceed until the event has 
been atomically serviced.  While this model is 
conceptually simple and convenient for debugging, it 
has a number of drawbacks: 
 
• Complex hardware is required to maintain the 

illusion of precise interrupts in out-or-order, 
superscalar or VLIW processors 

• Stringent restrictions are placed on the compiler 
concerning the reordering of instructions that 
might generate exceptions 

• Useful computation at various pipeline stages 
must be aborted when an event occurs 

• When an asynchronous event occurs, it is 
necessary to abort or complete all active 
instructions before the handler can take over.  
This includes long latency and/or non-local 
operations such as remote reads in a shared 
memory machine. 

 
An alternate model for events which avoids these 
problems is to treat them as local phenomena which 
affect, and are visible to, only those 
instructions/hardware components which directly 
depend on the hardware/software operation that 
caused the event.  As an example of the difference 
between the global and local models, consider the 
program flow graph shown in Figure 3, and suppose 
that the highlighted instruction generates an 
exception.  In the global model, there is a strict 
division of instructions into two sets: those that 
precede the faulting instruction in program order, and 
those that do not (Figure 3a).  The hardware must 
support the semantics that at the time the exception 
handler begins execution, all instructions in the first 
set have completed and none of the instructions in the 
second set have been initiated.  In the local model, 
only those instructions which have true data 
dependencies on the faulting instruction are 
guaranteed to be uninitiated (Figure 3b).  All other 
instructions are unaffected by the exception, and the 
handler cannot make any assumptions about their 
states. 
 
 

Figure 3: Global (a) vs. local (b) exceptions 

The local model is better suited to parallel and 
distributed computing, in which the execution of a 
single thread may be physically distributed across the 
machine.  Another example of the difference between 
the two models is provided by memory traps.  In the 
Aries architecture, tag bits are associated with every 
128 bit memory word which can cause a trap when 
that word is accessed.  With a global exception 
model, a thread would have to stall on every remote 
memory reference.  If a remote memory reference 
completes successfully, the thread is allowed to 
continue.  If a trap is raised, this information must be 
returned to the processor where the thread is 
preempted by the trap handler.  With a local 
exception model, a thread may continue processing 
while waiting for a remote memory reference to 
complete.  If the reference causes a trap, the trap is 
serviced on the remote node, independent of the 
thread that caused it, and the trap handler completes 
the memory request manually.  This is transparent to 
the thread; the entire sequence is indistinguishable 
from an unusually long-latency memory operation. 
 
Local events are much easier to implement in 
hardware, they allow the compiler to produce better 
code and they improve overall performance.  
However, they also eliminate the precise interrupts 
which can be so useful for debugging.  This is 
unfortunate, but in our opinion local events are a 
necessary step in the evolution of computer 
architecture.  The sooner we accept this and start 
investigating novel debugging paradigms, the less 
painful it will be in the long run. 

3.1 Event Handling in the Aries 
Architecture 

The challenge of architecting an event handling 
mechanism is to simultaneously address all of the 
following issues: 
 
• The overhead of invoking an event handler 

should be as low as possible 

• Specific events must be correctly mapped to 
specific event handlers 

(a) (b) 
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• Events which occur while a handler is already 
running must be handled correctly 

• The hardware must be able to deal with events 
caused by event handlers 

 
Imagine an ideal processor with an infinite number of 
hardware contexts available for handling events.  In 
this processor, every event can be handled 
immediately by a new context.  No state needs to be 
saved, so there is no context switching overhead.  
There are always more contexts available, so there is 
no need to worry about nested events, i.e. events that 
are caused by a handler or that occur asynchronously 
while a handler is running. 
 
We can achieve a similar effect with only a single 
event-handling context by maintaining an event 
queue of events waiting to be handled.  A privileged 
thread runs in an endless loop, polling for events and 
handling them when they occur (Figure 4).  A special 
polling instruction is provided which suspends the 
context when the event queue is empty.  For the most 
part, this arrangement appears to the rest of the 
processor as an infinite number of event handling 
contexts, where some events take longer to handle 
than others.  It also has the advantage that no 
hardware “trap vectors” are required since the task of 
starting up the correct handler is performed by 
software.  However, it forces events to be handled in 
sequential order, which raises the possibility of 
deadlock.  For example, if an event handler causes a 
page fault on a read, then it will stall indefinitely 
waiting for the read to complete, and the page fault 
will never be serviced. 

Figure 4: Event queue and event handler context 

We can eliminate the possibility of deadlock by 
guaranteeing (in software) that event handlers do not 
block and finish executing in a finite (preferably 
small) amount of time.  This ensures that forward 
progress can always be made independent of the 
pattern of events which occur.  For the most part this 
is easy to do; software exceptions can be avoided 
through a combination of careful programming and 
masking, preventing the handler from blocking 
unexpectedly.  The difficulty lies in performing 
memory operations, since every memory reference 

can potentially generate a page fault.  Before 
presenting a solution to this problem, we first review 
the Aries memory model. 

3.2 Memory Operations in the Aries 
Architecture 

In a conventional system, memory references take a 
fixed amount of time and can be performed 
atomically in a pre-determined number of cycles.  In 
a distributed shared-memory system this is not the 
case, and remote references can take an arbitrarily 
long time to complete.  Because of this, memory 
references become split phase operations; a request is 
placed on the network (or sent directly to local 
memory), and some (potentially large) number of 
cycles later a reply is sent back to the processor.  If 
the thread which issued the request needs the result 
long before it is available, it is desirable to be able to 
swap the thread out to memory so that the processor 
may continue to perform useful computation.  
However, this introduces the complication that when 
a memory reply arrives at a processor, the target 
thread may not be in one of the active hardware 
contexts. 
 
In the Aries architecture, memory requests include a 
return address to which the reply is sent.  Return 
addresses consist of a processor ID, a processor-
dependent thread ID, and the name of the destination 
register specified by the memory instruction that 
generated the request.  If the thread ID matches one 
of the active contexts, the result is stored directly in 
the appropriate register, and the “present” bit for that 
register is set.  If the thread ID does not match any of 
the active contexts, then an event is generated so that 
the reply is handled by software. 

3.3 Split Phase Memory Operations 
and Continuations 

We can take advantage of the mechanism described 
in the preceding section to convert potentially 
blocking memory operations into an explicitly split-
phase form.  All that is needed is a privileged 
instruction which allows the event handler thread to 
set the contents of its thread ID register.  We also 
assume that replies to context 0 memory requests are 
always placed on the event queue (there are several 
easy ways to do this).  A memory operation then 
consists of the following steps: 
 
1. Save the event handler’s state to local memory 

2. Replace the thread ID register with a pointer to 
this state 

Handle 
event 

Poll 
queue 

Event Queue
Network  

Memory  

Software  

Context 0Events 
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3. Initiate the memory operation 

4. Jump back to the start of the event handling loop 
to handle the next event 

 
Eventually, the event handler will pick up the reply to 
this memory operation which will include the pointer 
to the saved state.  This pointer serves as a 
continuation and allows event processing to resume 
where it left off by restoring the state and then 
jumping to the instruction following the jump-back 
(4, above). 
 
The only apparent problem with this approach is that 
it requires two sets of memory operations; saving the 
handler’s state to memory, and then retrieving it 
when the reply event is processed.  Clearly these 
memory operations cannot be handled in the same 
way, or we end up with an infinite recursion.  Note 
that the memory operations are local; the handler can 
therefore explicitly check to see if the required page 
is in-core before attempting to save/restore the state.  
If it is, then it is safe to proceed as no page fault will 
be generated.  If it isn’t, then the handler can initiate 
the required page transfers and simply wait for them 
to complete.  This is drastic as it has the effect of 
freezing the processor to wait for one or more page 
transfers, but it ought to be rare if one or two pages 
are reserved specifically for saving/restoring handler 
state, and if the kernel makes an attempt to keep a 
certain percentage of pages free at all times (as all 
good little kernels do). 

3.4 Finite Queue Size 
Another important difference between the ideal 
infinite context model and the more practical event 
queue model is that finite event queues can 
potentially fill up.  This can have serious 
performance consequences, as it can cause any 
combination of hardware thread contexts, memory 
banks and the network interface to freeze up waiting 
to place an event on the queue.  It is therefore 
important to choose the size of the event queues so 
that the probability of being filled is small.  It is also 
necessary to prove that there is no possibility for 
system deadlock when many or all event queues fill 
up simultaneously. 


