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1 Overview 

The Hamal processor-memory node can be broken down into five distinct components: a processor, data memory, 
instruction memory, a network interface and a controller (Figure 1).  The processor is a 128 bit multithreaded VLIW 
processor with predicated execution and single cycle context interleaving, and can be used to make coffee 
[Grossman00].  The embedded-DRAM data memory includes SRAM page tables, is virtually addressed, and 
supports simple atomic memory operations.  The read-only instruction memory consists of single-cycle access 
SRAM and also includes hardware page tables.  The network interface manages three distinct types of transactions: 
remote memory requests (including replies), forks, and page transfers.  The controller primarily serves as an arbiter 
for the many producers and consumers of data, but also contains some state for controlling memory requests, forks, 
page transfers, and context loading. 
 

Figure 1: Node overview 

This document describes each of these components in detail.  It is assumed that the reader is familiar with the Hamal 
ISA. 

2 Processor 

Figure 2 shows the structure of the processor.  The processor contains four hardware contexts.  Each context has its 
own trace control and instruction queue (shown explicitly), registers, and memory request table (not shows 
explicitly). 
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Figure 2: Processor 

2.1 Trace Control 

Each context has its own trace control logic.  This logic is responsible for fetching the next instruction group from 
memory and executing the control portion of this group (if any).  The control instruction may depend on one or more 
of bp, tr, and a predicate register.  If one of the dependencies cannot be resolved then the trace controller stalls and 
re-attempts to execute the control instruction on the next cycle.  Once the control instruction has been executed, the 
trace pointer is updated and the instruction group is placed on the FIFO issue queue.  In order to support traps, the 
previous and updated trace pointers are placed on the queue along with the instruction group.  On each cycle, all 
four trace controllers operate in parallel.  The only restriction is that only one of them may access instruction 
memory on a given cycle; permission to do so is granted in a round-robin fashion. 
 
If the trace controller encounters either a bad instruction or an invalid trace address, an event is placed on the 
instruction queue.  This event causes a trap to take place once it reaches the M-Pipe (see section 2.7). 

2.2 Issue 
The issue stage of the pipeline consists of choosing a context to issue, removing an instruction group from that 
context’s instruction queue, and fetching the source operands for the instruction group.  A different context may 
issue on each cycle.  When more than one context is able to issue, priority is given to context 0, and the remaining 
contexts are allowed to issue in a round-robin manner.   
 
A context is ready to issue when all of the following are true: 
 

1. There is an instruction group in the queue 
2. The instruction group’s dependencies are not busy 
3. The instruction group does not require a resource which is in use.  This applies only to the fork, cload, 

cstore and pgout instructions. 
4. If the memory instruction is wait, there are no outstanding memory requests 
5. If the memory instruction is a memory request, there is room in the context’s request table to drain the 

instruction from the M-Pipe 
6. If the arithmetic instruction is poll, there is an event in the event queue 
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2.3 A-Pipe 
Arithmetic instructions each take 1-3 cycles to execute.  In the absence of a writeback conflict, instructions write 
their result to the register file on the same cycle in which they complete.  The result is also available to issuing 
instructions via bypasses on the same cycle.  However, only one arithmetic writback may occur on a given cycle.  If 
two instructions complete in the same cycle, then the older instruction is allowed to write back and the younger 
instruction is advanced through the A-Pipe.  Note that single cycle instructions provide their result on the cycle after 
they are issued and thus never cause issue delays. 

2.4 M-Pipe 
The first M-Pipe execution stage consists of address computation or comparison.  For address computation 
instructions with no actual memory request, the writeback occurs immediately and the instruction is removed from 
the pipeline.  Otherwise the instruction progresses to the second pipeline stage. 
 
In the M-Pipe second pipeline stage an attempt is made to enter the memory request into a context-specific request 
table and pass it on to the node controller.  This may fail if: 
 

• A previous request which was rejected by the node controller is being re-attempted 
• The request has a consistency conflict with another request already in the table 
• The table is full 
• The event high-water level has been reached 

 
In all three cases, the memory request is placed in a smaller context-specific buffer (which only contains two entries, 
enough to guarantee that all issued memory instructions can be drained from the shared pipeline) and re-attempted 
on a subsequent cycle. 

2.5 Busy bits 
All valid destination registers have associated busy bits which are used for dependency interlocks.  This includes all 
128 32-bit general purpose registers, the 31 predicate registers, bp, tr, tv and s0.  When an instruction that modifies 
one of these registers enters the first execution stage, the corresponding busy bit is set.  When the register is written 
to, the busy bit is cleared.  Additionally, busy bits may be set explicitly by the busy instruction. 
 
Note that busy bits alone are not sufficient for the trace controller to correctly detect dependencies, since a control 
instruction may depend on a register which is mutated by an instruction sitting in the instruction queue.  Thus, an 
additional set of pre-busy bits is associated with bp, tr and the predicates.  These pre-busy bits indicate that there is 
an instruction in the instruction queue or at the issue stage which writes to the corresponding register.  When 
checking dependencies, the trace controller inspects both busy and pre-busy bits. 

2.6 Predicated Execution 

Each instruction may be independently predicated on the value (true or false) of one of the 31 predicates.  For 
control instructions, predication is performed by the trace controller.  For arithmetic and memory instructions, 
predication occurs at the first execution stage.  The predicate is treated as a source operand and fetched along with 
the other operands at the issue stage.  If an instruction is squashed, the busy bit for its destination is not set (this is 
why busy bits are set at the first execution stage rather than at the issue stage; it avoids having to set and then clear 
busy bits when an instruction with a destination is squashed). 

2.7 Traps 
Traps, also referred to as thread events, all occur at the first execution stage of the M-Pipe.  In particular, there are 
no arithmetic traps.  This simplifies the hardware design by defining a precise commit point for instructions (which 
is the same as the predication commit point) and avoiding the possibility of multiple traps on a single cycle.  When a 
trap occurs, the event registers are set with the appropriate data, the instruction queue for that context is cleared, the 
trace pointer is set to the trap vector (or the context 0 trap vector if the given context’s trap vector is invalid), and tr 
is set to the address of the next instruction. 
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2.8 Context Dribbling 
The general purpose register file has five read ports for servicing the issuing context, and also a sixth read port for 
the dribble context.  In response to a fork or cstore instruction, one of the four contexts is set to be the dribble 
context.  On subsequent cycles, one word at a time may be dribbled from the context to the controller in order to 
service the fork/cstore. 

2.9 Interface to the Controller 
The processor communicates with the node controller via the following inputs and outputs: 

2.9.1 Instruction Memory Busy Bit 
A single bit input indicates that the instruction memory is busy.  This occurs during a page-in or a memory 
operation.  When this bit is high, no trace controller is allowed to access instruction memory. 

2.9.2 Data Out 
This output is used for both memory requests and context dribbling. With the exception of fork, all memory requests 
are passed on to the node controller in a single cycle.  For fork, the first cycle places the address in the address field 
and the mask, predicates and context address in the data field.  The general purpose registers are then dribbled out in 
subsequent cycles.  cstore is converted by the processor to a series of store128 instructions, so the controller never 
actually sees a cstore.  The output must be valid at the start of the clock cycle.  Later in the cycle, a single bit input 
indicates whether or not the request was accepted by the controller. 
 
There are potentially four different sources of memory requests for the data output: the second M-Pipe execution 
stage, a context memory request buffer, a failed memory request from a previous cycle, and the dribble context.  
Priority is given to requests in the following order: 
 

1. Failed context 0 request 
2. context 0 buffer 
3. M-Pipe context 0 
4. Failed non-context 0 request 
5. non-context 0 buffer 
6. M-Pipe non-context 0 

 
In the absence of a failed non-context 0 request, the dribble context has the lowest priority.  However, if a non-
context 0 request fails, the dribble context is given higher priority than the failed-context 0 request and lower 
priority than an M-Pipe context 0 request. 

2.9.3 Data In 
A single path is used for all incoming data.  The input consists of a valid bit, a tagged 128 bit data word, and a 64 bit 
return address.  The upper 54 bits of the return address specify the destination thread swap address; if this does not 
match any of the currently executing threads an event is generated.  The next two bits identify the type of the data.  
For memory request replies with a destination, bits 0-7 identify the destination register.  For memory request replies 
without a destination, bits 0-2 give an index into the outstanding request table.  For context data (this applies to 
cload and fork), bits 0-5 indicate which 128 bit word of context data is being loaded.  Contexts are activated when 
the highest context word is loaded (forks just supply zero as data for this word).  Incoming data must always be 
accepted by the processor; there is no busy output bit. 

2.9.4 Events 
A fairly wide event input allows the controller to pass on memory and network events to the processor to be added 
to the event queue.  The processor does not need to accept events; a single busy output bit indicates to the controller 
than no event will be received on the current cycle.  Additionally, an event high-water bit informs the controller that 
the event queue is filling up.  When this bit is set, the controller will not accept network events, joins, or remote 
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memory requests.  At the same time, the processor will suppress all non-context 0 memory requests.  This ensures 
that the event queue will never fill up, so that local memory and hence context 0 can always make forward progress. 
 
There is one tricky point.  Context 0 will often need to page in data to service memory events.  When a page is 
loaded it generates an EV_PG_IN.  This event cannot be suppressed because it is essential for forward progress to 
be made.  However, there could potentially be a large number of page-ins in progress, and the resulting large 
number of EV_PG_IN events could overwhelm the event queue.  To solve this problem, the event queue is actually 
divided into two separate queues: a regular event queue, and an EV_PG_IN event queue.  This latter queue has 64 
entries (to allow for up to 64 simultaneous page-ins), but is small because each entry is only 64 bits (as opposed to 
512 bits for a general event).  Events in this queue are given priority for poll instructions.  The event high-water 
signal is generated based solely upon the state of the regular event queue. 
 
There are three potential sources of events: the event input, the data input (EV_REPLY), and processor events.  
They are given priority in that exact order (only one new event per cycle is allowed).  Processor events may be 
arbitrarily suppressed; the offending context simply waits for a chance to submit its event.  If an EV_REPLY is 
suppressed, the reply is placed in a special buffer, then on the next cycle the event busy output bit is set (to prevent 
the controller from supplying another event) and the reply event is placed on the event queue. 

3 Data Memory 

The Hamal processor-memory node contains four banks of data memory.  Each bank consists of 1Mb of embedded 
DRAM divided into 128 1KB pages, and an SRAM hardware page table with one entry per physical page.  Each 
page table entry contains the virtual base address of the page (32 bits), status bits (32), and P, T, U, V bits for each 
of the 64 words in the page (256 bits).  Thus, the total size of the page table is 128 x 320 = 40Kb = 5KB. 
 
Memory instructions are directly executed by a small controller in the memory bank.  Each instruction consists of a 
memory opcode, 8 uv bits, 3 invert bits (for atomic memory operations – see ISA document), and a single no-trap bit 
which specifies that the T trap bit should be ignored.  When an instruction is completed, the memory bank asserts an 
output valid bit and returns to the controller either nothing, return data, or an event. 

3.1 Paging 
Data memory responds to a page-out instruction in 66 consecutive cycles.  On the first two cycles, the data output 
contains the P, T, U and V bits for the page.  On the subsequent 64 cycles, the data output contains the 64 words in 
the page.  The node controller must accept each of these outputs immediately and forward them to the network 
interface. 
 
A page-in acts like a page-out in reverse.  On the first cycle, the node controller presents the page-in instruction to 
the memory bank along with the page address and the P, T bits in the data input.  On the next cycle the data input 
contains the U, V bits, and on the subsequent 64 cycles it contains the 64 words in the page.  The page table entry 
for the page being paged-in must exist or the page-in will fail. 

4 Instruction Memory 

Each node contains a single 128K bank of SRAM instruction memory.  As with data memory, there is an SRAM 
page table with one entry per physical page.  However, this page table does not contain P, U or V bits, so its size is 
128 x 128 = 16Kb = 2KB. 
  
Instruction memory is read-only, so only control instructions and loads are supported.  All memory operations 
complete in a single cycle.  Page-outs are also not supported.  Page-ins are similar to data page-ins, except that no P, 
T, U or V bits are paged in, so the page-in takes 64 cycles (as opposed to 66). 
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5 Network Interface 

The network interface can be divided fairly neatly into two symmetrical halfs; an ‘in’ half and an ‘out’ half.  Each 
half consists of a number of memory request buffers, a page buffer, and a translation cache.  A single fork buffer is 
shared between these two halves (this simplifies local forks). 

Figure 3: Network Interface 

The network interface is responsible for translating pointers to sparse objects as they migrate across the node 
boundary.  On each cycle, a single local→global translation and a single global→local translation can be performed.  
When a memory request or fork is fully translated, it is passed on to the controller (‘in’ requests) or the network 
(‘out’ requests).  If a pointer causes a translation cache miss, an event is sent to the controller.  When the processor 
supplies the missing translation, the translation caches are updated and any pending translations snoop the update 
directly. 
 
Both requests and events may be rejected by the node controller; this is indicated by two ‘accept’ bits.  Outgoing 
requests must be accepted by the network interface; it is the controller’s responsibility to ensure that there are 
always enough request-out buffers to absorb all active requests with remote destinations. 
 
On a given cycle, several requests, a fork and a page transfer could potentially all be ready to be passed on to the 
processor or network.  Round-robin scheduling is used to break ties.  When an attempt fails, the round robin pointer 
is advanced. 

6 Controller 

The controller is primarily a gigantic arbitrated crossbar which manages the flow of data between various producers 
and consumers (Table 1).  All inputs to the controller must be valid at the start of the clock cycle.  Inputs which may 
be rejected by the controller have a corresponding ‘accept’ output bit which is valid by the end of the clock cycle.  
All outputs are valid by the end of the clock cycle and must be accepted by the destination components. 
 

Producers Consumers 
data memory data memory 
instruction memory instruction memory 
network interface network interface 
fork buffer fork buffer 
cload controller processor data return path 
processor processor event input 

Table 1: Producers and Consumers managed by the node controller 

6.1 Internal State 
The controller contains a small amount of internal state to manage memory requests, paging, context loading and 
forks.  When a memory request is sent to data/instruction memory, the controller stores the return address so that 

req req req req 

translate in fork 

page in net in 

req req req req 

translate out 

page out net out 
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when the operation completes the reply can be sent to the correct location.  The controller can manage one page-in 
and one page-out at a time; during a page transfer data is streamed directly between the memory bank and the 
network interface.  When a cload instruction is received from the processor, a finite state machine converts it into a 
sequence of load128 instructions.  Finally, the controller is responsible for generating a fork event when the fork 
buffer is filled, and transferring the contents of the fork buffer to the processor or memory in response to an fload or 
fstore instruction. 

6.2 Priority 
The controller assigns priority to the various data producers in the following order: 
 

1. Active page transfers 
2. Instruction memory 
3. Data memory (round-robin priority breaks ties) 
4. Processor 
5. cload controller 
6. Network interface 
7. Fork buffer 

6.3 Rejecting Inputs 
In addition to rejecting inputs when the requested consumer is unavailable, the controller will selectively reject 
inputs in order to avoid running out of space in the event queue or the network interface request-out buffers. 
When the processor asserts the event high-water signal, the controller will reject memory requests and joins from the 
network.  Forks are still accepted, because at most one fork event at a time can exist in the event queue (until it is 
serviced by context 0, the fork buffer will be unavailable).  Page-ins are also accepted, since EV_PG_IN events are 
placed in a separate event queue (see Section 2.9.4). 
 
The controller keeps count of the number of active memory requests with remote destinations to ensure that the 
network interface has enough free request-out buffers to sink these requests when they complete.  Both processor 
and network memory requests with remote destinations are rejected if there are not enough free request-out buffers. 
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