
�-12 February 12, 2001

Hamal Design Rationale
J.P. Grossman

Project Aries Technical Memo ARIES-TM-12
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA

November 14, 2000 – February 12, 2001

1 Introduction

The Hamal Instruction Set Architecture was
developed over a period of more than a year by a
process which can fairly be described as the worst
sort of engineering. It is almost purely the result of
thought experiments and hypothetical debates. With
the exception of some preliminary assembly
programming and scattered ties to existing
architectures, it has benefited from little to no real-
world validation. Nonetheless, many aspects of the
design process have been educational. Countless
arguments at meetings and on whiteboards have
provided insight into many of the subtle challenges of
system design. An unusually diverse set of
backgrounds and philosophies within the Aries group
have given rise to a number of novel macro- and
micro-architectural mechanisms which support a
wide range of computational paradigms. The
resulting architecture may, at first, seem arbitrary, but
in fact every detail is the result of careful thought and
difficult compromises.

The purpose of this design rationale is to document
the thought processes and arguments which gave rise
to the Hamal ISA, as well as some of the design
alternatives which were considered but rejected. The
material contained herein represents countless heated
discussions which must at times have resembled a
bad day of the middle east peace negotiations.
Despite outward appearances, however, these debates
have been both stimulating and rewarding to all
parties involved, and I have enjoyed working with a
group of intelligent and competent researchers whose
philosophies differ so markedly from my own.

2 Design Principles

A number of general principles have guided the
design of the Hamal architecture. They are
presented below roughly in order from most
important to least important. While it is difficult to
raise issue with this set of principles, the order of
importance is my own and does not necessarily
reflect the opinions of other group members.

2.1 General Purpose Parallel
Architecture

One of the primary goals of the Hamal effort is to
produce a truly general purpose parallel architecture
in the sense that it supports not only a wide range of
applications, but also a spectrum of programming
languages and environments. This is a daunting task
and the resulting architecture will inevitably be
suboptimal for any specific application. However, it
has the advantage of forcing the designers to consider
computation in a broad sense, and it helps us to avoid
the temptation of migrating platform-specific
software mechanisms into hardware. The only
restriction on the applications of interest is that they
be parallel applications; the gentlemen at AMD have
proven to be quite adept at developing hardware
support for scalar applications, and we are happy to
leave this task in their able hands.

2.2 Silicon Efficiency
Silicon efficiency, roughly defined as performance
per unit area, is an important factor in determining
both the cost and overall performance of a scalable
multiprocessor. The Hamal architecture has been
designed to maximize silicon efficiency. This design
philosophy favours small changes in hardware which
produce significant gains in performance, while
eschewing complicated features with large area costs.
It also favours general mechanisms over application
or programming language specific enhancements.

The difficulty with silicon efficiency as a metric is
that it is extremely application-dependent.
Applications differ wildly in terms of their
computational intensity, memory usage,
communication requirements, parallelism and
scalability. It is not possible to maximize silicon
efficiency in an absolute sense without reference to a
specific set of applications, but one can often argue
convincingly for or against specific architectural
features based on this design principle.

2.3 Simplicity
In short, simpler is better. Simplicity is often a direct
consequence of silicon efficiency, as many

�-12 2 Hamal Design Rationale

complicated mechanisms improve performance only
at the cost of overall efficiency (e.g. out of order
issue, branch prediction, register renaming,
speculative execution, to name a few). Simplicity
also has advantages that silicon efficiency on its own
does not; simpler architectures are faster to design,
easier to test, less prone to errors and friendlier to
compilers.

2.4 Programmability
In order to be useful, an architecture must be easy to
program. This means two things: it must be easy to
write programs, and it must be easy to debug
programs. To a large extent, the former requirement
can be dealt with by the compiler so long as the
underlying architecture is not so obscure as to defy
compilation. The latter requirement can be partially
addressed by the programming environment, but
there are a number of hardware mechanisms which
can greatly ease and/or accelerate the process of
debugging. It is perhaps more accurate to refer to
this design principle as “debuggability” rather than
“programmability”, but on the other hand one can
argue that there is no difference between the two; it
has been said that “programming consists of
debugging a blank piece of paper”.

2.5 Scalability

In the Aries group we have a word that we like to use
to describe computers with fewer than a thousand
processors – “scalar”. Traditional approaches to
parallelism do not scale very well beyond a thousand
nodes, in part due to the need to maintain large
amounts of globally coherent state at each node. The
Hamal architecture has been designed to overcome
this barrier and scale to a million or even a billion
nodes.

2.6 Performance
Last and least of the design principles is performance.
Along with simplicity, performance can to a large
extent be considered a subheading of silicon
efficiency. They are opposite subheadings; the goal
of silicon efficiency gives rise to a constant struggle
between simplicity and performance. By placing
performance last among design principles I do not
intend to imply that it is unimportant; indeed my
interest in Hamal is above all else to produce a
terrifyingly fast machine. Rather, I am emphasizing
that a fast machine is uninteresting unless it supports
a variety of applications, it is economical in its use of
silicon, it is practical to build and program, and it will
scale gracefully over the years as the number of

processors is increased by multiple orders of
magnitude.

3 Design Overview

Hamal is a distributed, shared-memory machine.
“distributed” hardly needs justification; anyone who
believes in uniform memory access for a massively
parallel machine has their head in the sand. Hamal
was designed with the vision of unifying processor
and memory. The basic design element is a small
processor-memory node which is replicated across
the system and connected by a high-performance
network. The amount of memory at the nodes is
relatively small; as such supporting transparent
shared-memory is a must.

3.1 Capabilities
Hamal is a capability architecture; all memory
references are performed using self-contained 128 bit
capabilities. This allows the hardware to guarantee
that user programs will make no illegal memory
references without requiring any form of
capability/segment table. It is therefore safe to use a
single shared virtual address space which greatly
simplifies the memory model. Additionally, the
number of segments is essentially unbounded; in
particular object-based protection schemes become
practical.

The advantages of capabilities must, of course, be
weighed against the costs of doubling the pointer
size. Not only does this require increased storage for
capabilities in memory, but it also doubles the size of
the general purpose registers and at least some
datapaths. We feel that these costs are more than
justified by the advantages outlined above.

3.2 Virtual Memory

The memory model of early computers was simple:
memory was external storage for data; data could be
modified or retrieved by supplying the memory with
an appropriate physical address. This model was
directly implemented in hardware by discrete
memory components. This simplified view of
memory has long-since been replaced by the
abstraction of virtual memory, yet the underlying
memory components have not changed. Instead,
complexity has been added to processors in the form
of logic which performs translations from
sophisticated memory models to simple physical
addresses.

�-12 3 Hamal Design Rationale

There are a number of drawbacks to this approach.
The overhead associated with each memory reference
is large due to the need to look up page table entries.
All modern processors make use of translation
lookaside buffers (TLB’s) to try to avoid the
performance penalties associated with these lookups.
A TLB is essentially a cache, and as such provides
excellent performance for programs that use
sufficiently few pages, but is of little use to programs
whose working set of pages is large. Another
problem common to any form of caching is the
“pollution” that occurs in a multi-threaded
environment; a single TLB must be shared by all
threads which reduces its effectiveness and
introduces a cold-start effect at every context switch.
Finally, in a multiprocessor environment the TLB’s
must be kept globally consistent which places
constraints on the scalability of the system.

The Hamal architecture addresses these problems by
implementing virtual memory at the memory rather
than at the processor. Associated with each bank of
DRAM is a hardware page table with one entry per
physical page. These hardware page tables are
similar in structure and function to the TLB’s of
conventional processors. They differ in that they are
persistent (since there is a single shared virtual
address space) and complete; they do not suffer from
pollution or cold-starts. They are also slightly
simpler from a hardware perspective due to the fact
that a given entry will always translate to the same
physical page.

3.3 Distributed Objects

In any large-scale system, the layout of data in
physical memory is crucial to achieving the
maximum possible performance. In particular, many
good parallel algorithms require data objects to be
distributed across multiple nodes in the system.
Providing support for such distributed objects is non-
trivial. For example, the naïve approach of using a
fixed set of virtual address bits to identify a physical
node has the significant disadvantage that distributing
an object across multiple nodes requires allocating
many non-contiguous blocks of the virtual address
space for the single object, complicating both
memory management and object references.

Some time ago I proposed multi-striped addressing to
allow contiguous portions of the virtual address space
to be striped across nodes with any power-of-two
granularity. The central idea was to use the top five
virtual address bits to index the node ID within the
virtual address (Figure 1). This idea is simple and
elegant, but has two significant drawbacks. First, it

restricts the size a segment’s facets (portions of the
segment which exist on various nodes) to be powers
of two in size. Second, it can introduce large
amounts internal fragmentation of physical pages.

Figure 1: Multistriped Addressing

An alternative approach suggested by Jeremy Brown
is sparse objects. In this scheme, the upper virtual
address bits are used to identify a physical node.
When a segment of any size is allocated, it is
implicitly allocated on all nodes. Individual facets,
however, are not allocated until they are used. The
key mechanism of sparse objects is a translation table
which exists at the boundary of each processing node
to translate local virtual addresses to/from global
segment unique identifiers (GSUID) and an offset.

When a pointer moves from a node to the network, it
is first decomposed into a segment base address and
an offset. The base address is then used to look up
the segment’s GSUID in the translation table. If no
entry exists in the table, which can only occur the
first time a pointer to a sparse object leaves its home
node, a new GSUID is created which consists of the
node identifier and node-local unique identifier.
When a GSUID arrives at a node, it is used to look up
the segment’s local base address in the translation
table. If no entry exists in the table, which occurs the
first time a node sees a pointer to its facet of a
distributed object, then the facet is allocated and the
base address is entered into the table.

The sparse object scheme has the large advantage
that all memory on a given node is allocated locally.
In particular, this means that it can be allocated
contiguously, which almost completely eliminates
internal fragmentation of pages (there may still be
some fragmentation due to alignment restrictions of
allocated segments). It has the additional advantages
of allowing arbitrarily sized facets, and enabling local
compacting garbage collecting to proceed completely
transparently to the rest of the system. The scheme
also has the significant disadvantage of requiring
complicated translation caches as well as kernel
software to handle translation cache misses. Our
initial feeling is that the benefits of this scheme
outweigh its costs; simulation will provide us with a
more accurate evaluation.

S : 5 N

0 S 58 63

�-12 4 Hamal Design Rationale

4 Processor Design

The Hamal architecture features 128 bit multi-context
Very Long Instruction Word (VLIW) processors with
support for predicated execution. Context 0 is
reserved for event handling; contexts 1-3 are “user
contexts” which run user programs. The following
sections will attempt to justify these specifications
given our working set of design principles.

4.1 Datapath Size

The choice of 128 bits as the basic datapath size is
motivated by two factors:

1. Capabilities are 128 bits, so at least some
datapaths must be this wide

2. Wide datapaths make effective use of the
available embedded DRAM bandwidth

A criticism of wide datapaths is that large portions of
the register file and/or functional units will be unused
for applications which deal primarily with 32 or 64
bit data, significantly reducing the area efficiency of
the processor. This issue is addressed in two ways.
First, each register is addressable as a single 128 bit
register, two 64 bit registers, or four 32 bit registers.
This requires a small amount of shifting logic to
implement in hardware, and increases both the
register file utilization and the number of registers
available to user programs. Second, many of the
instructions can operate in parallel on two sets of 64
bit inputs or four sets of 32 bit inputs, packed into
128 bit registers. This provides the opportunity to
increase both performance and functional unit usage
via fine-grained SIMD parallelism. While intuitively
appealing, it is difficult to properly evaluate these
SIMD instructions at such an early stage. Further
simulation and design work is required to obtain
estimates of their performance advantages and
hardware costs.

4.2 Hardware Multithreading

A single thread of execution typically cannot issue
instructions on every cycle due to cache misses and
branch mispredictions. This problem is compounded
in architectures such as Hamal which do not provide
branch prediction or data caches. Hardware
multithreading can recover many of these lost cycles
and improve silicon efficiency by allowing different
threads to issue instructions on consecutive cycles,
thus allowing bubbles in one thread to be filled by
another. An additional potential benefit is the
elimination of the context switch overhead normally
required to service asynchronous interrupts. If a

hardware context is reserved for handling events,
then no state needs to be saved when an interrupt
occurs or restored when the handler exits, and both
context switches occur in a single cycle.

The benefits of hardware multithreading are
compelling, but must be weighed against two
significant costs:

1. Cache and/or local memory must be shared
between a number of different threads

2. Registers must be duplicated for each
hardware context

There is no good solution to the first problem. A
dangerous temptation is to increase the size of the
cache/local memory to compensate for the extra
threads. However, to do this is to forget that the goal
of multithreading is to provide improved silicon
efficiency. If both the registers and memory are to be
duplicated, then one might as well improve
performance significantly at a small additional cost
by using multiple single-threaded processors rather
than a single multithreaded one. A hardware
designer completely blind to reality might then
propose the next logical step which is to add some
additional registers to each of these processors to
make them multithreaded… lather, rinse, repeat.

Figure 2: Read and write ports

The second cost is not quite as large as it seems.
Although the registers must be duplicated, the
dominant cost in a multi-ported register file is not
registers but wires. A register file with m read ports

m+n

m+n

(a)

4m+4n

m+n

(b)

m+4n

m+n

(c)

m+n

m+n

(d)

�-12 5 Hamal Design Rationale

and n write ports requires m+n control lines per
register and m+n bit lines per bit (Figure 2a). A
naïve approach to duplicating the register file k times
is to simply duplicate all the control lines, resulting in
a register file k times as large (Figure 2b). However,
if only one thread can issue instructions on a given
cycle then only one thread can read from the register
file on a given cycle. Hence, m read control lines can
be shared by k registers, so the number of control
lines required is only m+kn per register (Figure 2c).
Typically m ≈ 2n, so this reduces the number of
control lines from 3kn to (2+k)n. For k = 4, this
represents a factor of two savings in area.

We could further reduce the area overhead by
imposing the restriction that on a given cycle at most
one thread can read or write the register file. This
allows both read and write control lines to be shared
by k registers, eliminating most area overhead
(Figure 2d). However, this restriction implies that all
pipelines must be drained before performing a
context switch, since otherwise instructions from one
thread may complete and need to write to the register
file on the same cycle that another thread is reading
from the register file. Consequently, much of the
advantage of hardware multithreading is lost since
the original motivation was to be able to fill small
(say 1-5 cycle) pipeline bubbles.

In the Hamal architecture, context 0 is reserved for
handling asynchronous events. As mentioned
previously, this allows such events to be attended to
without any context switch overhead. It could be
argued that if asynchronous events are infrequent,
then this is a waste of a context which could be used
for user computation. On the other hand, extra
contexts are only useful up to a certain point, namely
the point at which there are enough contexts to hide
latencies and keep the hardware busy at all times.
Once this number of contexts has been reached, one
can safely add an event handling context without
being tempted to make it general purpose.

4.3 VLIW
Very Long Instruction Word architectures allow
instruction level parallelism to be explicitly
scheduled by the compiler. For many applications
they provide the same performance advantages as
dynamic superscalar processors, and they do so at a
fraction of the hardware cost and complexity. As
such, VLIW is an appealing way to improve silicon
efficiency.

While a VLIW design is significantly simpler than
dynamic superscalar, it is not without cost. The two

main costs of VLIW (there seem to be two of
everything in this document) are register file ports
and instruction word size. Note that functional units
are not an implicit cost of VLIW design; a VLIW
architecture need not have any more basic arithmetic
units than a scalar architecture. The difference is that
the VLIW architecture allows multiple units to be
used on a single cycle.

The first cost, register ports, is significant. Each
operation in a very long instruction must be able to
read its source operands at issue time and write a
result at commit time. This places restrictions on the
width of the instruction word and/or the connectivity
of the register file. For truly long instruction words
containing a large number of operations (the
Multiflow VLIW machine was designed for up to 28
operations per instruction word), it is necessary to
partition the register file among functional units.
This makes life difficult for the compiler, not only
because of loss of orthogonality and the painful
scheduling problem that this creates, but because
advanced compilation techniques such as trace
scheduling are required to make effective use of so
many functional units. Thus, in the interest of
simplicity and programmability, the Hamal
architecture will only support three instructions per
long instruction word (one arithmetic instruction, one
memory instruction and one control instruction).

The second cost, instruction word size, is difficult to
evaluate. Because many instruction groups will
contain empty slots, more instruction memory will be
required to hold a VLIW program. This cost must be
weighed against the performance advantages of
VLIW to determine whether or not overall area
efficiency is improved. The difficulty is that this is
extremely application-dependent. Programs with a
high degree of instruction-level parallelism (ILP) will
make good use of the VLIW instruction slots,
resulting in fast, compact code. Programs with less
ILP, on the other hand, will contain more empty slots
and will be unable to exploit the potential
performance advantages of VLIW. It is our hope that
most interesting parallel applications will contain
enough ILP to justify a VLIW architecture. This is
one of the many aspects of the Hamal architecture
which will require simulation to properly evaluate.

4.4 Predicated Execution
Conditional branches are not “happy” instructions.
In a vanilla architecture, the fetch mechanism must
wait for the condition to be evaluated to determine
the address of the next instruction. This introduces
bubbles into the pipeline; the deeper the pipeline, the

�-12 6 Hamal Design Rationale

bigger the hurt. Modern architectures address this
problem with branch prediction and speculative
execution. This technique is effective (branch
prediction accuracy in current architectures is around
95%), but costly. Branch target buffers consume
significant amounts of silicon area, and speculative
execution increases the complexity of the design.

An alternate approach to conditional computation is
the use of predicated execution. By allowing
individual instructions to be predicated on the value
of single bit predicates, many conditional branches
can be eliminated (in particular, if-then-else blocks
with short bodies can be implemented using
predicated execution). This keeps the instruction
stream linear and has the added benefit of enlarging
basic blocks, which makes it easier for the compiler
to optimize and schedule the instructions.

One important difference between conditional
branches and predicated execution is that while a
conditional branch freezes the instruction stream until
the condition has been evaluated, predicated
execution does not. A predicated instruction may
issue freely and does not need to block for the
predicate until it is ready to cause a side effect (e.g.
register writeback). Predicated execution is in effect
compiler controlled speculative execution. As such,
it can be used to implement static branch prediction.
Consider the following sequence of instructions:

p1 = test r1, 1
(p1) branch _somewhere

r2a = fmul32 r7a, r7b
r3 = load128 r5[0]
...

The branch instruction will hold up the pipeline
waiting for p1 to become valid. We can avoid this
performance penalty in the case that p1 evaluates to
false by statically predicting that the branch will not
be taken as follows:

p1 = test r1, 1
(!p1) r2a = fmul32 r7a, r7b
(!p1) r3 = load128 r5[0]
(p1) branch _somewhere

...

By migrating an appropriate number of instructions
above the branch, the compiler can ensure that the
predicate will be ready by the time the branch is
encountered. Note that this only works for
instructions that are not already predicated.

There is of course a cost associated with predicated
execution. The hardware mechanisms are fairly
inexpensive; more significant is the fact that a

number of bits are added to each instruction (six in
the Hamal architecture). This increases the size of
the code by roughly 20%. Once again, we will rely
on simulation experiments to determine whether or
not the performance advantages of predicated
execution are sufficient to justify this cost.

One subject of discussion has been whether to store
predicates in the general purpose registers or a
special purpose predicate register file. Using the
general purpose registers has the advantage of
simplifying the hardware design, but has the
significant cost of adding three read ports to the
registers. Additionally, for code that makes use of a
large number of predicates, keeping single bit
predicates in 32 bit registers is wasteful and reduces
the number of general purpose registers available for
computation. For these reasons, the predicates are
stored in a separate predicate register file. Another
suggestion has been to designate one of the general
purpose registers as the predicate register file, but this
actually complicates the hardware by destroying the
uniform semantics of the general purpose registers.

