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1 Introduction 

The Hamal Instruction Set Architecture was 
developed over a period of more than a year by a 
process which can fairly be described as the worst 
sort of engineering.  It is almost purely the result of 
thought experiments and hypothetical debates.  With 
the exception of some preliminary assembly 
programming and scattered ties to existing 
architectures, it has benefited from little to no real-
world validation.  Nonetheless, many aspects of the 
design process have been educational.  Countless 
arguments at meetings and on whiteboards have 
provided insight into many of the subtle challenges of 
system design.  An unusually diverse set of 
backgrounds and philosophies within the Aries group 
have given rise to a number of novel macro- and 
micro-architectural mechanisms which support a 
wide range of computational paradigms.  The 
resulting architecture may, at first, seem arbitrary, but 
in fact every detail is the result of careful thought and 
difficult compromises. 
 
The purpose of this design rationale is to document 
the thought processes and arguments which gave rise 
to the Hamal ISA, as well as some of the design 
alternatives which were considered but rejected.  The 
material contained herein represents countless heated 
discussions which must at times have resembled a 
bad day of the middle east peace negotiations.  
Despite outward appearances, however, these debates 
have been both stimulating and rewarding to all 
parties involved, and I have enjoyed working with a 
group of intelligent and competent researchers whose 
philosophies differ so markedly from my own. 

2 Design Principles 

A number of general principles have guided the 
design of the Hamal architecture.   They are 
presented below roughly in order from most 
important to least important.  While it is difficult to 
raise issue with this set of principles, the order of 
importance is my own and does not necessarily 
reflect the opinions of other group members. 

2.1 General Purpose Parallel 
Architecture 

One of the primary goals of the Hamal effort is to 
produce a truly general purpose parallel architecture 
in the sense that it supports not only a wide range of 
applications, but also a spectrum of programming 
languages and environments.  This is a daunting task 
and the resulting architecture will inevitably be 
suboptimal for any specific application.  However, it 
has the advantage of forcing the designers to consider 
computation in a broad sense, and it helps us to avoid 
the temptation of migrating platform-specific 
software mechanisms into hardware.  The only 
restriction on the applications of interest is that they 
be parallel applications; the gentlemen at AMD have 
proven to be quite adept at developing hardware 
support for scalar applications, and we are happy to 
leave this task in their able hands. 

2.2 Silicon Efficiency 
Silicon efficiency, roughly defined as performance 
per unit area, is an important factor in determining  
both the cost and overall performance of a scalable 
multiprocessor.  The Hamal architecture has been 
designed to maximize silicon efficiency.  This design 
philosophy favours small changes in hardware which 
produce significant gains in performance, while 
eschewing complicated features with large area costs.  
It also favours general mechanisms over application 
or programming language specific enhancements. 
 
The difficulty with silicon efficiency as a metric is 
that it is extremely application-dependent.  
Applications differ wildly in terms of their 
computational intensity, memory usage, 
communication requirements, parallelism and 
scalability.  It is not possible to maximize silicon 
efficiency in an absolute sense without reference to a 
specific set of applications, but one can often argue 
convincingly for or against specific architectural 
features based on this design principle. 

2.3 Simplicity 
In short, simpler is better.  Simplicity is often a direct 
consequence of silicon efficiency, as many 
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complicated mechanisms improve performance only 
at the cost of overall efficiency (e.g. out of order 
issue, branch prediction, register renaming, 
speculative execution, to name a few).  Simplicity 
also has advantages that silicon efficiency on its own 
does not; simpler architectures are faster to design, 
easier to test, less prone to errors and friendlier to 
compilers. 

2.4 Programmability 
In order to be useful, an architecture must be easy to 
program.  This means two things: it must be easy to 
write programs, and it must be easy to debug 
programs.  To a large extent, the former requirement 
can be dealt with by the compiler so long as the 
underlying architecture is not so obscure as to defy 
compilation.  The latter requirement can be partially 
addressed by the programming environment, but 
there are a number of hardware mechanisms which 
can greatly ease and/or accelerate the process of 
debugging.  It is perhaps more accurate to refer to 
this design principle as “debuggability” rather than 
“programmability”, but on the other hand one can 
argue that there is no difference between the two; it 
has been said that “programming consists of 
debugging a blank piece of paper”. 

2.5 Scalability 

In the Aries group we have a word that we like to use 
to describe computers with fewer than a thousand 
processors – “scalar”.  Traditional approaches to 
parallelism do not scale very well beyond a thousand 
nodes, in part due to the need to maintain large 
amounts of globally coherent state at each node.  The 
Hamal architecture has been designed to overcome 
this barrier and scale to a million or even a billion 
nodes. 

2.6 Performance 
Last and least of the design principles is performance.  
Along with simplicity, performance can to a large 
extent be considered a subheading of silicon 
efficiency.  They are opposite subheadings; the goal 
of silicon efficiency gives rise to a constant struggle 
between simplicity and performance.  By placing 
performance last among design principles I do not 
intend to imply that it is unimportant; indeed my 
interest in Hamal is above all else to produce a 
terrifyingly fast machine.  Rather, I am emphasizing 
that a fast machine is uninteresting unless it supports 
a variety of applications, it is economical in its use of 
silicon, it is practical to build and program, and it will 
scale gracefully over the years as the number of 

processors is increased by multiple orders of 
magnitude. 

3 Design Overview 

Hamal is a distributed, shared-memory machine.  
“distributed” hardly needs justification; anyone who 
believes in uniform memory access for a massively 
parallel machine has their head in the sand.  Hamal 
was designed with the vision of unifying processor 
and memory.  The basic design element is a small 
processor-memory node which is replicated across 
the system and connected by a high-performance 
network.  The amount of memory at the nodes is 
relatively small; as such supporting transparent 
shared-memory is a must. 

3.1 Capabilities 
Hamal is a capability architecture; all memory 
references are performed using self-contained 128 bit 
capabilities.  This allows the hardware to guarantee 
that user programs will make no illegal memory 
references without requiring any form of 
capability/segment table.  It is therefore safe to use a 
single shared virtual address space which greatly 
simplifies the memory model.  Additionally, the 
number of segments is essentially unbounded; in 
particular object-based protection schemes become 
practical. 
 
The advantages of capabilities must, of course, be 
weighed against the costs of doubling the pointer 
size.  Not only does this require increased storage for 
capabilities in memory, but it also doubles the size of 
the general purpose registers and at least some 
datapaths.  We feel that these costs are more than 
justified by the advantages outlined above. 

3.2 Virtual Memory 

The memory model of early computers was simple: 
memory was external storage for data; data could be 
modified or retrieved by supplying the memory with 
an appropriate physical address.    This model was 
directly implemented in hardware by discrete 
memory components.  This simplified view of 
memory has long-since been replaced by the 
abstraction of virtual memory, yet the underlying 
memory components have not changed.  Instead, 
complexity has been added to processors in the form 
of logic which performs translations from 
sophisticated memory models to simple physical 
addresses. 
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There are a number of drawbacks to this approach.  
The overhead associated with each memory reference 
is large due to the need to look up page table entries.  
All modern processors make use of translation 
lookaside buffers (TLB’s) to try to avoid the 
performance penalties associated with these lookups.  
A TLB is essentially a cache, and as such provides 
excellent performance for programs that use 
sufficiently few pages, but is of little use to programs 
whose working set of pages is large.  Another 
problem common to any form of caching is the 
“pollution” that occurs in a multi-threaded 
environment; a single TLB must be shared by all 
threads which reduces its effectiveness and 
introduces a cold-start effect at every context switch.  
Finally, in a multiprocessor environment the TLB’s 
must be kept globally consistent which places 
constraints on the scalability of the system. 
 
The Hamal architecture addresses these problems by 
implementing virtual memory at the memory rather 
than at the processor.  Associated with each bank of 
DRAM is a hardware page table with one entry per 
physical page.  These hardware page tables are 
similar in structure and function to the TLB’s of 
conventional processors.  They differ in that they are 
persistent (since there is a single shared virtual 
address space) and complete; they do not suffer from 
pollution or cold-starts.  They are also slightly 
simpler from a hardware perspective due to the fact 
that a given entry will always translate to the same 
physical page. 

3.3 Distributed Objects 

In any large-scale system, the layout of data in 
physical memory is crucial to achieving the 
maximum possible performance.  In particular, many 
good parallel algorithms require data objects to be 
distributed across multiple nodes in the system.  
Providing support for such distributed objects is non-
trivial.  For example, the naïve approach of using a 
fixed set of virtual address bits to identify a physical 
node has the significant disadvantage that distributing 
an object across multiple nodes requires allocating 
many non-contiguous blocks of the virtual address 
space for the single object, complicating both 
memory management and object references.   
 
Some time ago I proposed multi-striped addressing to 
allow contiguous portions of the virtual address space 
to be striped across nodes with any power-of-two 
granularity.  The central idea was to use the top five 
virtual address bits to index the node ID within the 
virtual address (Figure 1).  This idea is simple and 
elegant, but has two significant drawbacks.  First, it 

restricts the size a segment’s facets (portions of the 
segment which exist on various nodes) to be powers 
of two in size.  Second, it can introduce large 
amounts internal fragmentation of physical pages. 
 

Figure 1: Multistriped Addressing 

An alternative approach suggested by Jeremy Brown 
is sparse objects.  In this scheme, the upper virtual 
address bits are used to identify a physical node.  
When a segment of any size is allocated, it is 
implicitly allocated on all nodes.  Individual facets, 
however, are not allocated until they are used.  The 
key mechanism of sparse objects is a translation table 
which exists at the boundary of each processing node 
to translate local virtual addresses to/from global 
segment unique identifiers (GSUID) and an offset. 
 
When a pointer moves from a node to the network, it 
is first decomposed into a segment base address and 
an offset.  The base address is then used to look up 
the segment’s GSUID in the translation table.  If no 
entry exists in the table, which can only occur the 
first time a pointer to a sparse object leaves its home 
node, a new GSUID is created which consists of the 
node identifier and node-local unique identifier.  
When a GSUID arrives at a node, it is used to look up 
the segment’s local base address in the translation 
table.  If no entry exists in the table, which occurs the 
first time a node sees a pointer to its facet of a 
distributed object, then the facet is allocated and the 
base address is entered into the table. 
 
The sparse object scheme has the large advantage 
that all memory on a given node is allocated locally.  
In particular, this means that it can be allocated 
contiguously, which almost completely eliminates 
internal fragmentation of pages (there may still be 
some fragmentation due to alignment restrictions of 
allocated segments).  It has the additional advantages 
of allowing arbitrarily sized facets, and enabling local 
compacting garbage collecting to proceed completely 
transparently to the rest of the system.  The scheme 
also has the significant disadvantage of requiring 
complicated translation caches as well as kernel 
software to handle translation cache misses.  Our 
initial feeling is that the benefits of this scheme 
outweigh its costs;  simulation will provide us with a 
more accurate evaluation. 
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4 Processor Design 

The Hamal architecture features 128 bit multi-context 
Very Long Instruction Word (VLIW) processors with 
support for predicated execution.  Context 0 is 
reserved for event handling; contexts 1-3 are “user 
contexts” which run user programs.  The following 
sections will attempt to justify these specifications 
given our working set of design principles. 

4.1 Datapath Size 

The choice of 128 bits as the basic datapath size is 
motivated by two factors: 
 

1. Capabilities are 128 bits, so at least some 
datapaths must be this wide 

2. Wide datapaths make effective use of the 
available embedded DRAM bandwidth 

 
A criticism of wide datapaths is that large portions of 
the register file and/or functional units will be unused 
for applications which deal primarily with 32 or 64 
bit data, significantly reducing the area efficiency of 
the processor.  This issue is addressed in two ways.  
First, each register is addressable as a single 128 bit 
register, two 64 bit registers, or four 32 bit registers.  
This requires a small amount of shifting logic to 
implement in hardware, and increases both the 
register file utilization and the number of registers 
available to user programs.  Second, many of the 
instructions can operate in parallel on two sets of 64 
bit inputs or four sets of 32 bit inputs, packed into 
128 bit registers.  This provides the opportunity to 
increase both performance and functional unit usage 
via fine-grained SIMD parallelism.  While intuitively 
appealing, it is difficult to properly evaluate these 
SIMD instructions at such an early stage.  Further 
simulation and design work is required to obtain 
estimates of their performance advantages and 
hardware costs. 

4.2 Hardware Multithreading 

A single thread of execution typically cannot issue 
instructions on every cycle due to cache misses and 
branch mispredictions.  This problem is compounded 
in architectures such as Hamal which do not provide 
branch prediction or data caches.  Hardware 
multithreading can recover many of these lost cycles 
and improve silicon efficiency by allowing different 
threads to issue instructions on consecutive cycles, 
thus allowing bubbles in one thread to be filled by 
another.  An additional potential benefit is the 
elimination of the context switch overhead normally 
required to service asynchronous interrupts.  If a 

hardware context is reserved for handling events, 
then no state needs to be saved when an interrupt 
occurs or restored when the handler exits, and both 
context switches occur in a single cycle. 
 
The benefits of hardware multithreading are 
compelling, but must be weighed against two 
significant costs: 
 

1. Cache and/or local memory must be shared 
between a number of different threads 

2. Registers must be duplicated for each 
hardware context 

 
There is no good solution to the first problem.  A 
dangerous temptation is to increase the size of the 
cache/local memory to compensate for the extra 
threads.  However, to do this is to forget that the goal 
of multithreading is to provide improved silicon 
efficiency.  If both the registers and memory are to be 
duplicated, then one might as well improve 
performance significantly at a small additional cost 
by using multiple single-threaded processors rather 
than a single multithreaded one.  A hardware 
designer completely blind to reality might then 
propose the next logical step which is to add some 
additional registers to each of these processors to 
make them multithreaded… lather, rinse, repeat. 

Figure 2: Read and write ports 

The second cost is not quite as large as it seems.  
Although the registers must be duplicated, the 
dominant cost in a multi-ported register file is not 
registers but wires.  A register file with m read ports 
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and n write ports requires m+n control lines per 
register and m+n bit lines per bit (Figure 2a).  A 
naïve approach to duplicating the register file k times 
is to simply duplicate all the control lines, resulting in 
a register file k times as large (Figure 2b).  However, 
if only one thread can issue instructions on a given 
cycle then only one thread can read from the register 
file on a given cycle.  Hence, m read control lines can 
be shared by k registers, so the number of control 
lines required is only m+kn per register (Figure 2c).  
Typically m ≈  2n, so this reduces the number of 
control lines from 3kn to (2+k)n.  For k = 4, this 
represents a factor of two savings in area.   
 
We could further reduce the area overhead by 
imposing the restriction that on a given cycle at most 
one thread can read or write the register file.  This 
allows both read and write control lines to be shared 
by k registers, eliminating most area overhead 
(Figure 2d).  However, this restriction implies that all 
pipelines must be drained before performing a 
context switch, since otherwise instructions from one 
thread may complete and need to write to the register 
file on the same cycle that another thread is reading 
from the register file.  Consequently, much of the 
advantage of hardware multithreading is lost since 
the original motivation was to be able to fill small 
(say 1-5 cycle) pipeline bubbles. 
 
In the Hamal architecture, context 0 is reserved for 
handling asynchronous events.  As mentioned 
previously, this allows such events to be attended to 
without any context switch overhead.  It could be 
argued that if asynchronous events are infrequent, 
then this is a waste of a context which could be used 
for user computation.  On the other hand, extra 
contexts are only useful up to a certain point, namely 
the point at which there are enough contexts to hide 
latencies and keep the hardware busy at all times.  
Once this number of contexts has been reached, one 
can safely add an event handling context without 
being tempted to make it general purpose. 

4.3 VLIW 
Very Long Instruction Word architectures allow 
instruction level parallelism to be explicitly 
scheduled by the compiler.  For many applications 
they provide the same performance advantages as 
dynamic superscalar processors, and they do so at a 
fraction of the hardware cost and complexity.  As 
such, VLIW is an appealing way to improve silicon 
efficiency.   
 
While a VLIW design is significantly simpler than 
dynamic superscalar, it is not without cost.  The two 

main costs of VLIW (there seem to be two of 
everything in this document) are register file ports 
and instruction word size.  Note that functional units 
are not an implicit cost of VLIW design; a VLIW 
architecture need not have any more basic arithmetic 
units than a scalar architecture.  The difference is that 
the VLIW architecture allows multiple units to be 
used on a single cycle. 
 
The first cost, register ports, is significant.  Each 
operation in a very long instruction must be able to 
read its source operands at issue time and write a 
result at commit time.  This places restrictions on the 
width of the instruction word and/or the connectivity 
of the register file.  For truly long instruction words 
containing a large number of operations (the 
Multiflow VLIW machine was designed for up to 28 
operations per instruction word), it is necessary to 
partition the register file among functional units.  
This makes life difficult for the compiler, not only 
because of loss of orthogonality and the painful 
scheduling problem that this creates, but because 
advanced compilation techniques such as trace 
scheduling are required to make effective use of so 
many functional units.  Thus, in the interest of 
simplicity and programmability, the Hamal 
architecture will only support three instructions per 
long instruction word (one arithmetic instruction, one 
memory instruction and one control instruction). 
 
The second cost, instruction word size, is difficult to 
evaluate.  Because many instruction groups will 
contain empty slots, more instruction memory will be 
required to hold a VLIW program.  This cost must be 
weighed against the performance advantages of 
VLIW to determine whether or not overall area 
efficiency is improved.  The difficulty is that this is 
extremely application-dependent.  Programs with a 
high degree of instruction-level parallelism (ILP) will 
make good use of the VLIW instruction slots, 
resulting in fast, compact code.  Programs with less 
ILP, on the other hand, will contain more empty slots 
and will be unable to exploit the potential 
performance advantages of VLIW.  It is our hope that 
most interesting parallel applications will contain 
enough ILP to justify a VLIW architecture.  This is 
one of the many aspects of the Hamal architecture 
which will require simulation to properly evaluate. 

4.4 Predicated Execution 
Conditional branches are not “happy” instructions.  
In a vanilla architecture, the fetch mechanism must 
wait for the condition to be evaluated to determine 
the address of the next instruction.  This introduces 
bubbles into the pipeline; the deeper the pipeline, the 
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bigger the hurt.  Modern architectures address this 
problem with branch prediction and speculative 
execution.  This technique is effective (branch 
prediction accuracy in current architectures is around 
95%), but costly.  Branch target buffers consume 
significant amounts of silicon area, and speculative 
execution increases the complexity of the design. 
 
An alternate approach to conditional computation is 
the use of predicated execution.  By allowing 
individual instructions to be predicated on the value 
of single bit predicates, many conditional branches 
can be eliminated (in particular, if-then-else blocks 
with short bodies can be implemented using 
predicated execution).  This keeps the instruction 
stream linear and has the added benefit of enlarging 
basic blocks, which makes it easier for the compiler 
to optimize and schedule the instructions. 
 
One important difference between conditional 
branches and predicated execution is that while a 
conditional branch freezes the instruction stream until 
the condition has been evaluated, predicated 
execution does not.  A predicated instruction may 
issue freely and does not need to block for the 
predicate until it is ready to cause a side effect (e.g. 
register writeback).  Predicated execution is in effect 
compiler controlled speculative execution.  As such, 
it can be used to implement static branch prediction.  
Consider the following sequence of instructions: 
 

p1 = test r1, 1
(p1) branch _somewhere

r2a = fmul32 r7a, r7b
r3 = load128 r5[0]
...

 
The branch instruction will hold up the pipeline 
waiting for p1 to become valid.  We can avoid this 
performance penalty in the case that p1 evaluates to 
false by statically predicting that the branch will not 
be taken as follows: 
 

p1 = test r1, 1
(!p1) r2a = fmul32 r7a, r7b
(!p1) r3 = load128 r5[0]
(p1) branch _somewhere

...

 
By migrating an appropriate number of instructions 
above the branch, the compiler can ensure that the 
predicate will be ready by the time the branch is 
encountered.  Note that this only works for 
instructions that are not already predicated. 
 
There is of course a cost associated with predicated 
execution.  The hardware mechanisms are fairly 
inexpensive; more significant is the fact that a 

number of bits are added to each instruction (six in 
the Hamal architecture).  This increases the size of 
the code by roughly 20%.  Once again, we will rely 
on simulation experiments to determine whether or 
not the performance advantages of predicated 
execution are sufficient to justify this cost. 
 
One subject of discussion has been whether to store 
predicates in the general purpose registers or a 
special purpose predicate register file.  Using the 
general purpose registers has the advantage of 
simplifying the hardware design, but has the 
significant cost of adding three read ports to the 
registers.  Additionally, for code that makes use of a 
large number of predicates, keeping single bit 
predicates in 32 bit registers is wasteful and reduces 
the number of general purpose registers available for 
computation.  For these reasons, the predicates are 
stored in a separate predicate register file.  Another 
suggestion has been to designate one of the general 
purpose registers as the predicate register file, but this 
actually complicates the hardware by destroying the 
uniform semantics of the general purpose registers. 
 
 
 


