
April 24, 2001 1 MIT Q-Machine Overview

Spatially Aware Decentralized Computing
Andrew “bunnie” Huang, Ben Vandiver, Jeremy Brown, J.P. Grossman and Tom Knight

The Q-Machine is a spatially aware, decentralized mas-
sively parallel computer system that achieves latency
reduction (as opposed to latency hiding) and enhanced fault
tolerance through a virtual machine interface. Without
obscuring the high-level architecture, details of the machine
are hidden by the virtual machine interface, so that objects
and threads can be efficiently migrated to reduce latency and
to avoid congested or failing nodes. It also features enhanced
synchronization decoupling, software pipelining and conges-
tion tolerance through architecturally visible queues. The
architecture is structured so that it is easy for compilers to
perform standard optimizations and is easy for cleanly im-
plemented object-oriented languages such as Java to target.
The Q-Machine also features a hybrid fat-
tree/multibutterfly network topology designed for wave-
propagation limited performance and good fault tolerance.
Finally, the architecture is aimed at implementation on
cost-effective, readily available CMOS foundry processes
with a minimum amount of risky full-custom design.

Introduction
The idea of having a central processing unit (CPU)
has run out of gas. Wiring delays have become the
dominant component of a processor’s cycle time
in deep sub-micron technology. As a result, the
partitioning of computers into separate memory
and processor components has become the archi-
tectural bottleneck. Also, the complex memory
hierarchy required to hide memory access latency
hinders fast multiprocessor synchronization, limit-
ing system scalability. Figure 1 illustrates the
evolution of L1 cache delay versus feature size
scaling. Several years ago, single-cycle 128 kB L1-
caches were common; now, three-cycle 32 kB L1-
caches are the norm. Clearly, the ability to hide
latency is diminishing and it is no longer accept-
able to abstract away the spatial organization of a
computer.

Another important issue is that large systems are
impossible to manufacture perfectly and maintain
at full operational capacity. The problem extends
from the manufacturing yields and reliability of
individual chips to the integration of cabinets and
cables, and it must be addressed as an integral part
of any massively parallel architecture. This prob-
lem is confounded by the fact that the average

service life of a massively parallel machine is fairly
long, and maintaining a base of exact replacement
parts becomes difficult as manufacturing proc-
esses evolve. The Q-Machine addresses both of
these issues with a single mechanism, the virtual
machine interface (VMI). The VMI abstracts away
the physical details of the machine’s implementa-
tion without obscuring the overall organization of
the machine from the programmer. This abstrac-
tion allows the operating system to migrate data
out of failing nodes so that they can be shutdown
and replaced, and it also allows the failed node to
be replaced with a node implemented using the
technology du jour.

20

25

15

30

35

40

45

50

55

D
el

ay
 (F

O
4)

0.1 0.2 0.3 0.4 0.5

Ldrawn (um)

SIA Cycle Time
128 KB
64 KB
32 KB
16 KB
8 KB

Figure 1: Cache delay versus feature size, overlayed
with cycle time according to the SIA roadmap.1

Architecture
The virtual machine interface programming model
is summarized in Figure 2. Instead of a register
file, programmers are given a large (roughly 240)
set of thread contexts, each with 128 explicit
queues. The tails of these queues can be mapped
to other contexts and memory; thus, these queues
form the basic synchronization primitive of the
machine. By providing a synchronization name-
space separate from the memory namespace,
machine implementation is simplified and single-
threaded code performance can be kept high by
offloading the burden of synchronization to a co-

April 24, 2001 2 MIT Q-Machine Overview

processor. The ISA of the Q-Machine is similar to
that of a standard RISC microprocessor, so most
standard compilation techniques can be applied.

IP

q0

q1

q2

q126

q127

...

head data
full

tail data
empty

(depth not specified)

64-bit entries

context ID (capability)

map

q-file

large self-throttling
virtual memory

virtual queue
interface

accessed via Q-map

Figure 2: Virtual machine interface summary.

The context identifier for each thread is synony-
mous with its heap allocation pointer; an efficient
hardware-assisted capability-based addressing
mechanism allows the backing storage for spilled
queues and variable storage to share this pointer.
This combination of computation state and syn-
chronization namespace reduces the task of object
migration to one of garbage collection. The gar-
bage collector considers the physical layout of the
machine, remote communication statistics and
processor node utilization, and data is incremen-
tally redistributed about the machine to reduce
access latencies and balance the computational
load across all nodes. In addition, the use of
queues to access memory allows for greater la-
tency tolerance and the transparent
implementation of smart memories.

The ability to map queues across threads also al-
lows the compiler or programmer to build
efficient streaming computation pipelines and hide
access latencies when performing computations
with regular data access patterns. Finally, many
standard compiler optimizations are easy to per-
form on the Q-Machine: software pipelines reduce
to a chain of threads, procedures can be effec-
tively curried, and load hoisting is simple to
implement, to name a few. The current implemen-

tation scheme calls for the Q-Machine to be
programmed using a Java-like language with ex-
tensions and libraries that allow, but do not
require, the programmer to explicitly manage
queues.

The VMI intentionally leaves the number of im-
plemented processors unspecified. While any Q-
Machine program could be run on a single node,
the architecture is geared to exploit the parallelism
available in a multi-thousand node machine. It is
also geared to exploit additional processors that
become available as a result of “hot” machine up-
grades.

Implementation
The basic organization of a single Q-Machine
node is illustrated in Figure 3.

Thread
Scheduler &
Performance

Monitor
(standard RISC plus

reconfigurable hardware)

Network Interface

context ID

IP

queue blocked

queue retired

message to queue
arrival notification

message to
queue data

message to other
context data

Virtual
Memory

Subsystem
(1 MB fast acess, ~32 MB backing,

~200 MB disk)

programmed
loads and stores Q-cache port

to network

work window/
round robin

Execution
Core

VQF
(read half)

ALU,
MEM

VQF
(write half)

MAP

A

A

D D

D D

Figure 3: Single Q-Machine node overview.

A Q-Machine node utilizes a thread scheduler and
performance monitor to handle synchronization
events. It is implemented using a standard RISC
core with reconfigurable hardware enhancements,
such as those available through Tensilica. These
cores can achieve 320 MHz performance in as
little as 0.7 mm2 in a 0.18µ process.2 Thread
scheduling is performed in a manner similar to the
H- and V- thread scheme employed on the MIT
M-Machine.3

The execution core executes threads out of the
work queue prepared by the thread scheduler. Be-
cause the execution core does not have to worry
about synchronization or network issues, it has an

April 24, 2001 3 MIT Q-Machine Overview

organization similar to a standard RISC processor
and it runs very fast. The queue file— referred to
as the Virtual Queue File (VQF)— is implemented
using a caching scheme similar to the Named State
Register File (NSRF).4 The VQF implementation
is sized so that when running single-threaded
code, queue thrashing is eliminated and high per-
formance is maintained. It also turns out that
having shallow (4- to 8-deep) queues in place of
registers has a small area impact. This is due to the
fact that register files today are primarily wire-
dominated, and populating the unused silicon area
underneath the wires yields queues “for free”.

The memory subsystem of a single Q-Machine
node is similar in many ways to a conventional
memory hierarchy, with the exception of the data
cache. The execution core is expected to be im-
plemented using primarily behavioral HDL code;
thus, its performance will be on par with the 1-T
SRAM cores offered by MoSys. These innovative
memory cores are fabricated on a TSMC logic
processes and offer 450 MHz performance with 2-
3 cycle random access latencies and densities
comparable to those of some vendor’s embedded
DRAM processes at the 0.13µ node.5 Since the
execution core’s performance will closely match
the memory’s performance, no data cache is re-
quired. However, only a small (~8 Mb) amount of
memory can be integrated next to the processor at
these performance levels; hence, a virtual memory
hierarchy with off-chip DRAM and shared hard
drive storage is implemented to provide a gradual
performance roll-off in the case that a processor
node fills up faster than the garbage collector can
migrate data out of the node.

The network that connects the Q-Machine nodes
is a hybrid multipath fat-tree / multipath multi-
butterfly topology with path expansion and maxi-
mal fanout. An integral property of this topology
is that no single component failure will leave any
node unreachable. The network protocol is
source-responsible, so routers are simple and fast.
The propagation of data around the Q-Machine is
essentially limited by the speed of electromagnetic
wave propagation as a router hop incurs only 1-2
cycles of latency. Having a source-responsible
network protocol also makes network failures and
network congestion appear identical to the send-
ing node; this simplifies network interface
implementation without sacrificing fault tolerance.

All clocks are synchronous to a single frequency
source (with redundant backup) on the Q-
Machine, and skew is tolerated by the use of a
mesochronous timing scheme between nodes. The
network implementation of the Q-Machine is
based heavily on the METRO6 network.

Conclusion
The Q-Machine is a spatially aware decentralized
computer architecture that is well-suited to the
process technology scenario that designers will be
facing even after Moore’s law runs out of steam.
Its virtual machine interface abstracts details of
the machine implementation away from the pro-
grammer in a manner that enables the efficient
migration of data to reduce latency. This abstrac-
tion also gives the Q-Machine good scalability,
fault tolerance, and serviceability across semicon-
ductor process generations. The virtual machine
abstraction is also capable of readily extracting
parallelism out of languages similar to conven-
tional object-oriented languages such as Java.

References
[1] McFarland, Grant W. CMOS Technology Scaling
and Its Impact on Cache Delay. PhD Dissertation
submitted to Stanford University, June 1997.

[2] Xtensa Application Specific Microprocessor Solutions:
Overview Handbook, a Summary of the Xtensa Data
Sheet. Tensilica, Inc. Issue date: 2/2000.

[3] Fillo, M. Keckler, S. W. Dally, W. J. Carter, N.
P. Chang, A. Gurevich, Y. Lee, W. S. “The M-
Machine Multicomputer.” Proceedings of the 28th An-
nual International Symposium on Microarchitecture.
IEEE, 1995. Pp. 146-156.

[4] Nuth, P. R. Dally, W. J. “The Named-State
Register File: Implementation and Performance.”
Proceeding of the First IEEE Symposium on High-
Performance Computer Architecture. 1995. Pp. 4-13.

[5] TSMC 0.13u Process Fast 1-T SRAM Summary.
Available off the Mosys web page at
www.mosys.com. Registration required to access
design materials.

[6] DeHon, André. Robust, High-Speed Network De-
sign for Large-Scale Multiprocessing. AI Technical
Report Number 1445. September 1993. MIT Arti-
ficial Intelligence Laboratory.

