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Spatially Aware Decentralized Computing 
Andrew “bunnie” Huang, Ben Vandiver, Jeremy Brown, J.P. Grossman and Tom Knight 

 
The Q-Machine is a spatially aware, decentralized mas-
sively parallel computer system that achieves latency 
reduction (as opposed to latency hiding) and enhanced fault 
tolerance through a virtual machine interface. Without 
obscuring the high-level architecture, details of the machine 
are hidden by the virtual machine interface, so that objects 
and threads can be efficiently migrated to reduce latency and 
to avoid congested or failing nodes. It also features enhanced 
synchronization decoupling, software pipelining and conges-
tion tolerance through architecturally visible queues. The 
architecture is structured so that it is easy for compilers to 
perform standard optimizations and is easy for cleanly im-
plemented object-oriented languages such as Java to target. 
The Q-Machine also features a hybrid fat-
tree/multibutterfly network topology designed for wave-
propagation limited performance and good fault tolerance.  
Finally, the architecture is aimed at implementation on 
cost-effective, readily available CMOS foundry processes 
with a minimum amount of risky full-custom design. 

Introduction 
The idea of having a central processing unit (CPU) 
has run out of gas. Wiring delays have become the 
dominant component of a processor’s cycle time 
in deep sub-micron technology. As a result, the 
partitioning of computers into separate memory 
and processor components has become the archi-
tectural bottleneck. Also, the complex memory 
hierarchy required to hide memory access latency 
hinders fast multiprocessor synchronization, limit-
ing system scalability. Figure 1 illustrates the 
evolution of L1 cache delay versus feature size 
scaling. Several years ago, single-cycle 128 kB L1-
caches were common; now, three-cycle 32 kB L1-
caches are the norm. Clearly, the ability to hide 
latency is diminishing and it is no longer accept-
able to abstract away the spatial organization of a 
computer. 
 
Another important issue is that large systems are 
impossible to manufacture perfectly and maintain 
at full operational capacity. The problem extends 
from the manufacturing yields and reliability of 
individual chips to the integration of cabinets and 
cables, and it must be addressed as an integral part 
of any massively parallel architecture. This prob-
lem is confounded by the fact that the average 

service life of a massively parallel machine is fairly 
long, and maintaining a base of exact replacement 
parts becomes difficult as manufacturing proc-
esses evolve. The Q-Machine addresses both of 
these issues with a single mechanism, the virtual 
machine interface (VMI). The VMI abstracts away 
the physical details of the machine’s implementa-
tion without obscuring the overall organization of 
the machine from the programmer. This abstrac-
tion allows the operating system to migrate data 
out of failing nodes so that they can be shutdown 
and replaced, and it also allows the failed node to 
be replaced with a node implemented using the 
technology du jour. 
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Figure 1: Cache delay versus feature size, overlayed 
with cycle time according to the SIA roadmap.1 

Architecture 
The virtual machine interface programming model 
is summarized in Figure 2. Instead of a register 
file, programmers are given a large (roughly 240) 
set of thread contexts, each with 128 explicit 
queues. The tails of these queues can be mapped 
to other contexts and memory; thus, these queues 
form the basic synchronization primitive of the 
machine. By providing a synchronization name-
space separate from the memory namespace, 
machine implementation is simplified and single-
threaded code performance can be kept high by 
offloading the burden of synchronization to a co-
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processor. The ISA of the Q-Machine is similar to 
that of a standard RISC microprocessor, so most 
standard compilation techniques can be applied. 
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Figure 2: Virtual machine interface summary. 

The context identifier for each thread is synony-
mous with its heap allocation pointer; an efficient 
hardware-assisted capability-based addressing 
mechanism allows the backing storage for spilled 
queues and variable storage to share this pointer. 
This combination of computation state and syn-
chronization namespace reduces the task of object 
migration to one of garbage collection.  The gar-
bage collector considers the physical layout of the 
machine, remote communication statistics and 
processor node utilization, and data is incremen-
tally redistributed about the machine to reduce 
access latencies and balance the computational 
load across all nodes. In addition, the use of 
queues to access memory allows for greater la-
tency tolerance and the transparent 
implementation of smart memories. 
 
The ability to map queues across threads also al-
lows the compiler or programmer to build 
efficient streaming computation pipelines and hide 
access latencies when performing computations 
with regular data access patterns. Finally, many 
standard compiler optimizations are easy to per-
form on the Q-Machine: software pipelines reduce 
to a chain of threads, procedures can be effec-
tively curried, and load hoisting is simple to 
implement, to name a few. The current implemen-

tation scheme calls for the Q-Machine to be 
programmed using a Java-like language with ex-
tensions and libraries that allow, but do not 
require, the programmer to explicitly manage 
queues. 
 
The VMI intentionally leaves the number of im-
plemented processors unspecified. While any Q-
Machine program could be run on a single node, 
the architecture is geared to exploit the parallelism 
available in a multi-thousand node machine. It is 
also geared to exploit additional processors that 
become available as a result of “hot” machine up-
grades. 

Implementation 
The basic organization of a single Q-Machine 
node is illustrated in Figure 3.  
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Figure 3: Single Q-Machine node overview.  

A Q-Machine node utilizes a thread scheduler and 
performance monitor to handle synchronization 
events. It is implemented using a standard RISC 
core with reconfigurable hardware enhancements, 
such as those available through Tensilica. These 
cores can achieve 320 MHz performance in as 
little as 0.7 mm2 in a 0.18µ process.2 Thread 
scheduling is performed in a manner similar to the 
H- and V- thread scheme employed on the MIT 
M-Machine.3  
 
The execution core executes threads out of the 
work queue prepared by the thread scheduler. Be-
cause the execution core does not have to worry 
about synchronization or network issues, it has an 
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organization similar to a standard RISC processor 
and it runs very fast. The queue file— referred to 
as the Virtual Queue File (VQF)— is implemented 
using a caching scheme similar to the Named State 
Register File (NSRF).4 The VQF implementation 
is sized so that when running single-threaded 
code, queue thrashing is eliminated and high per-
formance is maintained. It also turns out that 
having shallow (4- to 8-deep) queues in place of 
registers has a small area impact. This is due to the 
fact that register files today are primarily wire-
dominated, and populating the unused silicon area 
underneath the wires yields queues “for free”.  
 
The memory subsystem of a single Q-Machine 
node is similar in many ways to a conventional 
memory hierarchy, with the exception of the data 
cache. The execution core is expected to be im-
plemented using primarily behavioral HDL code; 
thus, its performance will be on par with the 1-T 
SRAM cores offered by MoSys. These innovative 
memory cores are fabricated on a TSMC logic 
processes and offer 450 MHz performance with 2-
3 cycle random access latencies and densities 
comparable to those of some vendor’s embedded 
DRAM processes at the 0.13µ node.5 Since the 
execution core’s performance will closely match 
the memory’s performance, no data cache is re-
quired. However, only a small (~8 Mb) amount of 
memory can be integrated next to the processor at 
these performance levels; hence, a virtual memory 
hierarchy with off-chip DRAM and shared hard 
drive storage is implemented to provide a gradual 
performance roll-off in the case that a processor 
node fills up faster than the garbage collector can 
migrate data out of the node.   
 
The network that connects the Q-Machine nodes 
is a hybrid multipath fat-tree / multipath multi-
butterfly topology with path expansion and maxi-
mal fanout. An integral property of this topology 
is that no single component failure will leave any 
node unreachable. The network protocol is 
source-responsible, so routers are simple and fast. 
The propagation of data around the Q-Machine is 
essentially limited by the speed of electromagnetic 
wave propagation as a router hop incurs only 1-2 
cycles of latency. Having a source-responsible 
network protocol also makes network failures and 
network congestion appear identical to the send-
ing node; this simplifies network interface 
implementation without sacrificing fault tolerance. 

All clocks are synchronous to a single frequency 
source (with redundant backup) on the Q-
Machine, and skew is tolerated by the use of a 
mesochronous timing scheme between nodes. The 
network implementation of the Q-Machine is 
based heavily on the METRO6 network. 

Conclusion 
The Q-Machine is a spatially aware decentralized 
computer architecture that is well-suited to the 
process technology scenario that designers will be 
facing even after Moore’s law runs out of steam. 
Its virtual machine interface abstracts details of 
the machine implementation away from the pro-
grammer in a manner that enables the efficient 
migration of data to reduce latency. This abstrac-
tion also gives the Q-Machine good scalability, 
fault tolerance, and serviceability across semicon-
ductor process generations. The virtual machine 
abstraction is also capable of readily extracting 
parallelism out of languages similar to conven-
tional object-oriented languages such as Java. 
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