
g-014 May, 2001

An Idempotent Message Protocol

Jeremy Brown

Abstract

We describe a protocol for reliable (exactly-once) data-
gram delivery on a wormhole-routed network that dis-
cards messages in response to congestion and hardware
faults. Our protocol is connectionless – no state needs to
be stored for communicating pairs of processes, only for
datagrams still being managed. Datagrams are not guar-
anteed to be delivered in any particular order.

The protocol is simple enough to be implemented di-
rectly in hardware.

1 Introduction
1

Our protocol is aimed at a massively parallel computer
architecture with an integral, unreliable inter-node net-
work. Such a system has several characteristics which
have motivated our protocol’s design:

Thousands of nodes, millions of wires: By “massively
parallel computer” we mean a computer that can scale to,
at the very least, several thousand nodes; correspondingly,
there will be tens, hundreds, or even thousands of thou-
sands of wires in the inter-node communications network.
Guaranteeing the reliability of the processing elements
will be a Herculean task, and is the subject of ongoing
research both within our research group and elsewhere;
guaranteeing the reliability of every network wire will be
an impossible task.

An unreliable network with three guarantees: Net-
work protocols designed to guarantee deadlock-free data-
gram (message) delivery on reliable networks are already

1This memo is incomplete at best; the reader is referred to follow-on
memo(s) in 2002. – jhb, Feb. 2002

Project Aries Technical Memo ARIES-TM-014
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA USA

Research performed under
DARPA/AFOSR Contract Number F306029810172

quite complex, and thus impose a burden of complexity
on the implementation of the routing elements. Combined
with the problem of unreliable wires, the overall complex-
ity of guaranteeing reliable datagram delivery on a net-
work for a massively parallel machine – especially with
good performance (i.e. low latency) – is a daunting task.

Preferring simplicity, we are instead considering net-
work implementations which do not guarantee the deliv-
ery of each message; some mechanism is thus required
to provide reliable datagram delivery on the substrate of
unreliable messages, and this is the niche our protocol is
designed to fill.

Our protocol does depend upon three assumed guaran-
tees of the network:

1. A message, if delivered, is delivered at most once.

2. There exists at least one path with no bad wires be-
tween each pair of processors.

3. All messages which are successfully delivered from
a node A to a node B are delivered to B in the order
in which they were sent from A.

We believe these guarantees are fairly easy to provide
in the context of a dedicated network. For example, the
first guarantee is provided by a wormhole-routed network
which resolves congestion simply by discarding messages
randomly. (The implementation of extremely fast router
components for such a network is fairly straightforward.)
The second and third guarantees are ensured, in this exam-
ple, by constraining the network topology. In particular,
the network provides the second guarantee (to a desired
degree of certainty based on the probability of individual
wire failures, etc.) by featuring a topology with multiple,
randomly-selected paths between each pair of processors,
e.g. a FAT tree. The third guarantee arises naturally as
long as all paths between a given pair of processors in the
network are of the same length, as they would be in a FAT
tree.

Since our envisioned target network is, in fact, exactly
this network —- a FAT tree featuring wormhole-routing
and discard-based congestion resolution — we shall men-
tion one more useful property: because the distance be-
tween any pair of processors is fixed (and easily com-
puted), it is relatively simple to decide when to give up on



Message Type Content Direction
Send(D) < UIDd, CONTENTd > NIA → NIB
Acknowledge(D) < UIDd > NIA ← NIB
Forget(D) < UIDd > NIA → NIB

Table 1:The three messages of the reliable-datagram protocol.

receiving a response to a previously-sent message. This
will be useful in setting timeout values.

Unordered datagrams, not streams: Communications
between processing nodes will generally be in the form
of datagrams (messages), due to either explicit message-
passing or references to remote, shared memory. Each
processor may, in short order, send datagrams to a great
many other processors.

Additionally, multiple datagrams to a single processor
may not have an ordering requirement; for instance, a se-
ries of memory operations to independent locations need
not be ordered under a weak memory model such as re-
lease consistency.

Overall, the semantics of streaming communcations –
reliable, in-order delivery of a continuous linear sequence
of data – are unnecessary for this type of machine, and
would add significant complexity to any protocol for reli-
able inter-node communications.

2 Protocol

We target a conceptual architecture in which each proces-
sor P has a network interfaceNIp which is responsible
for sending and receiving datagrams; it is the responsibil-
ity of the NI to implement the reliable-delivery protocol
on top of the network’s unreliable messages. Obviously
the NI might well be implemented as nothing more than a
process running on the processor itself, but for conceptual
clarity we will refer to it as a separate component in the
following discussion.

2.1 Overview

We assign each datagramD an ID so that the datagram
is actually a tuple< UIDD, CONTENTD >; UIDD is an
identifier guaranteed to be unique for all datagrams cur-
rently in any stage of being sent, and CONTENTD is the
body of the datagram intended to be delivered to nodeB.
A simple means of generating per-datagram UIDs is for
the source node to prepend its node-ID to the value of a
counter which is then incremented; the counter need only
have enough bits to provide unique IDs for all live data-
grams sent from that node.

In order to reliably deliver datagramD from processor
A to processorB, a minimum of three messages must be
sent between their NIs, and any of these messages may
have to be sent more than once in the event that the net-
work discards some due to congestion or bad wires. The
messages are tabulated in Table??

An informal description of the effects of each message
follows:

NIA must repeatedly send the Send(D) message at in-
tervals until it has received an Acknowledge(D) from
NIB , at which time NIA must send a Forget(D) message
to NIB and may forget all aboutD. This is safe, as NIB

can not Ack(D) until it has successfully receievedD. If
NIA receives any further acks forD from NIB , they must
also be replied to with Forget(D) messages.

On the other side of the network, when NIB first re-
ceives a send from NIA, it must deliverD to processor
B, then must commence repeatedly sending Ack(D) mes-
sages back to NIA. Because NIA might send additional
SendD messages if it has not yet received an Ack(D)
message, NIB must remember UIDD so that it will not
accidentally re-deliverD to processorB.

Because we require of our network that messages are
delivered in send-order or dropped – never delivered
out-of-order – NIB can be certain that when it sees a
Forget(D) message from NIA, it will never again receieve
a Send(D) message from NIA; thus, NIB must stop send-
ing Ack(D) messages and may forget all aboutD when it
finally receieves a Forget(D) from NIA.

g-014 2 Idempotent Message Protocol


