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1 Introduction

With each passing year, more and more valuable, con-
fidential information is stored in government and com-
mercial computer systems. Ensuring the security of those
computer systems is a challenge with social, political, and
technological aspects; computer networks, however, make
the technological aspects particularly important as com-
puter systems are exposed to assault from remote sites.

Two critical components of the technological computer
security problem are access control and data dissemina-
tion control. Access control mechanisms prevent unau-
thorized parties from accessing (e.g. reading, modifying,
or executing) confidential data or programs. Data dissemi-
nation control mechanisms prevent confidential data from
being exposed to unauthorized parties, either by accident
or due to malicious code which has gained read-access to
the data; e.g. a malicious or erroneous program should
never be able to read a “Top Secret” value and write it out
as an “Unclassified” result.

In this memo we present two contributions addressing
the problem of controlling data dissemination, also known
as ensuring secure information flow. First, we present a
sound, flexible model which dynamically ensures secure
data flow with respect to a lattice-based information flow
policy, with security classification on a per-word basis.
Second, we present a set of hardware mechanisms, most
notably the Hash Execution (HEX) unit, which enable the
practical implementation of our model. We believe that
recent trends in logic and memory density and costs make
the architectural overhead of our mechanisms small, and
that they are more than offset by the significant benefits
they bring to system security.

Our dynamic strategy has several advantages over static
(compile-time) verificationof secure information flow. It
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is not conservative in its enforcement of security policy;
static verification techniques must reject some programs
which are, in fact, correct, whereas our dynamic strat-
egy will safely execute them. Also, our strategy does not
require that the security tag for each storage location be
fixed; instead, our mechanism allows security tags to be
adjusted according to a set of rules which guarantees that
no information is leaked due to those adjustments.

Perhaps the most important advantage of our dynamic
strategy over static verification strategies, however, is that
it reduces the size of the requiredTrusted Computing Base
(TCB). A TCB consists of a set of hardware and software
mechanisms which, if correctly implemented, guarantee
that regardless of any other code run on the system, se-
curity will not be violated. Verifying the correctness of
a TCB is laborious at best ( e.g. [21, 14]), and con-
siderable work tends to go into minimizing its size (e.g.
[20].) Compile-time program verification places the ver-
ifying compiler within the bounds of the TCB; unfortu-
nately, a compiler is an extremely large, complex piece of
software. By contrast, our dynamic mechanism guaran-
tees security with a TCB composed of only a few simple
hardware mechanisms and software routines.

The remainder of this paper is structured as follows.
In Section2, we discuss a handful of previous works in
the computer security field, particularly with respect to
secure data flow. In Section3, we present an abstract ar-
chitecture which ensures that information flow is secure
according to a lattice model; we also present a general
rule enabling authorized principals to safely declassify a
selected datum without unintentionally leaking informa-
tion about other data. In Section4, we describe the hash
execution (HEX) unit, a general-purpose processor com-
ponent with particular applicability to our security model.
In Section5, we discuss a few additional matters relating
to the practical implementation of our abstract model. We
conclude in Section6.

2 Related Work

There has been a great deal of work on computer security
in general and on secure information flow in specific, and



we make no attempt here at identifying all or even most
of it. Instead, we focus on a few key works which have
direct relevance to this memo.

2.1 Schemes for dynamic, secure data flow

Several previous works describe schemes for dynamically
ensuring secure data flow.

Lampson outlines the parameters of the problem in
[12], suggesting that “confined” programs or procedures
must be “memoryless”. Fenton [8] describes the Data
Mark Machine, an abstract model which implements
memoryless confinement.

The Data Mark Machine includes a return-address
stack used to allow safe declassification of the program
counter: an unclassified process may push a return-
address onto the stack, and a classified process may then
declassify itself by popping the unclassified address into
its program counter.

Building on [8], Gat and Saal [10] address the addi-
tional problem of general purpose registers, suggesting
that any register which has a classified value written into it
in the course of a classified computation must be returned
to its original value when the program counter exits the
classified region.

The Hydra [23, 3] operating system takes a different
approach to implementing confined procedures, eschew-
ing classifications in favor of permissions-based confine-
ment. The caller of a routine can insist that the called
routine may only write data into storage explicitly pro-
vided to the routine by the caller; in this way, the caller
has complete control over where its data (or derivatives
thereof) may be stored upon return from the called rou-
tine. Since Hydra does not actually tag data with se-
curity classifications, however, if the caller accidentally
provides publicly-reachable storage as an argument to the
confined procedure, confidential information may easily
be revealed.

On the other hand, the ADEPT-50 [22] operating sys-
tem does maintain security classifications, although on a
rather coarse, per-file basis. Whenever a job creates a new
file, the classification of that file is at least as great as that
of all files the job has previously accessed; we refer to this
type of scheme, in which the classification of a job or pro-
cess cannot be lowered after it has been raised, as a “high-
water mark” scheme. Since the goal of ADEPT’s classi-
fication scheme is merely to prevent unauthorized access,
there is no attempt made to prevent classified information
from being written into a previously-created, unclassified
file.

The surveillance protection mechanism [11] dynami-
cally tracks the classification of each variable and of the
program counter; it assumes that only the output of a pro-

gram will be visible to any other process, and refuses to
display it if the program counter has been contaminated
by overly classified data. The program counter classifica-
tion can only increase; as with any other high-water mark
scheme, the surveillance protection mechanism is there-
fore conservative in its security policy enforcement.

The Privacy Restriction Processor [19] attempts to
ensure data flow security by associating classifications
with each storage region (segment), and with each pro-
cess counter. The process counter classification is
monotonically-increasing; thus the PRP is another high-
water mark scheme. Additionally, the PRP allows the
classification of each segment to monotonically increase;
because there is no moderation of when these classifica-
tions may increase, such reclassification actually enables
implicit information leakage as described in [4].

2.2 Lattice-based secure information flow

Denning [4] describes the lattice model of information
flow that we use as the foundation for our dynamically se-
cure abstract architecture; she also identifies several flaws
and limitations of previous schemes for dynamically en-
suring secure data flow which provided inspiration and
counter-examples for our design.

The sequel work [5] presents a mechanism for compile-
time verification of information flow security in a program
with respect to a particular security lattice; every storage
location is statically tagged with its security classification.

Myers and Liskov [17, 18] present a specific (and in
our opinion particularly elegant) security classification
scheme; equivalence-classes on their security labels form
a lattice, and thus essentially the same static certification
techniques as described in [5] apply. Additionally, the
structure of their security labels enables a tasteful mecha-
nism for decentralized declassification of data by owning
principals. Myers [16] describes a variation of the Java
programming language which includes this security label-
ing scheme.

2.3 Capabilities

Finally, although we have in general made no attempt to
address matters of access control, the correctness of our
data-dissemination control model relies on the use ofca-
pabilities [6, 13] – hardware-protected pointers denoting
a specific region of memory – to ensure that unallocated
memory may not be observed by any process. In par-
ticular, we favor guarded-pointer style capabilities [2, 1]
which efficiently encode base and bounds in the capabil-
ity representation itself in a fashion which allows the ca-
pability to point directly at any word in its range, rather
than just the first word.
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3 Abstract Architecture

In this section, we describe an abstract architecture which
dynamically ensures secure information flow when run-
ning arbitrary code. The architecture provides the follow-
ing features:
• Precise (non-conservative) enforcement of a lattice-

based security policy
• Dynamic security tags on a per-word basis
• Safe overwriting of values with values of different se-

curity levels
• Safe declassification of a program counter when its

dependency on classified data ends (i.e. the PC is not
stuck at the security “high-water mark”)

At a high level, our goal is to provide confinement
([12]) by ensuring that no modifications to machine state
performed by a process running with a classified program
counter may be observed by processes with inferior or or-
thogonal classifications – these processes can thus be said
to “have no memory” of the operations performed by the
classified process. This imposes restrictions on when a
process may overwrite an existing value both in memory,
where the act of overwriting must be invisible to processes
with inferior/orthogonal classifications, and in registers,
where the act of overwriting must be invisible to the pro-
cess itself when it has escaped from the classified region
of execution.

As per Denning [4], we enforce a security policy de-
scribed by a lattice of security classes;⊥ is the least re-
strictive class, and> is the most restrictive. We will de-
note the security class of an objecto aso. If information
is allowed to flow from classa to classb, we will write
a → b; if not, we will write a /→ b. The→ relation is
transitive.∀C : ⊥ → C, and∀C : C → >.

The class combining operator⊕ is a least-upper-bound
operator on the class lattice such thata ⊕ b is the least
restrictive class that encompasses all of the restrictions of
a andb. ∀C : ⊥⊕ C = C, and∀C : >⊕ C = >.

3.1 Components, conventions, and data
representation

Our architecture features processes, a shared memory, in-
put channels, and output channels.

Each process consists of a set of general-purpose reg-
isters, a program-counter, and a special register-stack
whose purpose is explained in Section3.4. The registers
of a given process are private and may not be examined
by any other process.

The machine word is the unit of information: each slot
of memory contains one word, and each register contains
one word. A wordw consists of a pair(w, wv) wherewv

is the data stored in the word, andw is the security class

of the word. Words are read and written atomically.
Except in special casess, in the remainder of this paper

we will not distinguish between a word of memory and a
register in our flow-control rules; we will simply speak of
a generic wordw. When we speak of writing a new value
v with classv into a wordw, we will generally denote the
original word contents aswi and the new word contents
aswi+1.

The program counter associated with a processp is
tagged with a security class just like any other word; we
will generally refer to the security class ofp’s program
counter simply as the security class ofp, and will denote
it as p. When an operation updatesp, we will generally
denote the original class aspi and the new one aspi+1.

To ensure that unallocated regions of memory may not
be observed by any process, pointers to memory are repre-
sented using capabilities denoting specific ranges of mem-
ory; hardware checks ensure that no process may access a
region of memory for which it does not hold a capability.1

To disable covert channels based on order-of-allocation,
the specific memory address denoted by a capability may
not be observed by non-TCB code. A capability is stored
as the data component of a word just as any other datum
would be.

Each input channelI is tagged with a static (unmodi-
fiable) security classI. Each output channelO is tagged
with a static security classO.

3.2 Operations at a single security level

Many operations will not adjust the security class of the
program counter.

Processp may request a memory from an allocation
routine which is part of the TCB; the capability returned
by the allocator has security classp, as do all the words in
the segment to which the capability points.

Write attempts never adjust the program counter’s se-
curity class. We note here that processp may freely write
a valuev into wordw whenp = w = v; we defer presen-
tation of the general rule for legal writes to Section3.6.

The primitive operationreadable?(w) invoked byp re-
turns true ifw → p and false otherwise; in other words, it
returns true only whenp could examine the value or class
of w without increasingp. Invoking readable?does not
changep.2

1In point of fact, any scheme which prevented unallocated memory
from being examined by any process would be adequate, e.g. a privi-
leged “top-of-memory register” which was incremented during alloca-
tion. Capabilities, however, are the solution to so many other problems
as well that we cannot resist their application in this case.

2We do not have an operation contrapositive toreadable?, i.e. one
which returns true if and only ifp → w. While such an operation seems
attractive, in conjunction with monotonically-increasing security classes
described in Section3.6 it poses a channel for information leakage, so
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Processp may examinep, and compare it for equality
with any w for which readable?(w) is true; p may ex-
amine the flow-relationships between all classesC in the
security lattice for whichC → p.

3.3 Computing the security class of a result

Suppose that processp executes the sequential instruction
Is: c = OP(a,b)
where OP is a non-branching operation and the instruc-
tion’s storage locationIs has security classIs. Since OP
is non-branching,p’s program counter after the operation
is independent of the values ofa or b; however, it is obvi-
ously dependent upon the fact that OP is non-branching!
Thus,

pi+1 = pi ⊕ Is (1)

Generally, we expect instructions in a given body of code
to have the same classification, and thus in most practi-
cal casesp will not be changed by non-branching instruc-
tions.

The class of the operation result is computed from the
classes of the operands and the process itself, i.e.

c = p⊕ a⊕ b⊕ Is (2)

Where the result may actually bestored– that is, which
register or memory slot is a legal target forc – is deter-
mined by the general rule for safe writing in Section3.6.

Now suppose that processp computes the
conditionally-branching instruction
Ib: if (a) goto TARGET
In this case, the new value of the program counter is
plainly predicated on the value ofa in addition to the
instruction itself, and thus

pi+1 = pi ⊕ a⊕ Ib (3)

This leads to two conundrums. First, if the program
counter always increases in security on every branch, how
do we avoid inevitably driving everyp all the way up to
>? And second, since after a branchp is now running at
an increased security level, how can it use any of the reg-
isters which were filled with lower-security values before
the branch?

The answer to both problems lies with the register
stack.

3.4 The register stack

The register stack is an arbitrarily deep stack of pairs of
the form (register-name,value). The security class of each
pair is the class of the value. A process may inspect the

we must omit it.

register stack’s contents as if they were any other values,
but it may not modify the stack’s contents except with the
following three primitive operations.

3.4.1 Primitive operations

The primitive operationPUSHRETURN(a) wherea is
an address pushes the pair (PC,a′) onto the register stack,
where the value ofa′ is the same as that ofa, but a′ =
p ⊕ a, i.e. a′ = (p ⊕ a, av). The program counter is
incremented andp is adjusted according to rule1 as with
any other non-branching operation.

The primitive operation PUSHGPR(GPRID,n)
where n is some value pushes the old valueo of the
specified general-purpose register onto the stack in a pair
(GPRID,o); note thato is the same on the stack as it was
in the register – it is not combined withp! At the same
time aso is placed on the stack,n′ is written into the
register where the value ofn′ is the same as that ofn, but
n′ = p⊕ n, i.e. n′ = (p⊕ n, nv).

The primitive operation POP pops the top pair
(register-name,value) off of the register stack and places
the popped value into the register named register-name.
In the case of a GPR, this re-creates the state of the regis-
ter prior to thePUSHGPRoperation; in the case of a PC,
this sets the program counter to the address specified by
the correspondingPUSHRETURN.

More specifically, the effect ofPOPwhen a PC en-
try is on top of the stack is to setp PC to the address
chosen at the time of the correspondingPUSHRETURN.
Since the destination address was chosen at the time of
the PUSHRETURN, it contains no information as to the
activities of the process since that time, and thus it is safe
for p to take on the security class of the popped address
even though it may be less strict than the class of the PC
value it is replacing!

Thus, we can preventp from monotonically increas-
ing with every conditional branch by simply preceding
each such branch with aPUSHRETURN, and terminat-
ing each path of the conditional with aPOP. Let us re-
iterate that since the post-conditional-branch address is
pushed before the conditional branch itself is executed,
the popped address contains no information regarding the
value branched on, and therefore its class may safely re-
place whatever security class was imposed on the PC by
the conditional branch.

The register stack is similar to the program counter
stack of the Data Mark Machine [8] and the unclassified
state-restoring mechanisms of [10]
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3.4.2 Process initiation, error handling, and termina-
tion

A process is started with an empty register stack. A pro-
cess exits by attempting to POP an empty register stack;
there is no other exit mechanism.

A default error handler invokes POP repeatedly until a
(PC,a) pair is popped or the stack is empty. A program-
mer may install other error handlers for various error con-
ditions; regardless, an error handler will always run with
same security class, register set, register stack, etc. that
the process had before it caused the error. This ensures
that p’s error remains invisible at any classC for which
p /→ C.

3.5 Operations on I/O channels

Processp may only read values from input channelI if
p = I; a read attempt which violates this rule raises an
error which is handled atp. Since the error is predicated
on information freely available top, the success or failure
of a read leaks no new information aboutI to p. Values
read fromI are initially assigned security classI.

Processp may send valuev over output channelO only
if p = O andv → p (i.e. for p readable?(v) is true.)
A write attempt which violates this rule raises an error
which is handled atp. Since the error is predicated on
information freely available top, the success or failure of
a read leaks no new information aboutO or v to p.

3.6 A general rule for writing new values
into words

In this section we present a rule allowing the class of each
wordw to monotonically increase over time, and formally
show the rule to be safe. We also present an example
which attempts to violate secure information flow using
implicit flow and show it does not succeed under our rule.

3.6.1 The general rule

Reclassification Rule 1Processp may write a valuev
into wordwi whenwi = p; the write setswi+1 = p ⊕ v,
thus ensuring that regardless ofv, p → wi+1. An attempt
by p to write to a wordwi for whichwi 6= p signals an
error condition which is handled atp.

To demonstrate the safety of this rule we must verify
two things: first, thatp learns nothing about the class or
value ofv from the success or failure of the write; and
second, thatp leaks no information about its activity to
any processp′ for whichp /→ p′.

To show thatp learns nothing about the class or value
of v, we simply note that the predcondition for the write

to succeed is independent ofv; failure or success of the
write is not predicated on any characteristic ofv.

To show thatp leaks no information to any processp′

for which p /→ p′, we reason as follows: sincep = wi,
p /→ p′ is equivalent towi /→ p′ which, taken in conjunc-
tion with p → wi+1, implies thatwi+1 /→ p′. Resultingly,
for p′ both readable?(wi) andreadable?(wi+1) are false;
no information is leaked top′ via thereadable?routine.
Correspondingly,p′ cannot observe either the original or
the new values or classes while remaining atp′, so it can-
not detect the fact that they have changed.

3.6.2 A special-case rule

Arbitrary writes by processes running with class⊥
present a special case.

Reclassification Rule 2A processp running withp = ⊥
may write any value into any word, regardless of their
respective classifications.

A process running with class⊥ embodies no privileged
information in its program counter; therefore, regardless
of what it writes where, it leaks no privileged information
by its actions. Since every write succeeds, the process
learns nothing about the values being written or overwrit-
ten.

3.6.3 An example: preventing implicit flows

Denning [4] argues that there an intrinsic problem with
dynamic bindings, namely that “...a change in an object’s
class may remove that object from the purview of a user
whose clearance no longer permits access to the object.
The class change event can thereby be used to leak infor-
mation...”

Denning cites an example by Fenton [7]:

b := c := false;
if a thenc := true;
if c thenb := true;

Initially p = b = c = ⊥, and the constantstrue and
false have class⊥. To illustrate the problem,a is any
class stricter than⊥.

Denning points out that on a system which allows un-
restricted writes to a variable as long it they monotoni-
cally increase its security class (e.g. the Privacy Restric-
tion Processor [19],) the execution leaks the value ofa
into b without ever raising the class ofb to match that of
a.

Our rule, however, is more restrictive and therefore
safe: under our rule, the attempt to write toc after branch-
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ing ona fails3, since after the branchp = a and therefore
p 6= a. Regardless of the value ofa, then,c always re-
mains false; no information is leaked froma.4

With respect to a similar piece of code, Myers and
Liskov [17] note that while it is easy for a runtime mech-
anism to detect an improper information flow, if the error
causes the program to abort, the program-abort or lack
thereof conveys some information. Since our architecture
does not allow a program to exit/abort, and error handlers
run at the same security level as the process that invokes
them, our architecture is not subject to this problem.5

3.7 Authenticated declassification

There will undoubtedly be occasions when a user may le-
gitimately wish to explicitly assign a weaker security class
to a particular datum; for instance, a computation based
on classified data might yield a result suitable for public
dissemination.

To support this goal, we add the notion of authenticated
principals to our architecture. Each process runs on behalf
of a specific principal. A principal has two powers: the
power to perform certain declassifications, and the power
to replace itself with certain other principals.

3.7.1 Declassification

A principal u may be authorized to perform certain de-
classifications; it is up to the trusted software implement-
ing the lattice and class structures to define the declassifi-
cations allowed by each principal.

For instance, in a linear lattice, a particular principal
might be authorized to declassify data from “Secret” to
“Classified”, but not permitted to declassify “Classified”
to “Unclassified.”

As another example, in Myers and Liskov’s labeling
scheme [17, 18], each security class is defined by nested
sets of principals; a principal may, for instance, perform
a declassification by removing itself from the list of a da-
tum’s owners.6

3The error handler invoked by the write failure could report the inci-
dent over an output channelO wherea → O before allowing execution
to continue through the program; this would enable debugging at a later
date.

4As a general note, to express any if-statement “correctly” on our
architecture – that is, in such a fashion that after the if-statement,p
is the same as it was before the if-statement – one must precede each
if-statement with aPUSHRETURNoperation, and terminate each if-
statement with aPOPoperation.

5It is worth noting that a program could conditionally fail to termi-
nate based on a secure value. Neither static nor dynamic schemes for
verifying secure information flow can prevent this type of information
leakage; additional mechanisms and restrictions are required. (Non-
termination is just an extreme form of covert information transfer via
timing channels.)

6The extended labeling scheme in [18] scheme is not actually a lat-

The act of declassification obviously reveals some in-
formation about both the declassified value and the pro-
cess performing the declassification. Since a process’
state could depend on information that a principal is not
allowed to reveal, we must constrain when declassifica-
tion may be performed. We define the following rule for
safe declassification:

Reclassification Rule 3Each principalu is associated
with a (possibly empty) set of pairs of classesFu =
{(au1, bu1), (au1, bu1), ...}.

Processp running withu’s authorityu may change the
class of wordw to C if and only ifp = w and
∃(aui, bui) ∈ Fu :
w = buiandC = aui

p may change its own class under the same criteria,
which simplify in this case to:
∃aui → bui ∈ Fu :
p = buiandC = aui

Since this rule only allows a process to declassify a
value when it is authorized to declassify the program
counter in the same way, it reveals no information about
process state which the principal is not authorized to re-
veal. This rule is the only rule in our architecture which
allows a processp to write a value with a security classi-
ficationC for which it is not guaranteed thatp → C.

Note that while this rule is correct, an implementation
might choose not to instantiate the setFu explicitly, as
it might be prohibitively large. For instance, in the My-
ers/Liskov labeling scheme, while the declassification op-
eration “remove this principal from the list of owners” is
simple to define and implement, it expresses a huge num-
ber of potential transitions –Fu must contain one pair for
every possible list of owners containing the principal.

3.7.2 Principal replacement

A principal may be authorized to replace itself with an-
other principal as the principal upon whose behalf the cur-
rent process is running (the authority principal.) We im-
plement this with a hardware-supported “role” stack, the
top element of which is the authority principal.

Using this mechanism, we can implement Role-Based
Access Control ([9]) – a principal may take on any of a
variety of “roles” (i.e. other principals), without ever hav-
ing the access-rights of more than one of those roles at a
time.

The role stack is also quite useful for logging exactly
which principals performed what actions in what roles

tice; equivalence classes on the labels form a lattice. In spite of this,
their declassification operations actually map in a one-to-one fashion
with specific arcs in the lattice.
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(“Jeremy Brown acting as a Research Assistant acting as
a Graduate Student printed 50 pages.”)

Note that whenever a PC is popped from the resgister
stack, the role stack must be repeatedly popped back to
the same point it was at when the PC was first pushed.

4 Hash Execution Unit

The Hash Execution Unit is a generalization of the N-way
associative data cache found in most simple modern RISC
processors. To review, one approach to the construction of
simple caches is to place them in parallel with the conven-
tional arithmetic unit. Data values read from the register
file are used both to drive the inputs of the arithmetic unit,
and as a source of the cache address and write data for the
data cache. Results from the cache are written back to the
register file in the same way as an arithmetic unit result.
Thus, loads and stores to the data cache can be performed
with the same basic timing and control mechanisms as any
other instruction, with the exception of cache miss opera-
tions.

4.1 Standard Cache Design

A typical implementation of a standard data cache is
shown in figure 1. One register file read generates a
load/store address. The load/store address is converted
to a cache line address. In the simplest case this can be
done by simply dropping high order bits; more complex
schemes involve hashing the load address to produce a
cache line address.

The cache line address is used to reference the data
cache, fetching the keys and the data. The keys are com-
pared with the load address (or a high order portion of it, if
hashing has not been used). If the key and load addresses
match, the data returned by the data cache is valid, and
that data is sent back to the register file as the result of
the load operation. A mismatch causes a cache miss, fol-
lowed by a slow main memory reference and cache reload
operation.

Several such data cache units can operate in parallel on
the load address; if any find valid data, the cache hits.
With N such units, the data cache is termed an N way as-
sociative cache, because for any given load address, there
are N possible cache locations in which it could be stored.

Store operations perform a similar tag and data read op-
eration in the data cache. A cache hit activates a subse-
quent data write operation in that way of the cache, which
completes during register file read of the subsequent in-
struction.

4.2 Extension of the Way Hardware to
Value Caches

Now, consider a generalization to the standard data cache.
Another type of cache commonly considered is a value
cache, which caches the values of functional subroutines,
eliminating the necessity to recompute the results of com-
monly used arguments.

A simple extension of the data cache could handle the
value cache as well. Instead of cacheing data based on a
load address, the argument (or arguments) can be hashed,
and the hash result used to index into the N way associa-
tive cache. A hit, determined by an exact match of the ar-
gument(s) to the key, results in the use of the value part of
the cached data in the matched way as the function value.

4.3 Type computations

Similarly, one could combine dynamic type information
(or other data tag information such as units) from multiple
arguments using a hash function; perform an N way asso-
ciative lookup; perform an exact key comparison; and dy-
namically assign a type to the data result. Optionally (and
importantly) a trap can occur on the occurance of rare or
improper type combination.

As shown in figure2, the important mechanisms here
are masking units to mask off the type tag field from the
register words, a hash combiner, a tag test unit for com-
parison of the masked data with the cache key returned,
and a tag insertion mechanism for reinsertion of the tag
result into the ALU register result.

With this mechanism, the type information from multi-
ple operands can be extracted, the combination looked up,
the result optionally trapped, and the combined type auto-
matically inserted into the result in a cycle time compara-
ble to the time for a normal data cache load. Typically, this
load can occur in parallel with normal ALU operations.

Note that the location and size of the type tag data
within the data word is now a programmed choice, rather
than a hardware fixed feature, because of the masked ex-
traction and insertion operations.

Multiple such hash operations could be performed in
parallel on a single set of data word fetch from the pro-
cessor register file. The identical units could be, alterna-
tively, used for a larger data cache with the masking and
insertion logic set appropriately.

We term this basic structure a Hash Execution Unit
(HEX unit), because it performs simple (type, unit,
lookup) computations, or more complex (value cache) op-
erations quickly in the common cases.
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Figure 2:A hash execution (HEX) unit.
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4.4 Using the HEX Unit for Security Checks

The HEX unit can be augmented slightly to implement the
high performance inner loop of the dynamic security typ-
ing. The security tags from each operand are extracted by
the data mask unit. Additionally, security tags associated
with the program counter, and with the instruction being
executed are similarly extracted. The extracted security
tags are hashed together, and a portion of the resulting
hashed value used to look up a security tag result. The
cache keys are compared with each masked security tag
(operand, PC, Instruction) to assure that the correct cache
entry has been located. Under normal circumstances, the
cache will hold the appropriate security level tag for the
instruction result, which is then masked and inserted into
the security tag field of the data written to the register file.
Rarely, the cache will miss, resulting in a trap, the compu-
tation of the correct security tag being added to the cache,
and the processor restarted.

The mechanism outlined provides us with a flexible,
run time reconfigurable technique for quickly performing
relatively complex manipulations on tag data associated
with normal instruction execution. The HEX unit can be
applied to make data tags, units, value cache results, ob-
ject oriented method dispatches, and the security tags dis-
cussed here a practical and efficient tool in modern archi-
tectures.

5 Implementation of the model

Although the HEX unit of the previous section is the cor-
nerstone of our proposed implementation – HEX units en-
able rapid computation of Equations1, 2, and3 in the nor-
mal case – some additional mechanism is required.

5.1 The register stack

We simulate an arbitrarily deep stack with a hardware
stack of finite depth; a set of trusted routines spill the
stack to memory when the hardware overflows. This is
very similar to the stack implementation in the Lisp Ma-
chine [15], and also to the register windows schemes used
to simulate infinite numbers of registers in the SPARC and
Itanium microprocessor architectures.

5.2 Computing legal overwrites

The general rule for overwriting words, Rule1, requires
that the security class of the processp be identical to the
class of the wordw being overwritten. Thus, in general,
we will need to examine a word before overwriting it.

Whenw is in memory, we avoid delays due to having
to examine a word before overwriting it as follows: when

we look upw in the D-cache with intent to overwrite it,
we use a key consisting of bothw’s address andp’s se-
curity bits. If address and security bits don’t both match,
the cache lookup fails; separate equality outputs for the
address and security-bit comparisons indicate whether the
failure was due to a D-cache miss or a security fault. The
only slowdown due to the security check is in the case of a
legitimate D-cache miss: the system must wait for the old
word to be transferred to the D-cache in order to perform
the security check prior to the write.7

Whenw is in a register, we handle the situation differ-
ently. In modern superscalar processors, out-of-order ex-
ecution requires register renaming. When issued instruc-
tion I specifies that its result will be written into register
R, in actuality a new backing store slotSn is allocated and
the nameR is re-bound to point toSn instead of its previ-
ous slotSo. I may not produce the value intended forR
for several cycles, during which time logically-subsequent
instructions dependent onI ’s result are stalled.

In this setting, Rule1 requires thatpi = So, wherepi

is the PC at the timeI is issued; otherwise,I must fail
to write intoR and an error must be raised. Due to out-
of-order execution,So may not contain a value whenI
issues; thus, whileI may (and should) speculatively exe-
cute, it must not actually retire (commit) until the value of
So has been fixed.

Based on these observations, we can implement the se-
curity check of Rule1 in two simple steps. At the time
of issue, the entry forI records slotSn as the back-
ing store forR, and also recordsSo asSn’s predecessor
slot. At the time of retirement,So is compared topi. If
they are equal retirement succeeds; otherwise, retirement
fails and an error is raised (thus aborting all instructions
logically-subsequent toI.8) The only slowdown due to
this mechanism ocurs when an instruction’s retirement is
delayed waiting for a value to be produced by a logically-
precedent instruction; since retirement happens at the end
of the processor pipeline, however, this situation will gen-
erally be extremely rare.

6 Conclusions

In this memo we have made several contributions. On the
theoretical side, we have described an abstract architec-
ture which dynamically ensures secure information flow
with respect to a security lattice; we have shown that it
does not leak information through implicit channels; and

7Actually, a system with adequate speculation support could simply
perform the write speculatively, and commit only when the “overwrit-
ten” value arrives from main memory and the permissions-check has
been performed.

8 Imprecise exceptions are fine as long as POP instructions act as a
barrier with respect to exceptions.
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we have defined a general rule allowing authorized prin-
cipals to perform specific declassifications without addi-
tional, unintentional information leakage. The architec-
ture provides a set of features which collectively make it
an improvement on all predecessors known to us:

• Precise (non-conservative) enforcement of a lattice-
based security policy

• Dynamic security tags on a per-word basis
• Safe overwriting of values with values of different se-

curity levels
• Safe declassification of a program counter when its

dependency on classified data ends (i.e. the PC is not
stuck at the security “high-water mark”)

• A small TCB

On the practical side, we have described mechanisms
enabling the implementation of our dynamically secure
architecture. Of particular importance is the hash execu-
tion unit, or HEX unit, a generalization of the N-way as-
sociative data cache which can be applied to make data
tags, units, value cache results, object oriented method
dispatches, and the security tags discussed here a practical
and efficient tool in modern architectures.

We close by enumerating the elements of the trusted
computing base for our suggested implementation. The
TCB consists of the following policy-independent com-
ponents:

• A processor featuring:
• HEX units
• general purpose registers
• per-word security class annotation
• the register stack

• trap handlers to securely swap processes and spill the
register stack

• memory management routines for allocation and
garbage collection

...and the following policy-dependent components:

• specification of a security class hierarchy
• specification of a set of principals
• software computing→ (flows-to relation) and⊕

(class combining operator) on the specified lattice
• software computing declassification authorizations for

each principal
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