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1 Introduction is not conservative in its enforcement of security policy;
static verification techniques must reject some programs
With each passing year, more and more valuable, covhich are, in fact, correct, whereas our dynamic strat-
fidential information is stored in government and conegy will safely execute them. Also, our strategy does not
mercial computer systems. Ensuring the security of thassgjuire that the security tag for each storage location be
computer systems is a challenge with social, political, afiged; instead, our mechanism allows security tags to be
technological aspects; computer networks, however, maidusted according to a set of rules which guarantees that
the technological aspects particularly important as come information is leaked due to those adjustments.
puter systems are exposed to assault from remote sites. Perhaps the most important advantage of our dynamic
Two critical components of the technological computetrategy over static verification strategies, however, is that
security problem are access control and data dissemithéeduces the size of the requir€tusted Computing Base
tion control. Access control mechanisms prevent ungI:=CB). A TCB consists of a set of hardware and software
thorized parties from accessing (e.g. reading, modifyingechanisms which, if correctly implemented, guarantee
or executing) confidential data or programs. Data disserthiat regardless of any other code run on the system, se-
nation control mechanisms prevent confidential data frararity will not be violated. Verifying the correctness of
being exposed to unauthorized parties, either by accidanTCB is laborious at best ( e.g.21, [14]), and con-
or due to malicious code which has gained read-accessitterable work tends to go into minimizing its size (e.g.
the data; e.g. a malicious or erroneous program sho{f].) Compile-time program verification places the ver-
never be able to read a “Top Secret” value and write it difi(ing compiler within the bounds of the TCB; unfortu-
as an “Unclassified” result. nately, a compiler is an extremely large, complex piece of
In this memo we present two contributions addressiggftware. By contrast, our dynamic mechanism guaran-
the problem of controlling data dissemination, also knovies security with a TCB composed of only a few simple
as ensuring secure information flow. First, we presenhardware mechanisms and software routines.
sound, flexible model which dynamically ensures secureThe remainder of this paper is structured as follows.
data flow with respect to a lattice-based information flolm Section?, we discuss a handful of previous works in
policy, with security classification on a per-word basishe computer security field, particularly with respect to
Second, we present a set of hardware mechanisms, nsesure data flow. In Secti@) we present an abstract ar-
notably the Hash Execution (HEX) unit, which enable thghitecture which ensures that information flow is secure
practical implementation of our model. We believe thaiccording to a lattice model; we also present a general
recent trends in logic and memory density and costs makée enabling authorized principals to safely declassify a
the architectural overhead of our mechanisms small, aselected datum without unintentionally leaking informa-
that they are more than offset by the significant beneffisn about other data. In Secti@h we describe the hash
they bring to system security. execution (HEX) unit, a general-purpose processor com-
Our dynamic strategy has several advantages over staggent with particular applicability to our security model.
(compile-time) verificationof secure information flow. Iin Sectiorf5, we discuss a few additional matters relating
to the practical implementation of our abstract model. We
conclude in Sectiolil
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we make no attempt here at identifying all or even mogtam will be visible to any other process, and refuses to
of it. Instead, we focus on a few key works which hawdisplay it if the program counter has been contaminated
direct relevance to this memo. by overly classified data. The program counter classifica-
tion can only increase; as with any other high-water mark
. scheme, the surveillance protection mechanism is there-

2.1 Schemes for dynamic, secure data flow fore conservative in its security policy enforcement.

Several previous works describe schemes for dynamically! "€ Privacy Restriction Processold attempts to
ensuring secure data flow. ensure data flow security by associating classifications

Lampson outlines the parameters of the problem ‘Mth each storage region (segment), and W'th. _each bro-
The process counter classification is

: . ter.
[12], suggesting that “confined” programs or procedur(ggSS counter.. . . .
must be “memoryless”. Fento@][describes the Datamonotonlcally-lncreasmg; thus the PRP is another high-

Mark Machine an abstract model which implemenY%ater mark scheme. Additionally, the PRP allows the
memoryless confinement. classification of. each segmen_t to monotonically increase;

L because there is no moderation of when these classifica-

The Data Mark Machine includes a return-addre?s . e
e I0ns may increase, such reclassification actually enables

stack used to allow safe declassification of the program licit information leakage as described H [
counter: an unclassified process may push a retufnP 9 '
address onto the stack, and a classified process may then
declassify itself by popping the unclassified address irpo2 | attice-based secure information flow
its program counter.

Building on [8], Gat and Saalll0] address the addi- Denning B] describes the lattice model of information
tional problem of general purpose registers, suggestft@yV that we use as the foundation for our dynamically se-
that any register which has a classified value written intd#re abstract architecture; she also identifies several flaws
in the course of a classified computation must be returrfefl limitations of previous schemes for dynamically en-
to its original value when the program counter exits tfifing secure data flow which provided inspiration and
classified region. counter-examples for our design.

The Hydra 3, [3] operating system takes a different The sequel workd] presents a mechanism for compile-
approach to implementing confined procedures, eschdiffie verification of information flow security in a program
ing classifications in favor of permissions-based confinith respect to a particular security lattice; every storage
ment. The caller of a routine can insist that the calldgcationis stanqally tagged with its security c!a_lssmcan_on.
routine may only write data into storage explicitly pro- Myers and Liskov(L7, [18] present a specific (and in
vided to the routine by the caller; in this way, the callédur opinion particularly elegant) security classification
has complete control over where its data (or derivativégheme; equivalence-classes on their security labels form
thereof) may be stored upon return from the called ro@Jattice, and thus essentially the same static certification
tine. Since Hydra does not actually tag data with sichniques as described iB] [apply. Additionally, the
curity classifications, however, if the caller accidentaltructure of their security labels enables a tasteful mecha-
provides publicly-reachable storage as an argument to & for decentralized declassification of data by owning
confined procedure, confidential information may easiBfincipals. Myers[16] describes a variation of the Java
be revealed. programming language which includes this security label-

On the other hand, the ADEPT-58] operating sys- INg scheme.
tem does maintain security classifications, although on a
r_ather coarse, _per?flle basis. \_Nh_enever ajob creates a ] Capabilities
file, the classification of that file is at least as great as that
of all files the job has previously accessed; we refer to tiH#ally, although we have in general made no attempt to
type of scheme, in which the classification of a job or praddress matters of access control, the correctness of our
cess cannot be lowered after it has been raised, as a “higdta-dissemination control model relies on the useasf
water mark” scheme. Since the goal of ADEPT'’s clasgsabilities [6, [13] — hardware-protected pointers denoting
fication scheme is merely to prevent unauthorized accesSpecific region of memory — to ensure that unallocated
there is no attempt made to prevent classified informatiotemory may not be observed by any process. In par-
from being written into a previously-created, unclassifiaitular, we favor guarded-pointer style capabiliti@s[T]
file. which efficiently encode base and bounds in the capabil-

The surveillance protection mechanisfdl] dynami- ity representation itself in a fashion which allows the ca-
cally tracks the classification of each variable and of tipability to point directly at any word in its range, rather
program counter; it assumes that only the output of a ptban just the first word.
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3 Abstract Architecture of the word. Words are read and written atomically.
Except in special casess, in the remainder of this paper
In this section, we describe an abstract architecture whigh will not distinguish between a word of memory and a
dynamically ensures secure information flow when ruregister in our flow-control rules; we will simply speak of
ning arbitrary code. The architecture provides the follov-generic wordy. When we speak of writing a new value

ing features: v with classv into a wordw, we will generally denote the
e Precise (non-conservative) enforcement of a latticeriginal word contents as; and the new word contents
based security policy asw;y1.
¢ Dynamic security tags on a per-word basis The program counter associated with a process
o Safe overwriting of values with values of different setagged with a security class just like any other word; we
curity levels will generally refer to the security class p% program

o Safe declassification of a program counter when isunter simply as the security classpefand will denote
dependency on classified data ends (i.e. the PC is hef{s p. When an operation updateswe will generally
stuck at the security “high-water mark”) denote the original class agand the new one gs_ ;.

At a high level, our goal is to provide confinement To ensure that unallocated regions of memory may not
([12)) by ensuring that no modifications to machine statse observed by any process, pointers to memory are repre-
performed by a process running with a classified progra@nted using capabilities denoting specific ranges of mem-
counter may be observed by processes with inferior or @fy; hardware checks ensure that no process may access a
thogonal classifications — these processes can thus be gsiibn of memory for which it does not hold a capablffity.
to “have no memory” of the operations performed by thy disable covert channels based on order-of-allocation,
classified process. This imposes restrictions on whenha specific memory address denoted by a capability may
process may overwrite an existing value both in memorwt be observed by non-TCB code. A capability is stored
where the act of overwriting must be invisible to processgs the data component of a word just as any other datum
with inferior/orthogonal classifications, and in registergyould be.
where the act of overwriting must be invisible to the pro- Each input channel is tagged with a static (unmodi-
cess itself when it has escaped from the classified regﬁmﬂe) security clasg. Each output channé) is tagged
of execution. with a static security class.

As per Denning!4], we enforce a security policy de-
scribed by a lattice of security classels;is the least re- . . )
strictive class, and is the most restrictive. We will de-3-2 Operations at a single security level
note the security class of an objecaso. If information
is allowed to flow from clasa to classb, we will write
a — b; if not, we will write ¢ /~ b. The — relation is
transitive.vVC : 1L — C,andvC : C — T.

Many operations will not adjust the security class of the
program counter.

Processp may request a memory from an allocation
- . routine which is part of the TCB; the capability returned
The class combining op.eratals a Ieast—L_Jpper-boundby the allocator has security clggsas do all the words in

operator on the class lattice such tha® b is the least the segment to which the capability points.

restrictive class that encompasses all of the restrictions O%N . . )
rite attempts never adjust the program counter’s se-

aandp. ¥O: L& C =C,andvC: Te U =T. curity class. We note here that procesmay freely write
a valuev into wordw whenp = w = v; we defer presen-

3.1 Components, conventions, and datatation of the general rule for legal writes to Seci@a
representation The primitive operatiomeadable?w) invoked byp re-
turns true ifw — p and false otherwise; in other words, it
Our architecture features processes, a shared memoryséurns true only whep could examine the value or class
put channels, and output channels. of w without increasing. Invoking readable?does not
Each process consists of a set of general-purpose rggangep 2 a
isters, a program-counter, and a special register-stack — —

whose purpose is explained in Sectl®d The registers In point of fagt, any scheme which prevented unallocated memory
from being examined by any process would be adequate, e.g. a privi-

of a given process are private and may not be examingdly “top-of-memory register” which was incremented during alloca-
by any other process. tion. Capabilities, however, are the solution to so many other problems

The machine word is the unit of information: each sl@pg well that we cannot resist their application in this case.
. . .2 i iti 21
of memory contains one word, and each register contajns We do not have an operation contrapositivedadable? i.e. one
. . which returns true if and only i — w. While such an operation seems
one word. A wordw consists of a paifw, w, ) Wherew,  agractive, in conjunction with monotonically-increasing security classes

is the data stored in the word, andis the security class described in SectidB.8it poses a channel for information leakage, so
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Procesp may examinep, and compare it for equality register stack’s contents as if they were any other values,
with any w for which readable?(w) is true; p may ex- but it may not modify the stack’s contents except with the
amine the flow-relationships between all clasSeis the following three primitive operations.
security lattice for whiclC' — p.

3.3 Computing the security class of a result

o . 3.4.1 Primitive operations
Suppose that procepexecutes the sequential instruction

I;; ¢ = OP(ab) o . .
where OP is a non-branching operation and the instrdd1® Primitive operatiorPUSHRETURN(a) wherea is
tion's storage locatior, has security clas,. Since Op a0 address pushes the pair (G onto the register stack,
gl ! /I __
is non-branchingy’s program counter after the operatiot/nere the va}lue o4’ is the same as that af, buta’ =
is independent of the values @br b; however, it is obvi- 2 ® & -€. @’ = (p © a,a,). The program counter is

ously dependent upon the fact that OP is non-branchifigreémented ang is adjusted according to rueas with
Thus, any other non-branching operation.

Piv1 =Dpi D Is Q) The primitive operation PUSHGPR(GPRID,n)
G I tinstructi . . bodv of (i/heren is some value pushes the old valueof the
enerally, we expect Instructions in a given body of COQgy e g general-purpose register onto the stack in a pair

to have the same classification, and thus in most pra? SPRID, 0): note thaio is the same on the stack as it was

Eglnzase@ will not be changed by non-branching mstrucl—n the register — it is not combined witil At the same

The ¢l fth i Iti ted f ttime aso is placed on the stacky’ is written into the
€ class of the opération result Is computed from tngister where the value af is the same as that af, but
classes of the operands and the process itself, i.e.

n' =p®n,ien =(podnn,).

c=pDadbd I 2 The primitive operationPOP pops the top pair
B B (register-name,value) off of the register stack and places
Where the result may actually Istored— that is, which the popped value into the register named register-name.
register or memory slot is a legal target or is deter- In the case of a GPR, this re-creates the state of the regis-
mined by the general rule for safe writing in Secfl®A.  ter prior to thePUSHGPRoperation; in the case of a PC,
Now suppose that processp computes the this sets the program counter to the address specified by
conditionally-branching instruction the correspondinUSHRETURN

Iy: .'f (@) goto TARGET . More specifically, the effect oPOPwhen a PC en-
In this case, the new value of the program counter js

. . . .. ty is on top of the stack is to set PC to the address
ﬁg?{%tg rsifg;egn%ntggg value af in addition to the chosen at the time of the correspondPigSHRETURN.

Since the destination address was chosen at the time of

the PUSHRETURNIt contains no information as to the

activities of the process since that time, and thus it is safe
This leads to two conundrums. First, if the prograd®’ » 10 take on the security class of the popped address

counter always increases in security on every branch, hB¥¢" though it may be less strict than the class of the PC

do we avoid inevitably driving every all the way up to valUe itis replacing!

T? And second, since after a braneis now running at  Thus, we can preveni from monotonically increas-

an increased security level, how can it use any of the régg with every conditional branch by simply preceding

isters which were filled with lower-security values beforeach such branch with RUSHRETURNand terminat-

Pis1=pi®a® L ®)

the branch? ing each path of the conditional withRROPR Let us re-
The answer to both problems lies with the regist@terate that since the post-conditional-branch address is
stack. pushed before the conditional branch itself is executed,
the popped address contains no information regarding the
3.4 The register stack value branched on, and therefore its class may safely re-

place whatever security class was imposed on the PC by
The register stack is an arbitrarily deep stack of pairs tfe conditional branch.
the form (register-name,value). The security class of eaChI'he register stack is similar to the program counter

pair is the class of the value. A process may inspect &y of the Data Mark Machin@]and the unclassified
we must omit it. state-restoring mechanisms G0
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3.4.2 Processinitiation, error handling, and termina- to succeed is independent of failure or success of the
tion write is not predicated on any characteristiwof

. . . To show thatp leaks no information ny pr
A process is started with an empty register stack. A PrRs \(/)vhsicﬁ Latt?/ ev%esregsonoas ?;I(I)ovvtso' iizngcf s
cess exits by attempting to POP an empty register sta&# lis eB uingént tav, 1> 1 which taken infco_n'uirl{c-
there is no other exit mechanism pi-pIseq Wi 7 D : )
: i _tion with p — w; 1, implies thatw; 1 + p’. Resultingly,

A defal_JIt_error handler invokes P_OP repeatedly unt|If8\r o/ bothreadable?uw,) andreadable?u; ) are false;
(PCa) pair 1S popped or the stack is empty. A Progranl, information is leaked tp’ via thereadable?routine.
mer may install other error handlers for various error co ‘orrespondinglyy’ cannot observe either the original or
ditions; regardless, an error handler will always run wi e new values or classes while remaining/aso it can-
same security class, register set, register stack, etc. &tdetect the fact that they have changed.
the process had before it caused the error. This ensurés '

that p’s error remains invisible at any clags for which

p+ C. 3.6.2 A special-case rule
. Arbitrary writes by processes running with clads
3.5 Operations on I/O channels present a special case.

Procesg may only read values from input channglf

p = I; a read attempt which violates this rule raises dreclassification Rule 2A procesg running withp = L

error which is handled at. Since the error is predicatednay write any value into any word, regardless of their

on information freely available tp, the success or failurerespective classifications.

of a read leaks no new information abduto p. Values

read from! are initially assigned security clags A process running with class embodies no privileged
Proces® may send value over output channeD only information in its program counter; therefore, regardless

if p= Oandv — p (i.e. forp readable?v) is true.) Of what it writes where, it leaks no privileged information

A write attempt which violates this rule raises an errd¥ its actions. Since every write succeeds, the process

which is handled ap. Since the error is predicated ofearns nothing about the values being written or overwrit-

information freely available tp, the success or failure often.

a read leaks no new information ab@or v to p.

3.6.3 An example: preventing implicit flows
3.6 A general rule for writing new values

into words Denning H] argues that there an intrinsic problem with

dynamic bindings, namely that “...a change in an object’s
In this section we present a rule allowing the class of eaglass may remove that object from the purview of a user
wordw to monotonically increase over time, and formallyhose clearance no longer permits access to the object.
show the rule to be safe. We also present an examphe class change event can thereby be used to leak infor-
which attempts to violate secure information flow usingation...”
implicit flow and show it does not succeed under our rule. Denning cites an example by Fentad: [

b:=c:=false

if athenc:=true

Reclassification Rule 1Processp may write a valuey if cthenb :=true;

into wordw; whenw; = p; the write setav; 11 = p @ v,

thus ensuring that regardless of p — w; 1. An attempt  Initially p = b = ¢ = L, and the constantsue and
by p to write to a wordw; for whichw; # p signals an falsehave classL. To illustrate the problemg is any

error condition which is handled at. class stricter thad..
- Denning points out that on a system which allows un-

To demonstrate the safety of this rule we must verifgstricted writes to a variable as long it they monotoni-
two things: first, thap learns nothing about the class oeally increase its security class (e.g. the Privacy Restric-
value ofv from the success or failure of the write; antion Processor19],) the execution leaks the value of
second, thap leaks no information about its activity tointo b without ever raising the class 6fto match that of
any procesg’ for whichp + p'. a.

To show thatp learns nothing about the class or value Our rule, however, is more restrictive and therefore
of v, we simply note that the predcondition for the writeafe: under our rule, the attempt to writectafter branch-

3.6.1 The general rule
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ing ona faildd, since after the brangh= « and therefore  The act of declassification obviously reveals some in-
p # a. Regardless of the value af then,c always re- formation about both the declassified value and the pro-
mains false: no information is leaked franf cess performing the declassification. Since a process’

With respect to a similar piece of code, Myers angfate could depend on information that a principal is not
Liskov [17] note that while it is easy for a runtime mechallowed to reveal, we must constrain when declassifica-
anism to detect an improper information flow, if the errdion may be performed. We define the following rule for
causes the program to abort, the program-abort or l&Ke declassification:
thereof conveys some information. Since our architecture
does not allow a program to exit/abort, and error handldReclassification Rule 3Each principal v is associated
run at the same security level as the process that invokéth a (possibly empty) set of pairs of classEs =
them, our architecture is not subject to this probl®m.  {(au1,bu1), (@1, bui), - }-

Process running withu’s authority« may change the
class of wordw to C if and only ifp = w and
Hawi; bui) € Fu
There will undoubtedly be occasions when a user may te—= byiandC = ay;
gitimately wish to explicitly assign a weaker security class p may change its own class under the same criteria,
to a particular datum; for instance, a computation basetiich simplify in this case to:
on classified data might yield a result suitable for publidty; — bus € Fy :
dissemination. p = byandC' = ay;

To support this goal, we add the notion of authenticated
principals to our architecture. Each process runs on behalSince this rule only allows a process to declassify a
of a specific principal. A principal has two powers: thgalue when it is authorized to declassify the program
power to perform certain declassifications, and the powsunter in the same way, it reveals no information about
to replace itself with certain other principals. process state which the principal is not authorized to re-
veal. This rule is the only rule in our architecture which
allows a process to write a value with a security classi-
fication C for which it is not guaranteed that— C.

A principal © may be authorized to perform certain de- Note that while this rule is correct, an implementation
classifications; it is up to the trusted software implementight choose not to instantiate the dét explicitly, as

ing the lattice and class structures to define the declasstfimight be prohibitively large. For instance, in the My-
cations allowed by each principal. ers/Liskov labeling scheme, while the declassification op-

For instance, in a linear lattice, a particular princip&ration “remove this principal from the list of owners” is
might be authorized to declassify data from “Secret” tample to define and implement, it expresses a huge num-
“Classified”, but not permitted to declassify “Classifiedber of potential transitions £, must contain one pair for
to “Unclassified.” every possible list of owners containing the principal.

As another example, in Myers and Liskov’s labeling
schemel17, (18], each security class is defined by neste\g
sets of principals; a principal may, for instance, perform
a declassification by removing itself from the list of a dax principal may be authorized to replace itself with an-
tum’s owners® other principal as the principal upon whose behalf the cur-

3The error handler invoked by the write failure could report the incr-ent process is running (the aUthority principal.) We im-
dent over an output chann@ wherea — O before allowing execution plement this with a hardware-supported “role” stack, the
to continue through the program; this would enable debugging at a Iq@p element of which is the authority principal.

date. . . , Using this mechanism, we can implement Role-Based
As a general note, to express any if-statement “correctly” on o

r L
architecture — that is, in such a fashion that after the if-statenpient,xcc_:eSS Control 9]) —a prlnc!pa! may ta!(e on any of a
is the same as it was before the if-statement — one must precede aariety of “roles” (i.e. other principals), without ever hav-
if-statement.with aPUSHRETURNoperation, and terminate each if-ing the access_rights of more than one of those roles at a
statement with #OPoperation. :
5, , ” . time.

It is worth noting that a program could conditionally fail to termi- . . .
nate based on a secure value. Neither static nor dynamic schemes fof N€ role stack is also quite useful for logging exactly
verifying secure information flow can prevent this type of informatiowhich principals performed what actions in what roles
leakage; additional mechanisms and restrictions are required. (Non-
termination is just an extreme form of covert information transfer viice; equivalence classes on the labels form a lattice. In spite of this,
timing channels.) their declassification operations actually map in a one-to-one fashion

6The extended labeling scheme [iE8] scheme is not actually a lat- with specific arcs in the lattice.

3.7 Authenticated declassification

3.7.1 Declassification

7.2 Principal replacement
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(“Jeremy Brown acting as a Research Assistant actingb® Extension of the Way Hardware to
a Graduate Student printed 50 pages.”) Value Caches

Note that whenever a PC is popped from the resgister
stack, the role stack must be repeatedly popped back\iew, consider a generalization to the standard data cache.
the same point it was at when the PC was first pushed. Another type of cache commonly considered is a value
cache, which caches the values of functional subroutines,
eliminating the necessity to recompute the results of com-
monly used arguments.

A simple extension of the data cache could handle the
value cache as well. Instead of cacheing data based on a
d address, the argument (or arguments) can be hashed,

the hash result used to index into the N way associa-
cache. A hit, determined by an exact match of the ar-
iment(s) to the key, results in the use of the value part of
e cached data in the matched way as the function value.

4 Hash Execution Unit

The Hash Execution Unit is a generalization of the N-w.
associative data cache found in most simple modern RI
processors. To review, one approach to the constructioqi\g
simple caches is to place them in parallel with the conve
tional arithmetic unit. Data values read from the regist
file are used both to drive the inputs of the arithmetic unit,
and as a source of the cache address and write data for the

data cache. Results from the cache are written back to the

register file in the same way as an arithmetic unit resujf.3 Type computations
Thus, loads and stores to the data cache can be performed

with the same basic timing and control mechanisms as aj\jjarly, one could combine dynamic type information
other instruction, with the exception of cache miss Opei@s; gther data tag information such as units) from multiple

tions. arguments using a hash function; perform an N way asso-
ciative lookup; perform an exact key comparison; and dy-
namically assign a type to the data result. Optionally (and

4.1 Standard Cache Design importantly) a trap can occur on the occurance of rare or
improper type combination.

A typical implementation of a standard data cache isAS shown in figuréd, the important mechanisms here

shown in figure [l - One register file read ge_nerates e masking units to mask off the type tag field from the
load/store address. The load/store address is conve%@ster words, a hash combiner, a tag test unit for com-

to a cache line address. In the simplest case this ca ison of the masked data with the cache key returned,

done by s!mply dropplng high order bits; more compl And a tag insertion mechanism for reinsertion of the tag
schemes involve hashing the load address to pmducﬁe&ltinto the ALU register result

cache line address. With thi hani h i ion f i
The cache line address is used to reference the da]ta Ith this mechanism, the type information from multi-

cache, fetching the keys and the data. The keys are ¢ f‘f_operands.can be extracted, the combingtion looked up,
pared with the load address (or a high order portion of it, | € result optionally trapped, and the combined type auto-

hashing has not been used). If the key and load addre%]gt'ca"y inserted into the result in a cycle time compara-

match, the data returned by the data cache is valid, (,Tn%ﬁo the time for a normal data cache load. Typically, this

that data is sent back to the register file as the result %"fld can occur in parallel with normal ALU operations.

the load operation. A mismatch causes a cache miss, folNote that the location and size of the type tag data

lowed by a slow main memory reference and cache reld#tihin the data word is now a programmed choice, rather
operation. than a hardware fixed feature, because of the masked ex-

Several such data cache units can operate in parallef¢tion and insertion operations.
the load address; if any find valid data, the cache hits.Multiple such hash operations could be performed in
With N such units, the data cache is termed an N way g@&rallel on a single set of data word fetch from the pro-
sociative cache, because for any given load address, tig@gsor register file. The identical units could be, alterna-
are N possible cache locations in which it could be stordtyely, used for a larger data cache with the masking and
Store operations perform a similar tag and data read #psertion logic set appropriately.
eration in the data cache. A cache hit activates a subseWe term this basic structure a Hash Execution Unit
guent data write operation in that way of the cache, whi(HEX unit), because it performs simple (type, unit,
completes during register file read of the subsequent loekup) computations, or more complex (value cache) op-
struction. erations quickly in the common cases.
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4.4 Using the HEX Unit for Security Checks we look upw in the D-cache with intent to overwrite it,

we use a key consisting of both's address ang'’s se-

The HEX unit can pe augmented slightlyto.implem.ent trlz‘ﬁrity bits. If address and security bits don’t both match,
high performance inner loop of the dynamic security typr., ~5che lookup fails; separate equality outputs for the

ing. The security tags from each operand are extracted iy o o< and security-bit comparisons indicate whether the
the data mask unit. Additionally, security tags associa lure was due to a D-cache miss or a security fault. The

with the program _counter, and with the instruction be"”l.%’nly slowdown due to the security check is in the case of a
executed are similarly extracted. The extracted Securl@gitimate D-cache miss: the system must wait for the old

tags are hashed together, and a po”'?” of the resul rd to be transferred to the D-cache in order to perform
hashed value used to look up a security tag result. T, 8 security check prior to the write

cache keys are compared with each masked security tagxlhenw is in a register, we handle the situation differ-

operand, PC, Instruction) to assure that the correct ca
((anr:ry has been located l)Jnder normal circumstances pﬁ’l){. In modern superscalar processors, out-of-order ex-
: ' ecution requires register renaming. When issued instruc-

1 specifies that its result will be written into register

e nhameR is re-bound to point t&,, instead of its previ-

Rarely, the cache will miss, resulting in a trap, the comp Us slotS,. I may not produce the value intended for

tation of the correct security tag being added to the cac & several cycles, during which time logically-subsequent

an_?;gi?;gﬁg?gg??ggg' rovides us with a fle _bkianstructions dependent di's result are stalled.
: utl provi us wi XD 1 this setting, Rul@ requires thap;, = S,, wherep;

run time reconfigurable technique for quickly performin% the PC at the timd is issued: otherwisel must fail

relatively complex manipulations on tag data aSSOCiatFodwrite into R and an error must be raised. Due to out-

with normal instruction execution. The HEX unit can be - .
Bprder executionS, may not contain a value wheh

. . 0
?Pp"efj to make data t_ags, units, value cache .reSUItS' c|(;ss_ues; thus, whilé may (and should) speculatively exe-
ject oriented method dispatches, and the security tags dis:_ . . . .
cussed here a practical and efficient tool in modern arc@u-te’ tmust n_ot actually retire (commit) until the value of
tectures. », has been fixed. . _
Based on these observations, we can implement the se-

curity check of Ruldll in two simple steps. At the time
5 Implementation of the model of issue, the entry fod records slotS,, as the back-

ing store forR, and also records, as.S,,’s predecessor
Although the HEX unit of the previous section is the cofs!0l: At the time of retirements, is compared tg;. If
nerstone of our proposed implementation — HEX units dhey are equal retirement succeeds; otherwise, retirement

able rapid computation of EquatidBis?, and3in the nor- fails and an error is raised (thus aborting all instructions
mal case — some additional mechanism is required.  '0gically-subsequent t68) The only slowdown due to
this mechanism ocurs when an instruction’s retirement is

] delayed waiting for a value to be produced by a logically-
5.1 The register stack precedent instruction; since retirement happens at the end

We simulate an arbitrarily deep stack with a hardwapéthe processor pipeline, however, this situation will gen-
eerally be extremely rare.

stack of finite depth; a set of trusted routines spill th
stack to memory when the hardware overflows. This is
very similar to the stack implementation in the Lisp Max

chine [L5], and also to the register windows schemes used

to simulate infinite numbers of registers in the SPARC and hi h d | bt h
Itanium microprocessor architectures. In this memo we have made several contributions. On the

theoretical side, we have described an abstract architec-
ture which dynamically ensures secure information flow
5.2 Computing legal overwrites with respect to a security lattice; we have shown that it
does not leak information through implicit channels; and

Conclusions

The general rule for overwriting words, RUe requires
that the security class of the procesbe identical to the  7Actually, a system with adequate speculation support could simply
class of the wordv being overwritten. Thus, in generalperform the write speculatively, and commit only when the “overwrit-
we will need to examine a word before overwriting it. Lee”en"s(';:feor""r;g‘(’jes from main memory and the permissions-check has

When_w IS In memory, we av0|q_del_ays due to having s Imprecise exceptions are fine as long as POP instructions act as a
to examine a word before overwriting it as follows: whebarrier with respect to exceptions.
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we have defined a general rule allowing authorized prinf2] Nicholas P. Carter, Stephen W. Keckler, and
cipals to perform specific declassifications without addi- ~ William J. Dally.  Hardware support for fast
tional, unintentional information leakage. The architec- capability-based addressing. Proceedings of the
ture provides a set of features which collectively make it  6th International Conference on Architectural Sup-
an improvement on all predecessors known to us: port for Programming Languages and Operating
e Precise (non-conservative) enforcement of a lattice- Systems (ASPLOS Vpages 319-27, October 1994.
based security policy

« Dynamic security tags on a per-word basis [3] E. Cohen gnd D. Jefferson. Prqtection in th(_e hy-
« Safe overwriting of values with values of different se-  dra operating system. [Rroceedings of the Fifth
curity levels Symposium on Operating Systems Princippegyes

o Safe declassification of a program counter when its 141-60, University of Texas at Austin, 1975.

dependency on classified data ends (i.e. the PC is nf%]
stuck at the security “high-water mark”)
e Asmall TCB
On the practical side, we have described mechanisms

enabling the implementation of our dynamically securgs] Dorothy E. Denning and Peter J. Denning. Certifica-
architecture. Of particular importance is the hash execu- tion of programs for secure information flolom-
tion unit, or HEX unit, a generalization of the N-way as-  munications of the ACMRO(7):504-513, 1977.
sociative data cache which can be applied to make data
tags, units, value cache results, object oriented methdfl] R. S. Fabry. Capability-based addressi@pmmu-
dispatches, and the security tags discussed here a practical nications of the ACM17(7):403-12, July 1974.
and efficient tool in modern architectures.

We close by enumerating the elements of the trusteU] J. Fenton. Information protection systems, 1973.

computing base for our suggested implementation. TW%] J. S. Fenton. Memoryless subsystenihe Com-
TCB consists of the following policy-independent com- p'ute.r Journaj 17(2):143-147, 1974 '

D. E. Denning. A lattice model of secure informa-
tion flow. Communications of the Association of
Computing Machineryl976.
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e A processor featuring: [9] David Ferraiolo and Richard Kuhn. Role-based ac-
e HEX units _ cess control. IrProceedings of the National Com-
e general purpose registers puter Security Conferenc&992.
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register stack Experience6:463-471, 1976.
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e software computing— (flows-to relation) and®
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o software computing declassification authorizations for
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