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Abstract 
System design usually begins with a high-level soft-
ware simulation which is later refined to a detailed 
hardware description.  A simulation framework can 
facilitate this process by automating certain hard-
ware abstractions, providing important debugging 
support, and allowing the transition from a high-level 
simulation to a low-level hardware description to 
occur within a single code base. This paper discusses 
our experience with Sim, a C++ framework devel-
oped as an internal tool for cycle-based simulations. 
We describe the features of Sim which were found to 
be most helpful to the design process, and we com-
pare Sim to a publicly available simulation frame-
work.  The Sim framework is efficient; typical low-
level hardware simulations run with a slowdown of 
less than 2x compared to straight C++ implementa-
tions.  

1 Introduction 
Software simulation is a critical step in the hardware 
design process.  Hardware description languages such 
as Verilog and VHDL allow designers to accurately 
model and test the target hardware, and provide a 
design path from simulation to fabrication.  However, 
they are also notoriously slow, and as such are not 
ideal for simulating long runs of a large, complex 
system.  Instead, a high-level language (usually C or 
C++) is used for initial functional simulations.  Inevi-
tably, the transition from this high-level simulation to 
a low-level hardware description language is a source 
of errors and increased design time. 

Recently there have been a number of efforts to 
develop simulation frameworks that enable the accu-
rate description of hardware systems using existing or 
modified general-purpose languages ([Ku90], 
[Liao97], [Gajski00], [Ramanathan00], [Cyn01], 
[SC01]).  This bridges the gap between high-level 
and register transfer level simulations, allowing de-
signers to progressively refine various components 
within a single code base.  The approach has been 
successful: one group reported using such a frame-
work to design a 100 million transistor 3D graphics 
processor from start to finish in two months [Ko-
gel01]. 

There are four important criteria to consider 
when choosing or developing a framework: 

Speed:  The simulator must be fast.  Complex simu-
lations can take hours or days; a faster simulator 
translates directly into reduced design time. 

Modularity:  There should be a clean separation and 
a well-defined interface between the various compo-
nents of the system. 

Ease of Use:  The framework should not be a burden 
to the programmer.  The programming interface 
should be intuitive, and the framework should be 
transparent wherever possible. 

Debugging:  The framework must contain mecha-
nisms to aid the programmer in detecting errors 
within the component hierarchy.  

 These criteria were used to create Sim, a cycle-
based C++ simulation framework developed as an 
internal tool for the purpose of modeling a large par-
allel machine.  Through experience we found that 
Sim met all four criteria with a great deal of success.  
In this paper we describe the Sim framework and we 
report on what we observed to be its most useful fea-
tures. 
 The following section describes the Sim frame-
work and the debugging support that it provides.  In 
Section 3 we measure the performance of simulations 
running under Sim compared to simluations coded in 
straight C++.  In Section 4 we contrast Sim with Sys-
temC [SC01], an open-source C++ simulation 
framework supported by a number of companies.  We 
offer our conclusions in Section 5. 

2 The Sim Framework 

To a large extent, the goals of speed and modularity 
can be met simply by choosing an efficient object-
oriented language, i.e. C++.  What distinguishes a 
framework is its simulation model, programming 
interface and debugging features.  Sim implements a 
pure cycle-based model; time is measured in clock 
ticks, and the entire system exists within a single 
clock domain.  The following sections describe the 
programming concepts and debugging mechanisms 
of the Sim framework. 
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2.1 Overview 

Sim provides the programmer with three abstractions: 
components, nodes and registers.  A component is a 
C++ class which is used to model a hardware compo-
nent.  In debug builds, Sim automatically generates 
hierarchical names for the components so that error 
messages can give the precise location of faults in the 
simulated hardware.  A node is a container for a 
value which supports connections and, in debug 
builds, timestamping.  Nodes are used for all compo-
nent inputs and outputs.  Registers are essentially D 
flip-flops.  They contain two nodes, D and Q; on the 
rising clock edge D is copied to Q. 

Simulation proceeds in three phases.  In the con-
struction phase, all components are constructed and 
all connections between inputs and outputs are estab-
lished.  When an input/output node in one component 
is connected to an input/output node in another com-
ponent, the two nodes become synonyms, and writes 
to one are immediately visible to reads from the 
other.  In the initialization phase, Sim prepares inter-
nal state for the simulation and initial values may be 
assigned to component outputs.  Finally, the simula-
tion phase consists of alternating calls to the top-level 
component’s Update function (to simulate combina-
torial evaluation) and a global Tick function (which 
simulates a rising clock edge). 

Figure 1 gives an example of a simple piece of 
hardware that computes Fibonacci numbers and its 
equivalent description using Sim.  The example 
shows how components can contain sub-components 
(Fibonacci contains a ClockedAdder), how nodes and 
registers are connected during the construction phase 
(using the overloaded left shift operator), and how the 
simulation is run at the top level via alternating calls 
to fib.Update() and Sim::Tick().  The component 
functions Construct() and Init() are called automati-
cally by the framework; Update() is called explicitly 
by the programmer.   

2.2 Timestamps 

In a cycle-based simulator, there are three common 
sources of error: 

Invalid Outputs:  The update routine(s) for a com-
ponent may neglect to set one or more outputs, result-
ing in garbage or stale values being propagated to 
other components. 

Missing Connections:  One or more of a compo-
nent’s inputs may never be set. 

Bad Update Order:  When the simulation involves 
components with combinational paths from inputs to 
one or more outputs, the order in which components 
are updated becomes important.  An incorrect order-

class ClockedAdder : public CComponent
{

DECLARE_COMPONENT(ClockedAdder)
public:

Input<int> a;
Input<int> b;
Output<int> sum;

Register<int> reg;

void Construct (void) {sum << reg;}
void Init (void) {reg.Init(0);}
void Update (void) {reg = a + b;}

};

class Fibonacci : public CComponent
{

DECLARE_COMPONENT(Fibonacci)
public:

Output<int> fib;

Register<int> reg;
ClockedAdder adder;

void Construct (void) {
adder.a << adder.sum;
adder.b << reg;
reg << adder.sum;
fib << reg;

}
void Init (void) {

adder.sum.Init(1);
reg.Init(0);

}
void Update (void) {adder.Update();}

};

void main (void)
{

Fibonacci fib; // Construction
Sim::Init(); // Initialization
while (1) { // Simulation

fib.Update();
Sim::Tick();

}
}

Figure 1:  Schematic and Sim code for Fibonacci 
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Warning: Fibonacci0::Adder0::Input1
Invalid timestamp
c:\projects\aries\sim\sim.h, line 527,

simTime = 1

Figure 2:  Warning message generated if the pro-
grammer forgets the connection “adder.b << reg” 
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ing can have the effect of adding or deleting registers 
at various locations. 

While careful coding can avoid these errors in 
many cases, experience has shown that it is generally 
impossible to write a large piece of software without 
introducing bugs.  In addition, these errors are par-
ticularly difficult to track down as in most cases they 
produce silent failures which go unnoticed until some 
unrelated output value is observed to be incorrect.  
The programmer is often required to spend enormous 
amounts of time finding the exact location and nature 
of the problem. 
 The Sim framework helps the programmer to 
eliminate all three sources of error by timestamping 
inputs and outputs.  In debug builds, each time a node 
is written to it is timestamped, and each time a node 
is read the timestamp is checked to ensure that the 
node contains valid data.  When an invalid timestamp 
is encountered, a warning message is printed which 
includes the automatically generated name of the 
input/output, pinpointing the error within the compo-
nent hierarchy.   

Timestamped nodes have proven to be by far the 
most useful feature of the Sim framework.  They can 
speed up the debugging process by an order of mag-
nitude, allowing the programmer to detect and correct 
errors in minutes that would otherwise require hours 
of tedious work.  Figure 2 shows the exact warning 
message that would be generated if the connection 
“adder.b << reg” were omitted from the function Fi-
bonacci::Construct() in Figure 1. 

2.3 Other Debugging Features 

The Sim framework provides a number of Assert 
macros which generate warnings and errors.  As is 
the case with standard assert macros, they give the 
file and line number at which the error condition was 
detected.  In addition, the error message contains the 
simulation time and a precise location within the 
component hierarchy (as shown in Figure 2).  Again, 
this allows the programmer to quickly determine 
which instance of a given component was the source 
of the error. 
 When one node A is connected to another node 
B, the intention is usually to read from A and write to 
B (note that order is important; connecting A to B is 
not the same as connecting B to A).  Timestamps can 
be used to detect reads from B, but not writes to A.  
To detect this type of error, in debug builds a node 
connected to another node is marked as read-only1; 
assignment to a read-only node generates a warning 
message.  In practice this feature did not turn out to 
                                                           
1 Unless the node has been declared as a bi-directional 
Input/Output. 

be very useful as the simple naming convention of 
prefixing inputs with in_ and outputs with out_ 
tended to prevent these errors.  The feature does, 
however, provide a safety net, and it does not affect 
release builds of the simulator. 

3 Performance Evaluation 

Making use of a simulation framework comes at a 
cost, both in terms of execution time and memory 
requirements.  In this section we will attempt to 
quantify these costs for the Sim framework by im-
plementing four low-level benchmark circuits in both 
Sim and straight C++.  The most important difference 
between the implementations is that inputs and out-
puts in the C++ versions are ordinary class member 
variables; data is propagated between components by 
explicitly copying outputs to inputs each cycle ac-
cording to the connections in the hardware being 
modeled. 

3.1 Benchmark Circuits 

The following are the benchmark circuits used in our 
evaluation: 

LFSR: 4-tap 128-bit linear feedback shift register.  
Simulated for 224 cycles. 

LRU: 1024 node systolic array used to keep track 
of least recently used information for a fully associa-
tive cache.  Simulated for 217 cycles. 

NET: 32x32 2D grid network with wormhole rout-
ing.  Simulated for 213 cycles. 

FPGA: 12 bit pipelined population count imple-
mented on a simple FPGA.  The FPGA contains 64 
logic blocks in an 8x8 array; each block consists of a 
4-LUT and a D flip-flop.  Simulated for 221 cycles. 

In the Sim version of FPGA, the FPGA configuration 
is read from a file during the construction phase and 
used to make the appropriate node connections.  In 
the C++ version, which does not have the advantage 
of being able to directly connect inputs and outputs, 
the configuration is used on every cycle to manually 
route data between logic blocks. 

3.2 Results 

The benchmarks were compiled in both debug and 
release modes and run on a 1.2GHz Pentium III proc-
essor.  Table 1 shows the resulting execution times in 
seconds, and Table 2 lists the memory requirements 
in bytes. 
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 Debug Release 
 C++ Sim Ratio C++ Sim Ratio 
LFSR 17.56 500.40 28.50 5.77 20.56 3.56 
LRU 15.78 106.54 6.75 3.15 5.14 1.63 
NET 11.34 126.54 11.16 2.86 5.38 1.88 
FPGA 12.29 6.42 0.52 3.44 0.36 0.10 

Table 1:  Benchmark execution time in sectonds 

 
 Debug Release 
 C++ Sim Ratio C++ Sim Ratio
LFSR 129 7229 56.04 129 1673 12.97
LRU 28672 233484 8.14 28672 61448 2.14
NET 118784 806936 6.79 118784 249860 2.10
FPGA 9396 74656 7.95 7084 14598 2.06

Table 2:  Benchmark memory requirements in bytes 

 
 The time and space overheads of the Sim frame-
work are largest for the LFSR benchmark; the release 
build runs 3.56 times slower and requires 12.97 times 
more memory than the corresponding C++ version.  
This is because the C++ version is implemented as a 
128-element byte array which is manually shifted, 
whereas the Sim version is implemented using 128 
actual registers which are chained together.  In re-
lease builds, each register contains three pointers: one 
for the input (D) node, one for the output (Q) node, 
and one to maintain a linked list of registers so that 
they can be automatically updated by the framework 
when Sim::Tick() is called.  This, together with the 
129 bytes of storage required for the actual node val-
ues, accounts for the factor of 13 increase in memory 
usage.  Clearly the register abstraction, while more 
faithful to the hardware being modeled, is a source of 
inefficiency when used excessively. 
 The execution time and memory requirements 
for the release builds of the other three Sim bench-
marks compare more favorably to their plain C++ 
counterparts.  In all cases the memory requirements 
are roughly doubled, and the worst slowdown is by a 
factor of 1.88 in NET.  In the FPGA benchmark the 
Sim implementation is actually faster by an order of 
magnitude.  This is due to the fact that the framework 
is able to directly connect nodes at construction time 
as directed by the configuration file. 
 Not surprisingly, the Sim framework overhead in 
the debug builds is quite significant.  The debug ver-
sions run roughly 20-25 times slower than their re-
lease counterparts, and require four times as much 
memory.  This is largely a result of the node time-
stamping that is implemented in debug builds. 

4 Comparison with SystemC 

SystemC is an open source C++ simulation frame-
work originally developed by Synopsys, CoWare and 
Frontier Design.  It has received significant industry 
support; in September 1999 the Open SystemC Initia-
tive was endorsed by over 55 system, semiconductor, 
IP, embedded software and EDA companies 
[Arnout00].   
 The most important difference between Sim and 
SystemC is that, like Verilog and VHDL, SystemC is 
event driven.  This means that instead of being called 
once on every cycle, component update functions are 
activated as a result of changing input signals.  Event 
driven simulators are strictly more powerful than 
cycle-based simulators; they can be used to model 
asynchronous designs or systems with multiple clock 
domains. 
 Event driven simulation does, of course, come at 
a price.  A minor cost is the increased programmer 
effort required to register all update methods and 
specify their sensitivities (i.e. which inputs will trig-
ger execution).  More significant are the large speed 
and memory overheads of an event driven simulation 
kernel.  For example, we implemented the LRU 
benchmark using SystemC, and found that the release 
version was over 36 times slower and required more 
than 8 times as much memory as the Sim release 
build. 
 While event driven simulation is more powerful 

class BlackBox : public CComponent
{

DECLARE_COMPONENT(BlackBox)
public:

Input<int> a;
Input<int> b;
Output<int> out;

void Update (void);
};

class GreyBox : public CComponent
{

DECLARE_COMPONENT(GreyBox)
public:

Input<int> in;
Output<int> out;

BlackBox m_box;
int m_key;

void Update (void) {
m_box.a = in;
m_box.b = m_key;
m_box.Update();
out = in + m_box.out;

}
};

Figure 3:  Inlining a combinational component 
(BlackBox) within the GreyBox Update() function.   
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in terms of the hardware it can simulate, it also pre-
sents a more restrictive programming model.  In par-
ticular, the programmer has no control over when 
component update functions are called.  Hiding this 
functionality ensures that updates always occur when 
needed and in the correct order, but it also prevents 
certain techniques such as inlining a combinational 
component within an update function.  Figure 3 gives 
an example of such inlining in the Sim framework; it 
is simply not possible using SystemC. 
 Another important difference between Sim and 
SystemC is the manner in which inputs and outpus 
are connected.  Sim allows input/output nodes to be 
directly connected; in release builds a node is simply 
a pointer, and connected nodes point to the same 
piece of data.  SystemC, by contrast, requires that 
inputs and outputs be connected by explicitly de-
clared signals.  This approach is familiar to hardware 
designers from hardware description languages such 
as Verilog and VHDL.  However, it is less efficient 
in terms of programmer effort (more work is required 
to define connections between components), memory 
requirements, and execution time. 
 A minor difference between the frameworks is 
that SystemC requires component names to be sup-
plied as part of the constructor, whereas Sim gener-
ates them automatically.  In particular, components in 
SystemC have no default constructor, so one cannot 
create arrays of components in the straightforward 
manner, nor can components be member variables of 
other components.  The programmer must explicitly 
create all components at run time using the new  op-
erator.  Clearly this is not a fundamental difference 
and it would be easy to fix in future versions of Sys-
temC.  It does, however, illustrate that the details of a 
framework’s implementation can noticeably affect 
the amount of programmer effort that is required.  A 
crude measure of programmer effort is lines of code; 
the SystemC implementation of LRU uses 160 lines 
of code, compared to 130 lines for Sim and 110 lines 
for straight C++. 

5 Discussion 

Our experience with Sim has taught us the following 
five lessons regarding simulation frameworks: 
 
1. Use C++ 
 
For a number of reasons, C++ has “The Right Stuff” 
for developing a simulation framework.  First, it is 
fast.  Second, it is object-oriented, and objects are 
without question the appropriate model for hardware 
components.  Furthermore, well defined construction 
orders (e.g. base objects before derived objects) allow 
the framework to automatically deduce the compo-

nent hierarchy.  Third, templated classes allow ab-
stractions such as inputs and outputs to be imple-
mented for arbitrary data types in a clear and intuitive 
manner.  Fourth, macros hide the heavy machinery of 
the framework behind short, easy to use declarations.  
Fifth, the preprocessor permits different versions of 
the same code to be compiled.  In particular, debug-
ging mechanisms such as timestamps can be removed 
in the release build, resulting in an executable whose 
speed rivals that of straight C++.  Sixth, operator 
overloading allows common constructs to be ex-
pressed concisely, and typecast overloading allows 
the framework’s abstractions to be implemented 
transparently.  Finally, C++ is broadly supported and 
can be compiled on virtually any platform.  To our 
knowledge, no other language has all of these fea-
tures. 
 
2. Use timestamps 
 
Silent failures are the arch-nemesis of computer pro-
grammers.  Using timestamped nodes in conjunction 
with automatically generated hierarchical component 
names, the Sim framework was able to essentially 
eliminate all three of the common errors described in 
Section  2.2 by replacing silent failures with meaning-
ful warning messages. 
 
3. Allow inputs/outputs to be directly connected 
 
Using explicitly declared signals to connect compo-
nent inputs and outputs is familiar to users of existing 
hardware description languages.  However, directly 
connecting inputs and outputs does not change the 
underlying hardware model or make the simulator 
framework any less powerful.  Direct connections 
reduce the amount of programmer effort required to 
produce a hardware model, and they lead to an ex-
tremely efficient implementation of the input/output 
abstraction. 
 
4. Don’t make excessive use of abstractions 
 
The most useful abstractions provided by a simula-
tion framework are components and the interface 
between then.  Within a component, however, further 
use of abstractions may not add to the modularity of 
the design or make the transition to silicon any easier.  
Thus, when simulation speed is a concern, program-
mers are well-advised to use straight C++ wherever 
possible.  A good example of this principle is the 
LFSR benchmark.  The Sim implementation could 
just as easily have implemented the shift register in-
ternals using a 128-element byte array, as in the C++ 
implementation.  Using the register abstraction 
slowed down execution significantly, especially in 
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the debug build.  In general, we found the register 
abstraction to be most useful for implementing 
clocked outputs, as in the Adder of Figure 1. 
 
5. Pay attention to the details 
 
While the speed and modeling power of a framework 
is primarily determined by its high-level design, it is 
the implementation details that programmers need to 
work with.  How easy is it for the programmer to 
declare and connect components?  Can components 
be inherited?  Can they be templated?  The answers 
to questions such as these will determine which pro-
grammers will want to use the framework, and how 
much effort they must expend in order to do so. 
 

Sim is a cycle-based simulator, but four of the 
lessons apply equally well to event-driven simulators.  
The exception is timestamps.  In a cycle-based simu-
lation, timestamps guarantee consistency between 
producers and consumers that are activated on every 
clock cycle.  In an event-driven simulation, on the 
other hand, if a producer forgets to set a certain out-
put then the consumer simply may not be activated.  
This is further complicated by the fact that update 
methods are only invoked in response to changing 
inputs.  Thus, it may be difficult to distinguish be-
tween an output that was not set and one whose value 
did not change.  Since timestamps were found to be 
enormously beneficial from a debugging standpoint, 
a promising direction for future research would be to 
investigate similar mechanisms that could be imple-
mented in an event-driven simulation framework. 
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