
�-17 March 9, 2002

An Efficient C++ Framework for Cycle-Based Simulation
J.P. Grossman

Project Aries Technical Memo ARIES-TM-17
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA, USA

Sponsored by DARPA/AFOSR Contract Number F306029810172

Abstract
System design usually begins with a high-level soft-
ware simulation which is later refined to a detailed
hardware description. A simulation framework can
facilitate this process by automating certain hard-
ware abstractions, providing important debugging
support, and allowing the transition from a high-level
simulation to a low-level hardware description to
occur within a single code base. This paper discusses
our experience with Sim, a C++ framework devel-
oped as an internal tool for cycle-based simulations.
We describe the features of Sim which were found to
be most helpful to the design process, and we com-
pare Sim to a publicly available simulation frame-
work. The Sim framework is efficient; typical low-
level hardware simulations run with a slowdown of
less than 2x compared to straight C++ implementa-
tions.

1 Introduction
Software simulation is a critical step in the hardware
design process. Hardware description languages such
as Verilog and VHDL allow designers to accurately
model and test the target hardware, and provide a
design path from simulation to fabrication. However,
they are also notoriously slow, and as such are not
ideal for simulating long runs of a large, complex
system. Instead, a high-level language (usually C or
C++) is used for initial functional simulations. Inevi-
tably, the transition from this high-level simulation to
a low-level hardware description language is a source
of errors and increased design time.

Recently there have been a number of efforts to
develop simulation frameworks that enable the accu-
rate description of hardware systems using existing or
modified general-purpose languages ([Ku90],
[Liao97], [Gajski00], [Ramanathan00], [Cyn01],
[SC01]). This bridges the gap between high-level
and register transfer level simulations, allowing de-
signers to progressively refine various components
within a single code base. The approach has been
successful: one group reported using such a frame-
work to design a 100 million transistor 3D graphics
processor from start to finish in two months [Ko-
gel01].

There are four important criteria to consider
when choosing or developing a framework:

Speed: The simulator must be fast. Complex simu-
lations can take hours or days; a faster simulator
translates directly into reduced design time.

Modularity: There should be a clean separation and
a well-defined interface between the various compo-
nents of the system.

Ease of Use: The framework should not be a burden
to the programmer. The programming interface
should be intuitive, and the framework should be
transparent wherever possible.

Debugging: The framework must contain mecha-
nisms to aid the programmer in detecting errors
within the component hierarchy.

 These criteria were used to create Sim, a cycle-
based C++ simulation framework developed as an
internal tool for the purpose of modeling a large par-
allel machine. Through experience we found that
Sim met all four criteria with a great deal of success.
In this paper we describe the Sim framework and we
report on what we observed to be its most useful fea-
tures.
 The following section describes the Sim frame-
work and the debugging support that it provides. In
Section 3 we measure the performance of simulations
running under Sim compared to simluations coded in
straight C++. In Section 4 we contrast Sim with Sys-
temC [SC01], an open-source C++ simulation
framework supported by a number of companies. We
offer our conclusions in Section 5.

2 The Sim Framework

To a large extent, the goals of speed and modularity
can be met simply by choosing an efficient object-
oriented language, i.e. C++. What distinguishes a
framework is its simulation model, programming
interface and debugging features. Sim implements a
pure cycle-based model; time is measured in clock
ticks, and the entire system exists within a single
clock domain. The following sections describe the
programming concepts and debugging mechanisms
of the Sim framework.

�-17 2 Sim

2.1 Overview

Sim provides the programmer with three abstractions:
components, nodes and registers. A component is a
C++ class which is used to model a hardware compo-
nent. In debug builds, Sim automatically generates
hierarchical names for the components so that error
messages can give the precise location of faults in the
simulated hardware. A node is a container for a
value which supports connections and, in debug
builds, timestamping. Nodes are used for all compo-
nent inputs and outputs. Registers are essentially D
flip-flops. They contain two nodes, D and Q; on the
rising clock edge D is copied to Q.

Simulation proceeds in three phases. In the con-
struction phase, all components are constructed and
all connections between inputs and outputs are estab-
lished. When an input/output node in one component
is connected to an input/output node in another com-
ponent, the two nodes become synonyms, and writes
to one are immediately visible to reads from the
other. In the initialization phase, Sim prepares inter-
nal state for the simulation and initial values may be
assigned to component outputs. Finally, the simula-
tion phase consists of alternating calls to the top-level
component’s Update function (to simulate combina-
torial evaluation) and a global Tick function (which
simulates a rising clock edge).

Figure 1 gives an example of a simple piece of
hardware that computes Fibonacci numbers and its
equivalent description using Sim. The example
shows how components can contain sub-components
(Fibonacci contains a ClockedAdder), how nodes and
registers are connected during the construction phase
(using the overloaded left shift operator), and how the
simulation is run at the top level via alternating calls
to fib.Update() and Sim::Tick(). The component
functions Construct() and Init() are called automati-
cally by the framework; Update() is called explicitly
by the programmer.

2.2 Timestamps

In a cycle-based simulator, there are three common
sources of error:

Invalid Outputs: The update routine(s) for a com-
ponent may neglect to set one or more outputs, result-
ing in garbage or stale values being propagated to
other components.

Missing Connections: One or more of a compo-
nent’s inputs may never be set.

Bad Update Order: When the simulation involves
components with combinational paths from inputs to
one or more outputs, the order in which components
are updated becomes important. An incorrect order-

class ClockedAdder : public CComponent
{

DECLARE_COMPONENT(ClockedAdder)
public:

Input<int> a;
Input<int> b;
Output<int> sum;

Register<int> reg;

void Construct (void) {sum << reg;}
void Init (void) {reg.Init(0);}
void Update (void) {reg = a + b;}

};

class Fibonacci : public CComponent
{

DECLARE_COMPONENT(Fibonacci)
public:

Output<int> fib;

Register<int> reg;
ClockedAdder adder;

void Construct (void) {
adder.a << adder.sum;
adder.b << reg;
reg << adder.sum;
fib << reg;

}
void Init (void) {

adder.sum.Init(1);
reg.Init(0);

}
void Update (void) {adder.Update();}

};

void main (void)
{

Fibonacci fib; // Construction
Sim::Init(); // Initialization
while (1) { // Simulation

fib.Update();
Sim::Tick();

}
}

Figure 1: Schematic and Sim code for Fibonacci

a b

sum

fib

+

Warning: Fibonacci0::Adder0::Input1
Invalid timestamp
c:\projects\aries\sim\sim.h, line 527,

simTime = 1

Figure 2: Warning message generated if the pro-
grammer forgets the connection “adder.b << reg”

�-17 3 Sim

ing can have the effect of adding or deleting registers
at various locations.

While careful coding can avoid these errors in
many cases, experience has shown that it is generally
impossible to write a large piece of software without
introducing bugs. In addition, these errors are par-
ticularly difficult to track down as in most cases they
produce silent failures which go unnoticed until some
unrelated output value is observed to be incorrect.
The programmer is often required to spend enormous
amounts of time finding the exact location and nature
of the problem.
 The Sim framework helps the programmer to
eliminate all three sources of error by timestamping
inputs and outputs. In debug builds, each time a node
is written to it is timestamped, and each time a node
is read the timestamp is checked to ensure that the
node contains valid data. When an invalid timestamp
is encountered, a warning message is printed which
includes the automatically generated name of the
input/output, pinpointing the error within the compo-
nent hierarchy.

Timestamped nodes have proven to be by far the
most useful feature of the Sim framework. They can
speed up the debugging process by an order of mag-
nitude, allowing the programmer to detect and correct
errors in minutes that would otherwise require hours
of tedious work. Figure 2 shows the exact warning
message that would be generated if the connection
“adder.b << reg” were omitted from the function Fi-
bonacci::Construct() in Figure 1.

2.3 Other Debugging Features

The Sim framework provides a number of Assert
macros which generate warnings and errors. As is
the case with standard assert macros, they give the
file and line number at which the error condition was
detected. In addition, the error message contains the
simulation time and a precise location within the
component hierarchy (as shown in Figure 2). Again,
this allows the programmer to quickly determine
which instance of a given component was the source
of the error.
 When one node A is connected to another node
B, the intention is usually to read from A and write to
B (note that order is important; connecting A to B is
not the same as connecting B to A). Timestamps can
be used to detect reads from B, but not writes to A.
To detect this type of error, in debug builds a node
connected to another node is marked as read-only1;
assignment to a read-only node generates a warning
message. In practice this feature did not turn out to

1 Unless the node has been declared as a bi-directional
Input/Output.

be very useful as the simple naming convention of
prefixing inputs with in_ and outputs with out_
tended to prevent these errors. The feature does,
however, provide a safety net, and it does not affect
release builds of the simulator.

3 Performance Evaluation

Making use of a simulation framework comes at a
cost, both in terms of execution time and memory
requirements. In this section we will attempt to
quantify these costs for the Sim framework by im-
plementing four low-level benchmark circuits in both
Sim and straight C++. The most important difference
between the implementations is that inputs and out-
puts in the C++ versions are ordinary class member
variables; data is propagated between components by
explicitly copying outputs to inputs each cycle ac-
cording to the connections in the hardware being
modeled.

3.1 Benchmark Circuits

The following are the benchmark circuits used in our
evaluation:

LFSR: 4-tap 128-bit linear feedback shift register.
Simulated for 224 cycles.

LRU: 1024 node systolic array used to keep track
of least recently used information for a fully associa-
tive cache. Simulated for 217 cycles.

NET: 32x32 2D grid network with wormhole rout-
ing. Simulated for 213 cycles.

FPGA: 12 bit pipelined population count imple-
mented on a simple FPGA. The FPGA contains 64
logic blocks in an 8x8 array; each block consists of a
4-LUT and a D flip-flop. Simulated for 221 cycles.

In the Sim version of FPGA, the FPGA configuration
is read from a file during the construction phase and
used to make the appropriate node connections. In
the C++ version, which does not have the advantage
of being able to directly connect inputs and outputs,
the configuration is used on every cycle to manually
route data between logic blocks.

3.2 Results

The benchmarks were compiled in both debug and
release modes and run on a 1.2GHz Pentium III proc-
essor. Table 1 shows the resulting execution times in
seconds, and Table 2 lists the memory requirements
in bytes.

�-17 4 Sim

 Debug Release
 C++ Sim Ratio C++ Sim Ratio
LFSR 17.56 500.40 28.50 5.77 20.56 3.56
LRU 15.78 106.54 6.75 3.15 5.14 1.63
NET 11.34 126.54 11.16 2.86 5.38 1.88
FPGA 12.29 6.42 0.52 3.44 0.36 0.10

Table 1: Benchmark execution time in sectonds

 Debug Release
 C++ Sim Ratio C++ Sim Ratio
LFSR 129 7229 56.04 129 1673 12.97
LRU 28672 233484 8.14 28672 61448 2.14
NET 118784 806936 6.79 118784 249860 2.10
FPGA 9396 74656 7.95 7084 14598 2.06

Table 2: Benchmark memory requirements in bytes

 The time and space overheads of the Sim frame-
work are largest for the LFSR benchmark; the release
build runs 3.56 times slower and requires 12.97 times
more memory than the corresponding C++ version.
This is because the C++ version is implemented as a
128-element byte array which is manually shifted,
whereas the Sim version is implemented using 128
actual registers which are chained together. In re-
lease builds, each register contains three pointers: one
for the input (D) node, one for the output (Q) node,
and one to maintain a linked list of registers so that
they can be automatically updated by the framework
when Sim::Tick() is called. This, together with the
129 bytes of storage required for the actual node val-
ues, accounts for the factor of 13 increase in memory
usage. Clearly the register abstraction, while more
faithful to the hardware being modeled, is a source of
inefficiency when used excessively.
 The execution time and memory requirements
for the release builds of the other three Sim bench-
marks compare more favorably to their plain C++
counterparts. In all cases the memory requirements
are roughly doubled, and the worst slowdown is by a
factor of 1.88 in NET. In the FPGA benchmark the
Sim implementation is actually faster by an order of
magnitude. This is due to the fact that the framework
is able to directly connect nodes at construction time
as directed by the configuration file.
 Not surprisingly, the Sim framework overhead in
the debug builds is quite significant. The debug ver-
sions run roughly 20-25 times slower than their re-
lease counterparts, and require four times as much
memory. This is largely a result of the node time-
stamping that is implemented in debug builds.

4 Comparison with SystemC

SystemC is an open source C++ simulation frame-
work originally developed by Synopsys, CoWare and
Frontier Design. It has received significant industry
support; in September 1999 the Open SystemC Initia-
tive was endorsed by over 55 system, semiconductor,
IP, embedded software and EDA companies
[Arnout00].
 The most important difference between Sim and
SystemC is that, like Verilog and VHDL, SystemC is
event driven. This means that instead of being called
once on every cycle, component update functions are
activated as a result of changing input signals. Event
driven simulators are strictly more powerful than
cycle-based simulators; they can be used to model
asynchronous designs or systems with multiple clock
domains.
 Event driven simulation does, of course, come at
a price. A minor cost is the increased programmer
effort required to register all update methods and
specify their sensitivities (i.e. which inputs will trig-
ger execution). More significant are the large speed
and memory overheads of an event driven simulation
kernel. For example, we implemented the LRU
benchmark using SystemC, and found that the release
version was over 36 times slower and required more
than 8 times as much memory as the Sim release
build.
 While event driven simulation is more powerful

class BlackBox : public CComponent
{

DECLARE_COMPONENT(BlackBox)
public:

Input<int> a;
Input<int> b;
Output<int> out;

void Update (void);
};

class GreyBox : public CComponent
{

DECLARE_COMPONENT(GreyBox)
public:

Input<int> in;
Output<int> out;

BlackBox m_box;
int m_key;

void Update (void) {
m_box.a = in;
m_box.b = m_key;
m_box.Update();
out = in + m_box.out;

}
};

Figure 3: Inlining a combinational component
(BlackBox) within the GreyBox Update() function.

�-17 5 Sim

in terms of the hardware it can simulate, it also pre-
sents a more restrictive programming model. In par-
ticular, the programmer has no control over when
component update functions are called. Hiding this
functionality ensures that updates always occur when
needed and in the correct order, but it also prevents
certain techniques such as inlining a combinational
component within an update function. Figure 3 gives
an example of such inlining in the Sim framework; it
is simply not possible using SystemC.
 Another important difference between Sim and
SystemC is the manner in which inputs and outpus
are connected. Sim allows input/output nodes to be
directly connected; in release builds a node is simply
a pointer, and connected nodes point to the same
piece of data. SystemC, by contrast, requires that
inputs and outputs be connected by explicitly de-
clared signals. This approach is familiar to hardware
designers from hardware description languages such
as Verilog and VHDL. However, it is less efficient
in terms of programmer effort (more work is required
to define connections between components), memory
requirements, and execution time.
 A minor difference between the frameworks is
that SystemC requires component names to be sup-
plied as part of the constructor, whereas Sim gener-
ates them automatically. In particular, components in
SystemC have no default constructor, so one cannot
create arrays of components in the straightforward
manner, nor can components be member variables of
other components. The programmer must explicitly
create all components at run time using the new op-
erator. Clearly this is not a fundamental difference
and it would be easy to fix in future versions of Sys-
temC. It does, however, illustrate that the details of a
framework’s implementation can noticeably affect
the amount of programmer effort that is required. A
crude measure of programmer effort is lines of code;
the SystemC implementation of LRU uses 160 lines
of code, compared to 130 lines for Sim and 110 lines
for straight C++.

5 Discussion

Our experience with Sim has taught us the following
five lessons regarding simulation frameworks:

1. Use C++

For a number of reasons, C++ has “The Right Stuff”
for developing a simulation framework. First, it is
fast. Second, it is object-oriented, and objects are
without question the appropriate model for hardware
components. Furthermore, well defined construction
orders (e.g. base objects before derived objects) allow
the framework to automatically deduce the compo-

nent hierarchy. Third, templated classes allow ab-
stractions such as inputs and outputs to be imple-
mented for arbitrary data types in a clear and intuitive
manner. Fourth, macros hide the heavy machinery of
the framework behind short, easy to use declarations.
Fifth, the preprocessor permits different versions of
the same code to be compiled. In particular, debug-
ging mechanisms such as timestamps can be removed
in the release build, resulting in an executable whose
speed rivals that of straight C++. Sixth, operator
overloading allows common constructs to be ex-
pressed concisely, and typecast overloading allows
the framework’s abstractions to be implemented
transparently. Finally, C++ is broadly supported and
can be compiled on virtually any platform. To our
knowledge, no other language has all of these fea-
tures.

2. Use timestamps

Silent failures are the arch-nemesis of computer pro-
grammers. Using timestamped nodes in conjunction
with automatically generated hierarchical component
names, the Sim framework was able to essentially
eliminate all three of the common errors described in
Section 2.2 by replacing silent failures with meaning-
ful warning messages.

3. Allow inputs/outputs to be directly connected

Using explicitly declared signals to connect compo-
nent inputs and outputs is familiar to users of existing
hardware description languages. However, directly
connecting inputs and outputs does not change the
underlying hardware model or make the simulator
framework any less powerful. Direct connections
reduce the amount of programmer effort required to
produce a hardware model, and they lead to an ex-
tremely efficient implementation of the input/output
abstraction.

4. Don’t make excessive use of abstractions

The most useful abstractions provided by a simula-
tion framework are components and the interface
between then. Within a component, however, further
use of abstractions may not add to the modularity of
the design or make the transition to silicon any easier.
Thus, when simulation speed is a concern, program-
mers are well-advised to use straight C++ wherever
possible. A good example of this principle is the
LFSR benchmark. The Sim implementation could
just as easily have implemented the shift register in-
ternals using a 128-element byte array, as in the C++
implementation. Using the register abstraction
slowed down execution significantly, especially in

�-17 6 Sim

the debug build. In general, we found the register
abstraction to be most useful for implementing
clocked outputs, as in the Adder of Figure 1.

5. Pay attention to the details

While the speed and modeling power of a framework
is primarily determined by its high-level design, it is
the implementation details that programmers need to
work with. How easy is it for the programmer to
declare and connect components? Can components
be inherited? Can they be templated? The answers
to questions such as these will determine which pro-
grammers will want to use the framework, and how
much effort they must expend in order to do so.

Sim is a cycle-based simulator, but four of the
lessons apply equally well to event-driven simulators.
The exception is timestamps. In a cycle-based simu-
lation, timestamps guarantee consistency between
producers and consumers that are activated on every
clock cycle. In an event-driven simulation, on the
other hand, if a producer forgets to set a certain out-
put then the consumer simply may not be activated.
This is further complicated by the fact that update
methods are only invoked in response to changing
inputs. Thus, it may be difficult to distinguish be-
tween an output that was not set and one whose value
did not change. Since timestamps were found to be
enormously beneficial from a debugging standpoint,
a promising direction for future research would be to
investigate similar mechanisms that could be imple-
mented in an event-driven simulation framework.

References
[Arnout00] Dr. Guido Arnout, “SystemC Standard”,

Proc. 2000 Asia South Pacific Design
Automation Conference, IEEE, 2000, pp.
573-577.

[Cyn01] CynApps, “Cynlib Users Manual”, 2001

[Gajski00] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer,
S. Zhao, SpecC: Specification Language and
Methodology, Kluwer Academic Publishers,
Norwell, USA, 2000.

[Kogel01] Tim Kogel, Andreas Wieferink, Heinrich
Meyr, Andrea Kroll, “SystemC Based Ar-
chitecture Exploration of a 3D Graphic
Processor”, Proc. 2001 Workshop on Signal
Processing Systems, IEEE, 2001, pp. 169-
176.

[Ku90] D. Ku, D. Micheli, “HardwareC – A Lan-
guage for Hardware Design (version 2.0)”,
CSL Technical Report CSL-TR-90-419,
Stanford University, April 1990.

[Liao97] Stan Liao, Steve Tjiang, Rajesh Gupta, “An
Efficient Implementation of Reactivity for
Modeling Hardware in the Scenic Design
Environment”, Proc. DAC ’97, pp. 70-75.

[Ramanathan00] Dinesh Ramanathan, Ray Roth, Rajesh
Gupta, “Interfacing Hardware and Software
Using C++ Class Libraries”, Proc. ICCD
2000, pp. 445-450.

[SC01] “SystemC Version 2.0 User’s Guide”, avail-
able at http://www.systemc.org, 2001

