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1 Introduction 
 

 

 

 

 

 

 

The field of  computer architecture is in a constant state of  flux. The furious pace of  

progress in process technology has enabled previously unthinkable architectures to be 

implemented. At the same time, it has forced architects to reevaluate system bottlenecks. 

With every generation of  architecture, complexity is incrementally added to smooth out the 

kinks— a few more register file ports, a few more entries in the re-order buffers, some more 

branch prediction bits, slightly larger caches. The bad news is that the burden of  verifying 

and implementing these incremental improvements grows disproportionately with respect to 

the ultimate performance gain. Design teams are beginning to fold under the weight of  their 

own designs, and thus the wheel of  reincarnation turns again— computer architects are 

rethinking their approach and returning to simpler designs. 

 

Instead of  trying to beat the current turn of  the wheel of  reincarnation, this work will 

attempt to address the issues of  designing for a scenario one or two turns beyond the 

current turn. This chapter will describe this scenario and some of  its basic properties. 

Chapter 2 will briefly review some ideas, new and old, in the context of  this scenario. 

Chapter 3 presents the core ideas of  this thesis, and Chapter 4 concludes with a discussion 

of  the challenges that must be met and the goals that must be accomplished by the terminus 

of  this effort. 

1.1 Technology Scenario 

This work rests upon the following claims: 



April 25, 2001  6  

• process scaling is leading to clock frequencies fc with wavelengths ?c significantly 

shorter than the characteristic dimension Dc of  the system 

• the ultimate packing density of  performance-critical circuitry will be limited not by 

lithography and minimum wire size, but by dimensional requirements set by a 

combination of  performance requirements, innate electrical parasitics and thermal 

dissipation requirements. 

 

The first claim is almost true today for off-chip interconnect, and has been true for a while 

for on-chip interconnect. With high-end processors clocking at 1 GHz, the free-space 

wavelength is about 300 mm; thus, it is relatavistically impossible to have single-cycle access 

to any piece of  data more than six inches away from the processor. Once the overhead of  

intermediate circuitry, setup and hold times, and lossy transmission lines are considered, the 

actual maximum radius of  single-cycle access becomes significantly smaller. Thus, as clock 

speeds continue to increase, it becomes clear that the traversal of  any conventionally sized 

computer system will require more clock cycles.  
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Figure 1-1: Plot of predicted L1 cache delay versus line width versus cache size. [MCF97] 

The significance of  the second claim is that the reduction in minimum feature size due to 

scaling will not be ably to buy us the density we require to get around the limitations 

imposed by the first claim. In other words, as clock speeds escalate, the maximum amount 
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of memory one can pack within a clock-boundary radius of  the processor core is either 

constant or decreasing as technology progresses, especially in the on-chip realm. Even though 

transistors are becoming smaller and faster, the optimally buffered wire delay is not quite 

keeping up. The first-order delay model for optimally buffered wires predicts a linear scaling 

of wire delay with device scaling. [BAK90] However, recent designs are demonstrating that 

wire delays are exhibiting worse scaling properties than predicted by the simple models. In 

particular, the delays of  on-chip cache memories have not kept up with the clock rates of  

microprocessors. One can see from Figure 1-1, Cache Delay vs. Feature Size, that the 

situation is not getting any better. Table 1-1 summarizes the L1 cache performance of  some 

commercial processors, and gives credence to the predictions of  [MCF97]. L1 cache latency 

is a critical number for processor performance; increased load latencies impacts IPC and 

requires a more complicated microarchitecture to keep the execution units busy. Despite this, 

one can see a trend toward multi-cycle L1 caches, driven by the conflicting requirement for a 

larger L1 cache.  

 

Thus, in the technology scenario for this thesis, increasing processor clock rate may even 

degrade overall performance. The addition of  latency-hiding microarchitectural features to 

compensate for the higher clock rate grows the processor core area, which again exacerbates 

the latency issue. For example, the pieces of  the hardware required to support out of  order 

execution grows roughly as the square of  the reorder depth. Also, the effectiveness of  

caches diminishes rapidly with increasing cache size.  

 

Processor Clock Rate L1 Data Cache Size L1 Cache Latency 

MIPS R3000 33 MHz 64 KB 1 

Intel Itanium ~800 MHz 16 KB 2 

Alpha 21264 ~800 MHz 64 KB 3 

AMD Athlon 1000 MHz 64 KB 3 

Intel Pentium III 1000 MHz 16 KB 3 

Intel Pentium 4 1400 MHz 8 KB 2 

 

Table 1-1: Sampling of L1 cache latencies versus clock speed for various commercial processors. 

[CHA94] [INTW1] [AMDW1] [CPQW1] 
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To confound matters, off-chip wiring delays between distributed nodes will grow between 

? ( N ) and ? ( 3 N ), even if  the topology provides for log(N) worst-case hops. This is 

because even though transistors are becoming smaller, one cannot pack more nodes into a 

fixed volume due to the dimension requirements on wires set by parasitics and thermal 

dissipation requirements. In the limit that each node is already as small as can be, adding 

more nodes means a growth in real space consumed by the machine.  

 

Given that these technology claims are true, continued performance enhancement in the 

future will require decentralized processor architectures with distance-aware work-sharing 

mechanisms.   

1.2 The Challenge of  Spatially-Aware Decentralized Architectures 

1.2.1 Latency and Synchronization 

A decentralized computer architecture is one which distributes its processing and memory 

elements throughout the physical body of  the machine. This is in contrast with classic von 

Neumann architectures that feature a “Central Processor Unit”. Most massively parallel 

architectures can be classified as a kind of  decentralized architecture, although the 

granularity of  decentralization varies from PC-based cluster machines to cellular automata 

machines.  

 

The primary challenge of  designing a decentralized architecture lies in dealing with 

computational situations which require centralized control, or more generally, efficient global 

connectivity. Events that require global connectivity fall into two related categories: 

synchronizing events, and memory events. [IAN88] Synchronizing events involve two or 

more control flows agreeing upon a space and time. Memory events typically involve a single 

control flow accessing a piece of  remote memory. Some parallel architectures implement 

synchronizing events using special memory events; other architectures provide explicit 

synchronization resources.  
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Minimizing the overhead of  synchronization and memory reference latency is the challenge 

of  parallel architecture. Interconnect implementations are rapidly approaching the speed of  

light limited domain of  operation; architectures have been proposed that could hit this 

barrier [DEH93]. Thus, the interesting questions are how to efficiently utilize this network, 

and how to beat this speed of  light limitation. Many architectures address the issue of  

efficient synchronization and latency hiding. The architecture proposed here contains a blend 

of  old and new ideas tailored toward efficient synchronization and latency reduction through a 

spatially-aware dynamic object migration mechanism that minimizes the physical distance 

between points of  use.     

1.2.2 Reliability 

A problem sometimes overlooked or treated as an afterthought by computer architects is the 

reliability of  large, complex systems. The simple fact is that they aren’t reliable; components 

will fail and bit error rates are non-zero. Unfortunately, most architectures are very 

symmetric, have a rigidly defined topology, and make assumptions about the uniformity of  

components. The ability to migrate objects around the system easily, as required by the 

latency management criteria, provides a measure of  reliability and fault tolerance.  Failing 

nodes can have objects migrated out of  them, and asymmetries in the machine organization 

can be accounted for by adjusting the object migration and distribution algorithm. A proper 

implementation would also allow the machine can also be dynamically upgraded or serviced 

with newer, faster nodes without interruption of  service. 

1.2.3 Good Single-Threaded Code Performance 

Some parallel architectures previously proposed have had problems with good single-

threaded code performance. Despite the advantages of  parallelism and the arguments set 

forth in this chapter about the limitations of  single-node performance due to the limited 

packing density of memory around a processor, single-node, single-threaded code 

performance is still one of  the most important factors in determining system performance. 

[SCO96] This is caused, in part, by the fact that parallel speedup is limited by the time 

required to execute any sequential portions of  the program (Amdahl’s Law).  
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The architecture proposed by this thesis attempts to keep single-threaded code performance 

high despite the provision of  primitives for parallel synchronization and latency 

management. This goal is met in part by design philosophy. The architecture is based on a 

simple, five-stage pipelined RISC core; all parallel primitives added to this core must incur 

minimal overhead when running single-threaded code.  

1.2.4 Implementation 

The architecture proposed in this work is grounded in the physical world— latency reduction 

through spatial awareness. As a result, one important aspect of  the architecture is its 

implementation, and the spatial and physical constants that are a result of  real-world 

concerns. The implementer of  this architecture is presumed to be working in situation 

similar to a fabless semiconductor design house. The standard set of  tools, processes and 

macros are available, and a very limited number of  full-custom blocks are available as well; 

the majority of  the design will be coded in an HDL such as verilog or VHDL. These 

implementation assumptions have a non-negligible impact upon the performance targets and 

physical constants used in the analyses of  this thesis.  

 

In order to stay true to this implementation model, throughout this work trial 

implementations will be run of  key architectural components to check assumptions made 

about their performance and size. Assumptions that fail the reality check will require a re-

investigation of  the architectural techniques proposed in the thesis. [DALJ98], a 

retrospective on the J-Machine, provides some commentary upon the importance of  

implementation in computer architecture research in the section on “Lessons Learned”. 
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2 Background 
 

 

 

 

 

 

 

The genesis of  the architecture proposed in this thesis lies in the Dataflow architectures, 

Decoupled-Access/Execute (DAE) architectures, and Processor-In-Memory (PIM) and Chip 

Multi-Processor (CMP) architectures. As the basic principles of  this machine eschew 

complexity, superscalar, out of  order, and other techniques such as VLIW that require 

significant circuit-level complexity are mentioned only in passing. In addition, prior works in 

load balancing and object distribution for large parallel machines are discussed here. 

2.1 Dataflow 

The architecture proposed in this paper is perhaps most closely related to the dataflow 

family of  architectures, in particular, *T. Hence, a careful examination of  the dataflow 

machines is important at this time. 

 

Dataflow machines are a direct realization of  dataflow graphs into computational hardware. 

Arcs on a dataflow graph are decomposed into tokens. Each token is a continuation; it 

contains a set of  instructions and their evaluation context. The length of  the instruction run 

and evaluation context method encapsulated within a token can characterize the spectrum of  

dataflow architectures. At one end lies the MIT Tagged-Token Dataflow Architecture 

(TTDA), where each token represents roughly one instruction and its immediate 

dependencies and results, and token storage is managed implicitly. This evolved into the 

Monsoon architecture, which has explicit evaluation context management and single-

instruction tokens. Tokens contained a value; pointers to an instruction, and pointers to 

evaluation contexts that are compiler-generated frame allocations in a linearly addressed 
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structure. Monsoon evolved into P-RISC and *T, which are machines with tokens that 

effectively refer to instruction traces and relatively large “stack-frame” style explicitly 

allocated frames. The tokens in P-RISC and *T carried only an instruction pointer and a 

frame pointer, as opposed to any actual data. [ARV93], [NIK89] One could take this one 

step further and claim that an SMT architecture is a dataflow machine with as many tokens 

as there are thread contexts, and that a conventional Von Neumann architecture is a single-

token dataflow machine. [LEE94] Provides an excellent overview of  dataflow machines and 

an analysis of  their shortcomings. 

 

Dataflow machines, while elegant, have a few fatal flaws. Their evolution from the TTDA 

into near-RISC architectures provides a clue into what these flaws are. The rather abstract 

TTDA decomposed dataflow graphs to a near-atomic instruction level. Because tokens can 

be formed and dispatched before dependencies are resolved, thousands of  tokens are 

created in the course of  even a simple program execution. [ARV93] states that “these tokens 

represent data local to inactive functions which are awaiting the return of  values undergoing 

computation in other functions invoked from within their bodies”. The execution of  any 

token required an associative search across the space of  all tokens for the tokens that held 

the results that satisfied the current token’s data dependencies. This is associative structure is 

not implementable even after twenty years of  process scaling.  

 

Another flaw of  the early Dataflow machines is that every token represented a high-

overhead synchronization event. [IAN88] points out that von Neumann architectures also 

perform a synchronization event between each instruction, but its method of  

synchronization is very light-weight: IP = IP + 1 or IP = branch target. This allows von 

Neumann architectures to grind through straight-line code very quickly; fortunately for the 

von Neumann crowd, most code written to date can be straightened out sufficiently with 

either branch prediction or trace scheduling to get good performance out of  such a system. 

P-RISC and *T leveraged this strength of  von Neumann architectures somewhat by allowing 

a token to represent what are essentially an execution trace and a stack frame. *T actually has 

a very similar single-node architecture to the architecture proposed by this thesis: it divides a 

single node into a synchronization coprocessor and a data processor. The synchronization 

processor is responsible for scheduling threads and dealing with synchronization issues, 
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while the data processor’s exclusive job is to execute straight-line code efficiently. However, 

the similarity ends there. The *T architecture focuses primarily on latency hiding through 

rapid and efficient thread scheduling, starting, and context switching. While this is an 

important part of  the architecture proposed here, it is also very important to reduce latency 

by providing mechanisms for the efficient profiling of  communications patterns and the 

intelligent migration of  data between processor nodes. The machine organization and design 

reflects this goal of  providing a virtual programming interface that efficiently masks key 

details of  the machine’s organization without being so opaque as to encourage the 

programmer to do naughty things that hurt performance. The proposed architecture is also 

targeted at a conventional programming model similar to Java that can easily leverage the 

parallelism available in the architecture.  Finally, a careful examination of  the implementation 

strategy outlined in [PAP93] reveals a number of  important differences (and similarities) 

between the architecture proposed here and *T.  One significant difference is this 

architecture’s use of  a queue-based interface between threads, with implicit synchronization 

through empty/full bits, similar to the scheme used in the J-Machine. [NOA93] *T uses a 

register-based interface with a microthread cache to enable efficient context switching, and 

explicit, program-level handling of messages that could not be injected into the network. 

The use of  self-synchronizing queues of  an opaque depth in this architecture helps cushion 

network congestion and scheduling hiccoughs.  

2.2 Decoupled-Access/Execute 

Decoupled-access/execute (DAE) machines hide memory access latencies with 

architecturally visible queues that couple separate execute and access engines. Code for these 

machines are typically broken down by hand or compiler into an access and execute thread; 

latencies are hidden because the access thread, which handles memory requests, can “slip” 

ahead of  the execute thread. Relatively few machines have been built that explicitly feature 

DAE. The architecture was first proposed in [SMI82] and later implemented as the 

Astronautics ZS-1 [SMI87]. [MAN90] characterizes the latency-hiding performance of  the 

ZS-1 in detail, and [MAN91] compares the performance of  the ZS-1 to the IBM RS/6000. 

A comparison of  DAE versus superscalar architectures can be found at [FAR93], and a 

comparison of  DAE versus VLIW architectures can be found at [LOV90]. Another 

proposed DAE architecture is the WM Architecture [WUL92], and a novel twist on DAE 
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architectures where the access unit is actually co-located with the memory is proposed in 

[VEI98]. The architecture proposed in this thesis parallels many of  the ideas in [VEI98]. 

 

The basic message contained in all the previously cited papers is that by judiciously dividing 

a processor into two spatially distributed processors, greater than 2x performance gains can 

be realized. This super-linear speedup is results from latency that was architecturally bypassed 

by either allowing the memory subsystem to effectively slip ahead and prefetch data to the 

execution unit, or by physically co-locating the access unit with the memory. DAE ideas can 

actually be applied generically to any machine with a large amount of  explicit parallelism by 

simply dividing every program into two threads, an access thread and an execute thread. The 

advantage of  explicit DAE machines is that the synchronization between the access and 

execute threads is very fast because they are coupled via hardware queues. Some 

conventional out of  order execution machines also provide a certain amount of  implicit 

access/execute decoupling via deep, speculative store and load buffers. However, in general, 

conventional architectures that emulate these queues in software ultimately find themselves 

drowning in synchronization overheads. 

 

Another important message is that queues are like bypass capacitors in computer 

architecture. They low-pass filter the uneven access patterns of  high-performance code and 

help decouple the demand side of  a computation from the supply side of  a computation. 

Like bypass capacitors, the time constant of  the queue (i.e., the size of  the queue) has to be 

sufficiently large to filter out the average spike, but not so large as to reduce the available 

signal bandwidth and hamper important tasks such as context switching. The overhead of  

the queue structure must also be small so that the benefits of  queuing can be realized. An 

area of  research for this thesis is the modeling of  computation in a queue-rich environment, 

and exploring the impact of  this upon multiprocessor communications and organization. 

 

Unfortunately, DAE machines as a whole are plagued with a few problems. There are no 

compilers that generate explicit access and execute code streams; most benchmarks and 

simulations in the cited papers were with hand-coded access and execute loops. Also, the 

effectiveness of  DAE is questionable on complicated loops and programs with complicated 

and/or dynamic dataflow graphs. DAE is very specifically targeted at hiding memory 
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latencies, and not much else. However, the basic idea of  decoupling access and execute units 

is a powerful one, especially if  one allows the physical access and execute units to be 

assigned dynamically to a single virtual control thread. The ability to create these “virtual” 

DAE machines allows access and execute units to migrate throughout the machine and 

optimize latency on a thread by thread basis. A sufficiently flexible infrastructure would also 

allow several execute units to be chained together, thus providing a kind of  loop unrolling 

and a facility for streaming computations without any modification to the code. Because this 

chaining is dynamic, such a machine could be upgraded to have more processors and a 

greater performance would be realized without recompiling the code. The architecture 

proposed in this thesis allows such virtual DAE machines to be created in a compiler-

friendly fashion. 

2.3 Processor-In-Memory (PIM) and Chip Multi-Processors (CMP)  

PIM architecture has recently become accessible due recent advances in process technology. 

[TSMW1] [IBMW1] [MOSW1] Very fine-line geometries have made it possible to integrate a 

sufficient amount of  SRAM on-chip to make an interesting processor node. Also, the 

availability of DRAM embedded on the same die as a processor opens the door to even 

more interesting possibilities. The fact that the memory is included on the same die as the 

processor implies a power and performance advantage due to the elimination of  chip-chip 

wiring capacitances and wire run lengths. It also offers a performance advantage because 

more wires can be run between the memory bank and the processor than in a discrete 

processor-memory solution. The advent of  extremely high integration process technology 

has also made it possible to put several processor cores on a single silicon die. A paper that 

summarizes some of  the key arguments for CMP architectures can be found in [OLU96]. 

Some architectures that have been proposed which take advantage of  some combination of  

embedded memory technology and chip multiprocessor technology include RAW [LEE98], 

I-RAM [KOZ97], Active Pages [OSK98], Decoupled Access DRAM [VEI98], Terasys 

[GOK95], SPACERAM [MAR00], and Hamal [GRO01]. 

 

The level of  performance available to users of  embedded DRAM is remarkable. 

Traditionally, DRAM is thought of  as the sluggish tanker of memory, while SRAM is the 

speed king. A recent DRAM core introduced by MoSys (the so-called 1-T SRAM), available 
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on the TSMC process, has proven that DRAM has a place in high performance architectures. 

[MOSW1] The 1-T SRAM is based on a DRAM technology, but has a refreshless interface 

like a SSRAM (synchronous SRAM). The performance of  this macro is also sufficiently 

high— 2-3 cycle access times at 450 MHz in a 0.13µ process— to entirely eliminate the need 

for data caches in the processor design. Note that the processor frequency target for this 

thesis work is on par with compiled processor frequency targets, which is typically a factor of  

2-4 below the level of  the full-custom processors developed by Intel, AMD, and Compaq. 

The nVIDIA series of  graphics processors are the canonical speed benchmark used for 

compiled processors in this work. Private conversations with employees at nVIDIA and 

observations of  the die layout reveal that their processors are designed using a behavioral 

HDL design flow, and that physical design is done using primarily synthesis tools and timing 

guided placement. Anecdotal evidence gleaned from websites indicates that nVIDIA 

achieves 200 to 250 MHz performance at the 0.15µ technology node. Finally, because the 1-

T SRAM has the memory cell structure of DRAM, the density of  these macros is similar to 

the embedded DRAM macros offered in other processes (2.09 mm2 per Mbit for a DRAM 

macro on IBM’s Cu-11 process [IBMW1] versus 1.9 mm2 per Mbit for a MoSys macro on a 

TSMC 0.13µ logic process [MOSW1]). 

 

The architecture proposed in this work leverages both the high level of  logic integration 

available in future process technology and the availability of  off-the-shelf, fast, dense 

memories to create a distributed massively parallel architecture with good single-threaded 

code performance.  

2.4 Latency Reduction 

There is a large body of  relevant work in the area of  data placement and thread migration as 

latency optimization techniques in parallel machines. Many techniques are specific to a 

particular class of machine, with the closest relative of  the architecture proposed here being 

NUMA (non-uniform memory access) style machines.  

 

The two broad categories of migration techniques are data migration and computation 

migration; many techniques combine aspects from both categories. Data migration is the 

movement of  data toward a point of  computation to reduce latency; dynamic page-
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migration techniques explored in [CHA94] and [NIK00] are examples of  this. Simple page 

migration techniques have been shown to improve performance on NUMA machines by 

over a factor of  two in many cases. Computation migration is the movement of  code 

execution toward synchronization points (other code) or accessed memory. Examples of  this 

include the fine-grained Active Threads explored in [WEI98] and computation migration in 

[HSI93] and [HSI95], and the coarse-grained dynamic process migration explored in 

[ROU96]. Techniques to make data placement easier through better programming languages 

has also been explored [CHA93] [CHA94], and a method for dealing with pointers through 

thread migrations is outlined in [CRO97].  

 

A general observation of  all the works surveyed so far is that the architectural overheads for 

migration are enormous— some papers quote thread migration times in milliseconds or 

hundreds of microseconds, often times due to the need to perform asynchronous traps to 

the kernel. While significant performance gains were demonstrated in the face of  such 

overheads, some papers reported a near net zero gain. [NUT97] [ROU96] Making thread 

migration, data movement and profiling cheap is a key objective of  the architecture 

proposed here. Another important objective is the integration of migration into the system 

as a whole, from the language level to the hardware level. Part of  the reason why most 

migration schemes suffered from such high overheads is that they are an afterthought or 

retrofit upon existing architectures. A cleanly integrated migration scheme will not only 

reduce overheads, but also make it easy for programmers to leverage migration in their code. 

 

 



April 25, 2001  18  

3 The Q-Machine 
 

 

 

 

 

 

 

 

This thesis proposes a decentralized architecture that is spatially-aware: the Q-Machine. This 

architecture provides a rich synchronization namespace, a low-overhead synchronization 

mechanism, a low-latency, scalable interconnect topology, an introspective mechanism for 

profiling machine behavior and status, and a mechanism for transparently migrating objects 

around the machine. This architecture is also designed to give good single-threaded code 

execution performance despite its support for a native multiprocessor environment. 

3.1 Programming Model of  the Q-Machine 

The programmer’s-eye view of  the Q-Machine is very simple, but slightly novel. A 

programmer develops code in a sanitary object-oriented environment with garbage 

collection. The object paradigm implies an intimate pairing of  code and data, and this 

information is made available to the architecture so that it may optimize data access patterns 

more easily.  Figure 3-1 summarizes the machine model presented to the coder. 

3.1.1 Method Invocations 

Every method invocation is treated as a new thread insofar as the local temporary 

namespace is re-used. Thus, there is no concept of  a stack or stack frames, as there is no 

concept of  a procedure call: each method invocation has a unique context ID and a private 

set of  128 names with queue semantics. These lightweight threads are probably better 

described as “continuations”, because when they block on a queue becoming empty or full, 

their state is recorded as a register frame and an instruction pointer. Unlike the dataflow 

machines, these continuations cannot be passed around during normal operation as a token, 

as this would incur by far too much communications overhead. Continuations are executed 
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on the local processor until the garbage collector decides to migrate the continuation to 

another processor for either load balancing or locality reasons. 

3.1.2 Virtual Queue File 

The Q-Machine uses queues in lieu of  registers in the structure that is conventionally 

referred to as the “register file”. Thus, successive writes to a queue does not clobber the 

preceding writes’ data (although at the assembly level, this option is provided for): rather, the 

values queue up until successive reads from the queue consumes these values. Reads from an 

empty queue cause the machine to stall or block; writes to a full queue also block. As 

mentioned previously, an option is provided in the instruction opcodes that cause values to 

be copied or clobbered, so that a queue can be used as a normal register if  the compiler so 

desires. As a final twist, the heads and tails of  queues may be remapped to different contexts, 

thus allowing for a synchronized mechanism for inter-thread communication. This 

remapping happens via the network interface to allow for the possibility that the source and 

destination contexts do not exist on the same physical node. Arguments are passed between 

threads through remapped queues. Knowledge about remapped queues are stored as 

pointers in memory, so that a reference counting garbage collection mechanism can be used 

to efficiently migrate continuations about the machine through the use of  forwarding 

pointers. 
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Figure 3-1: Programmer’s model of the Q-Machine 
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3.1.3 Memory Subsystem and Network Interfaces 

As far as the programmer is concerned, memory is also accessed via queue structures. A pair 

of  queues is allocated for a load or a store, representing the address and data path for these 

operations. Addresses can be speculatively generated and queued before the first piece of  

data becomes available. Multiple memory queue maps can be allocated for a thread.  

 

Tables of  network communication statistics are accumulated in a set of  registers that are not 

visible to the applications programmer. The accumulation of  statistics is accomplished by a 

fiduciary processor, so that there is no performance penalty associated with this operation. 

The operating system accesses these tables during garbage collection, and as part of  the GC 

algorithm, objects may be moved to optimize access latency between objects. 

 

Finally, there is no coherent global shared memory in this machine, as is the case on 

ccNUMA machines. Instead, a large shared address space is presented to the user, where the 

physical node that owns a piece of  data is hard-coded into the address. Thus, method 

threads running on an object must be located on the same physical node as the storage for 

that object. This discipline is maintained in part by the way context IDs are represented in 

the Q-Machine’s implementation.  

 

Each processor node has a large virtual memory space. The memory hierarchy is structured 

so that it is self-throttling; allocating large amounts of memory on a single processor will 

dramatically increase the access latency to memory, so that the allocation process itself  slows 

down. This gives the GC a chance to run and move objects out of  that node before the 

physical memory is exhausted. 

3.1.4 Opcodes, Addresses and Data Types on the Q-Machine 

The format of  instructions, addresses and data types on the Q-Machine is given in Figure 

3-2. A table for an initial ISA for the Q-Machine is given in Table 3-1.  

 

Branch instructions encode in them a 12-bit branch history field, which is updated by the 

instruction fetch unit based on the direction that the branch took after the arguments are 

evaluated. The history field is written back into the instruction cache, but no effort is used to 
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ensure global coherence of  this field between processors. The compiler may specify the 

initial value of  this field if  it wishes to be clever, but by default, it is either initialed to all 

“branch taken” or “branch not taken”. The branch history field allows the instruction 

prefetcher to make better decisions without actually consuming any processor real-estate for 

a branch prediction table. This technique gives an effective branch prediction table as large 

as the instruction memory. It can also give persistent branch predictions if  the values 

eventually find their way to the original binary code written to disk. 

 

Jump opcodes encode in them a 28 bit destination storage field. This field, like the branch 

history bits in the branch opcode, is updated every time the jump is taken, written to the 

instruction cache, but no effort is consumed to ensure global consistency. The destination 

field allows the instruction prefetcher to speculatively fetch the next instruction after a jump; 

some check and rollback mechanism is required in the case that the actual jump destination 

is different, as would be the case in a dynamic dispatch table. 

Capability Format

8 bits
opcode

7 bits
VQA

7 bits
VQB

7 bits
VQC 32 bits constantstandard OP

8 bits
opcode
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VQA
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VQB 28 bits rel. offsetbranch OP

link cond
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VQB 28 bits dest storagejump OP

link dest

12 bits
history

28 bits address15 bits base/
bounds/finger

1 bit inc-only

side band 8 bits
(on all data even if

not shown)
primary data 64 bits

4 bits sideband tag

4 bits parity

6 bits
tag
and
prot.

14 bit proc ID

invalid

 

Figure 3-2: Capability and basic opcode formats. Memories are word-addressed, where a word is 32 

bits. 
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In order to accelerate GC and to help make continuation storage in memory more efficient, 

addresses are represented using a capability format. [BRO00] This capability format allows 

methods to extract a conservatively correct object base and bounds given any valid pointer. 

Notice how the capability format explicitly codes the processor ID in the address field. This 

is used to accelerate object migration and backing storage allocation, as described later in this 

proposal. Other uses for the capability format, including sparse object allocation across 

multiple processors, are outlined in [GRO01]. 

 

One will also note that while the addressable space of  the machine is limited to 16 TB, an 

individual node can only address up to 1 GByte of  virtual memory. This limitation is 

considered acceptable because one of  the critical assumptions of  this thesis is that physical 

distance to memory combined with the packing density of memory cells places a lower 

bound on the access latency to memory. Any programmer interested in optimal performance 

should not be allocating 1 GByte monolithic objects on a single node; rather, a distributed 

approach should be taken to allocating very large objects to enhance performance and take 

advantage of  the fine-grained multiprocessor nature of  the Q-Machine. 

 
ADD qa, qb, qc               - qc <- qa+qb 
SUB qa, qb, qc               - qc <- qa-qb 
MUL qa, qb, qc               - qc <- qa*qb 
DIV qa, qb, qc               - qc <- qa/qb 
ADDC qa, n, qc               - qc <- qa+n 
SUBC qa, n, qc               - qc <- qa-n 
MULC qa, n, qc               - qc <- qa*n 
DIVC qa, n, qc               - qc <- qa/n 
AND qa, qb, qc               - qc <- qa & qb bitwise 
OR qa, qb, qc                - qc <- qa | qb bitwise 
XOR qa, qb, qc               - qc <- qa ^ qb bitwise 
SHL qa, qb, qc               - qc <- qa << qb bitwise 
SHR qa, qb, qc               - qc <- qa >>> qb bitwise, 0 fill 
SRA qa, qb, qc               - qc <- qa >> qb bitwise, sign extend 
ANDC qa, n, qc               - qc <- qa & n bitwise 
ORC qa, n, qc                - qc <- qa | n bitwise 
XORC qa, n, qc               - qc <- qa ^ n bitwise 
SHLC qa, n, qc               - qc <- qa << n bitwise 
SHRC qa, n, qc               - qc <- qa >>> n bitwise, 0 fill 
SRAC qa, n, qc               - qc <- qa >> n bitwise, sign extend 
SEQ qa, qb, qc               - qc <- qa == qb ? 1 : 0 
SNE qa, qb, qc               - qc <- qa != qb ? 1 : 0 
SLT qa, qb, qc               - qc <- qa < qb ? 1 : 0 
SGT qa, qb, qc               - qc <- qa > qb ? 1 : 0 
SLE qa, qb, qc               - qc <- qa <= qb ? 1 : 0 
SGE qa, qb, qc               - qc <- qa >= qb ? 1 : 0 
SEQC qa, n, qc               - qc <- qa == n ? 1 : 0 
SNEC qa, n, qc               - qc <- qa != n ? 1 : 0 
SLTC qa, n, qc               - qc <- qa < n ? 1 : 0 
SGTC qa, n, qc               - qc <- qa > n ? 1 : 0 
SLEC qa, n, qc               - qc <- qa <= n ? 1 : 0 
SGEC qa, n, qc               - qc <- qa >= n ? 1 : 0 
FADD qa, qb, qc              - qc <- qa+qb (float) 
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FSUB qa, qb, qc              - qc <- qa-qb (float) 
FMUL qa, qb, qc              - qc <- qa*qb (float) 
FDIV qa, qb, qc              - qc <- qa/qb (float) 
FADDC qa, n, qc              - qc <- qa+n (float) 
FSUBC qa, n, qc              - qc <- qa-n (float) 
FMULC qa, n, qc              - qc <- qa*n (float) 
FDIVC qa, n, qc              - qc <- qa/n (float) 
FCPYS qa, qb, qc             - qc <- qa[63] || qb[62:0] 
FCPYSEX qa, qb, qc           - qc <- qa[63:52] || qb[51:0] 
FCPYSN qa, qb, qc            - qc <- NOT(qa[63]) || qb[62:0]  
BR label                     - ip <- index(label) 
BRL label, qc                - qc <- ip, ip <- index(label) 
BRZ qa, label                - qa == 0, ip <- index(label) 
BRNZ qa, label               - qa != 0, ip <- index(label) 
JMP qa                       - ip <- qa 
MOVE qa, qc                  - qc <- qa 
MOVEC n, qc                  - qc <- n, where n is long or float 
FLUSHQ qc                    - set qc empty 
MML qi, qj                   - map 'qi to load addr, 'qj to data return 
MMS qi, qj                   - map 'qi to store addr, 'qj to data 
PROCID qc                    - qc <- thread.context_id 
FORK label, qc               - new thread starting at label,  
                               qc <- new thread.context_id 
MAPQ qi, qj, qa              - 'qi mapped to 'qj in context qa 
MAPQI qi, qb, qc             - 'qi mapped to qb in context qc 
UNMAPQ qi                    - 'qi unmapped in current context  
CONSUME qa                   - read from qa, discard 
EEQ qc                       - nop conditional on empty qc 
HALT arg1, arg2              - kill current thread 
 
Above, 'qi means the literal queue, not the value stored in the queue.  
Table 3-1: Rough ISA for the Q-Machine 

3.2 Implementation of  the Q-Machine 

The Q-Machine consists of  two basic components: nodes and network. 

3.2.1 Nodes 

The basic structure of  a Q-Machine node is illustrated in Figure 3-3. A node consists of  an 

execution core, a network interface, a thread scheduler/performance monitor, and a virtual 

memory subsystem. 
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Figure 3-3: Basic Q-Machine node structure. The dimensions of the memory subsystem are 

approximate. 

3.2.1.1 Execution Core 

The organization of  the execution core is illustrated in Figure 3-4. The execution core 

consists of  the virtual queue file (VQF), a MAP box, an ALU/MEM box, and connections 

to the network interface and thread scheduler. The diagram does not show pipeline stages 

for clarity; however, the entire execution core pipeline is kept very short and simple so that 

stalls and restarts are fast. A very simple scheduler built into the core that observes the 

incoming work queue and the state of  the machine enables limited out-of-order execution 

between different thread contexts in the case of  stalls and blocks. 
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Figure 3-4: Execution core overview. 

The virtual queue file (VQF) implements the following functionality: 

• given a read command, read <context ID, Q #>, return the bottom piece of  

data at that queue or a block if  there is no data 

• given a write command, write <context ID, Q #, data> , write the given 

data to the top of  the specified queue, and block if  that queue is full 

The astute reader will notice by this point that the VQF as described is not feasible for direct 

implementation. The fact that a virtually unlimited number of  thread contexts are available 

at the drop of  a hat to the programmer should have been cause enough for alarm. The truth 

is that these contexts don’t actually exist in exactly the same way that the majority of  the 

memory pages in a virtual memory system don’t exist. The context ID for a thread 

continuation corresponds directly to the virtual address used as backing storage for the 

context’s active queue state and local variables. Thus, the VQF itself  has a memory hierarchy. 

At the heart of  the VQF is the physical queue file (PQF), which directly implements an 

architecturally unspecified number of  queues. The PQF is attached directly to the 

computational units. The size of  the PQF should be set by the details of  the target 

implementation process; however, for good single-threaded performance, the PQF should 

embody at least the 128 queues available to a single context. The PQF has a structure similar 

to a multi-ported register file, and it is capable of  swapping an entire queue into and out of  a 

Q-cache (QC) in a single cycle. Empty queues are not swapped into the QC; rather, they are 
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simply marked as empty and they consume no further bandwidth or space. The memory 

subsystem contains special hardware to accelerate the marking and swapping of  empty 

queues. A good compiler will arrange for threads to have all empty queues when execution 

stops, so that dead threads consume a minimal amount of  space until they are GC’d. 

 

The QC has a structure similar to a memory cache; when it overflows, cache lines are 

strategically written out to main memory. The fact that every queue in the system has some 

location in memory reserved for its storage is a feature that is used by the GC mechanism to 

clean up after dead threads or to migrate objects.  

 

wr rd

CAM
64-to-6,

64 entries

CAM
64-to-6,

64 entries

CAM
55-to-6,

2^pq entries

CAM
64-to-6,

64 entries

CAM
64-to-6,

64 entries

CAM
55-to-6,

2^pq entries

Q$ write port

Q$ read port

2^pq *
65

65 6565656565

65 65 65 65

pq

65 65 65

context ID + reg # context ID + reg #write data +
full bit

read data +
empty bit

spill to memory

underflow from memory

qdepth
* 65

qdepth
* 65

q depth

pq

pq

pq

pq

pq

tag

tag

 

Figure 3-5: A 3-write, 3-read port VQF implementation. pq = log2(# physical registers). Q-cache 

details omitted for clarity. 

The physical queue file actually does not take up significantly more space than a regular 

multiported register file. The reason for this is the fact that a register file is wire-dominated; 

the active transistor area underneath a register file cell is a small fraction of  the area allocated 

for wires.  
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Figure 3-6 illustrates the unit cell for a 3 read-, 3 write-port PQF with sufficient Q-cache 

wires to manage a 4-deep queue. The wiring pitch is based on numbers taken from the 

TSMC 0.18u process guide [TSMW1]. The wiring requirements for the unit cell of  the PQF 

would consume 4851 ? 2 alone, using minimum-pitch M5/M6 wires. For comparison, the 

area of  a 6-T SRAM cell in the TSMC 0.18u process is 574 ? 2, allowing eight such cells to be 

placed underneath a PQF unit cell. For better performance, fatter wires with wider spacing 

may be employed, thus increasing the area underneath the unit cell for the implementation 

of  the actual Q structure storage and control logic.  
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Figure 3-6: PQF unit cell. 

Hence, a PQF implementation which has relatively shallow queues (4 to 8-deep) can be 

implemented within a factor of  two of  the amount of  space as a regular register file with a 

similar number of  ports. As process technology progresses, even greater depth queues will 
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be enabled, at the expense of  either more or faster wires required for swapping to the Q-

cache. 

 

A similar idea to the VQF implementation outlined here is the Named-State Register File 

(NSRF). [NUT91], [NUT95] The NSRF is a register file with an automated mechanism for 

spilling and filling thread contexts. It utilizes context ID numbers to uniquely identify the 

threads, and a CAM memory to match the individual register file entries to their proper 

contexts. Unlike the VQF, the NSRF dumps its state directly into the processor data cache. 

The Q-Machine does not do this because there is no data cache on the Q-Machine, and even 

if  there were, the combination of  having to add an extra read/write port to the D-Cache and 

cache pollution issues would present a strong case for having a separate Q-cache.  While the 

VQF is introduced primarily to support a disassociated physical-to-logical mapping of  

processors to threads, it is interesting to note that the NSRF did provide small (9% to 17%) 

speedups to parallel and sequential program execution. Also of  note is that cache-style 

register files such as the NSRF and VQF provide higher overall register file utilization: the 

NSRF was demonstrated to have 30% to 200% better utilization than a conventional register 

file. [NUT95] 

 

The MAP block is responsible for determining if  a queue is mapped to another context. The 

MAP block is issued a request to discover a queue mapping at the time the instruction is 

issued, giving it the whole pipeline latency of  the machine to do this work. The MAP 

operation is potentially complex and could be a cause of many stalls if  the machine is not 

designed correctly.  

 

The reason the MAP block only needs to be decoded for write targets is because the only 

legal queue mappings allowed on the Q-Machine are forward mappings. In other words, it is 

impossible to create a mapping that “pulls” data out of  another context; instead, one can 

only inject data into a target context. As apparent from the diagram, the MAP function is 

thus invoked for both incoming writes from the NI and for local results from the 

ALU/MEM unit. This keeps the read latency from the VQF low, while giving the MAP 

function time to do its translation for writes. 
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Recall that the context ID for a thread is in fact a capability that points to the storage region 

for the thread’s backing storage and local data storage. This capability has permissions set 

such that a user process cannot dereference this capability and use it as a memory pointer, 

but the OS and MAP function have access at all times to this information. Refer to Figure 

3-2 for a review of  the capability address format of  the Q-Machine. Given this, the basic 

algorithm for the MAP block is as follows: 

• If  the Proc ID field of  the context ID does not equal to the Proc ID of  the local 

processor, send the write to the NI 

• Otherwise, consult an internal cache that records the presence of  a mapping on the 

specified queue for the specified context. If  there is no map present, pass the write 

on to the VQF. If  there is a map present, consult the map table to discover the 

proper mapping and ship the data off  to the NI for routing (even if  it is a map-to-

self). Mark the queue as full and block the thread until the NI reports successful 

delivery of  data 

The map presence cache is used to help accelerate the typical case where there is no 

mapping. A larger map presence cache can be held in memory than a cache with presence 

bits and the actual mappings. In the case that the mapping table overflows, a lookup into a 

backup table must occur and the machine thrashes. Also, in the case that a mapping does 

exist, it is okay to take a few extra cycles to retrieve the mapping from memory. Perhaps a 

small cache of mappings will also be maintained if  the mapping lookups are determined to 

be a severe bottleneck. 

 

The ALU/MEM subsystem is relatively straightforward. The ALU implements all the 

standard execution core functions— integer and floating point arithmetic, compares, and 

logicals. It is pipelined to a depth of  two or three stages. The MEM subsystem contains a 

fast path to the local on-die memory. No caches are required in this path; the on-die memory 

is designed to return hits within two to three processor cycles, plus a cycle for the TLB 

operation. Memories on a likely target process, such as the TSMC 0.13u process, already 

exist which achieve this performance goal, and they can be purchased as hard-cores from 

Mosys. [MOSW1] 
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Let us now take a moment to consider the performance of  a single node on single-threaded 

code. In the case that a single thread is running on the machine, the PQF, if  it has at least 

128 queues, is capable of  holding an entire context in-core. Thus, no stalls are incurred when 

executing from a single context. Also, the MAP function is able to complete its 

determination that no mappings occur within the latency of  the arithmetic pipeline, so no 

stalls are incurred as a result of  that, either. Finally, the memory subsystem of  the Q-

Machine is fast, or at least on par with conventional uniprocessors. The local ~ 1MByte of  

data is accessible within a couple of  clock cycles (on par with the L1 cache latencies of  

conventional processors on the market today), and access latency to the virtual memory 

subsystem is on par with conventional processors. Thus, the entire critical path of  the Q-

Machine node resembles, to a good approximation, that of  a conventional RISC machine 

when executing single-threaded code. This is in-line with the goal of  not sacrificing single-

threaded code performance on the Q-Machine. 

3.2.1.2 Thread Scheduling 

The basic unit of  execution on the Q-Machine is called a thread. Threads are very 

lightweight on the Q-Machine, and are similar in nature to continuations or microthreads in 

other architectures, such as the Dataflow machines. [PAP93] The Q-Machine architecture is 

similar to the hybrid dataflow architectures in that thread state is not passed around as a part 

of  tokens on the network; rather, a message may be passed to activate or invoke a thread, 

but the actual migration of  thread data is considered to be a high-cost operation that is 

managed by the garbage collector. A subtle difference between the dataflow machines and 

the Q-Machine is that the duration of  the run-time for a thread varies dramatically 

depending upon the demands of  the user program. A thread of  execution may run for a 

long period of  time, as is the case when the working set for the local processor exhibits good 

locality and poor parallelism. Other threads may execute for just a few instructions, as would 

be the case on a sparse-matrix operation, or on a memory reference thread. 

 

Because procedure calls are treated like threads, the number of  threads on a single processor 

can grow quite rapidly. In order to manage this potential explosion of  threads, the thread 

scheduler imposes a hierarchical structure on the thread state of  the machine. This structure 

is outlined in Figure 3-7. 
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There are two general classes of  threads on a Q-Machine node: active and retired. Active 

threads are considered for execution on each round of  scheduling; retired threads are 

swapped out until some condition (typically a queue blockage) is resolved. Each object on 

the machine is given a light-weight server thread that always remains in the active set of  

scheduled threads. Beneath each object is a set of  threads grouped by method invocation; 

these threads are referred to as a method group. A method group is scheduled essentially 

depth-first, under the premise that each method is implemented in a single-threaded frame 

of mind. Method groups may not be executed in strictly depth-first order, because queues 

used to link arguments between procedure calls within the group may block because they are 

full, and the predecessor to the bottom-most active thread may have to scheduled in again to 

drain the last few arguments waiting to be passed. This method of  dividing threads into 

groups is similar to the H- and V-threads scheme used in the M-Machine. [FIL95] Similarly, a 

method for scheduling threads (continuations) based on empty/full bits of  work queues is 

used in the J-Machine [NOA93].  

  

Thus, the active set of  threads consists of  object servers and the bottom-most procedure 

call of  each method group. These threads in the active set are scheduled in some fashion 

that guarantees fairness without starvation. It is a topic of  research to discover the optimal 

scheduling algorithm given the limited set of  computational resources available in the Q-

Machine scheduler implementation. 
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Figure 3-7: Basic thread taxonomy and scheduling chart. 

The thread scheduler of  the Q-Machine is implemented as a conventional RISC 

microprocessor with some dedicated hardware resources to facilitate the task of  scheduling. 

Note that the Tensilica [TENW1] configurable microprocessor core, for example, can be 

implemented in as little as 0.7 mm2 in a 0.18u process with a typical performance of  320 

MHz. The actual area would be about 50% larger because an instruction cache would be 

required to sustain high performance, but a data cache is not required because the core 

would be fed by a dedicated MoSys memory macro that can run at processor speeds. 

[MOSW1] In order to accelerate the task of  scheduling threads, application specific 

hardware is necessary. The total response latency from an incoming network request to a 

thread being scheduled into the Execution Core’s work queue should be a few cycles at most 

under light loads. Depending upon the area restrictions of  the machine, this special hardware 

will be implemented as a combination of  reconfigurable hardware and auspiciously chosen 

hard-cores. [CUL91] gives insight into an architecture that has addressed similar thread 

scheduling issues and tradeoffs. [NIK92] describes the *T architecture which has a similar 
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single-node organization with a separate synchronization coprocessor to handle thread 

scheduling, and a RISC microprocessor to handle straight-line code execution. 

 

The ability of  the thread scheduler to handle its workload will have a strong impact upon the 

multi-threaded performance of  the Q-Machine. It will also have an impact upon the 

structure of  the user’s code. A pathological example would be if  a user allocated a large array 

of  objects based on the Integer class that implement a specific computational method, 

and simply issued a large number of messages to invoke methods on these objects for a 

massively parallel computation.  Each integer would have a thread assigned to it; even if  the 

threads are lightweight, the synchronization and storage overhead is likely to outweigh the 

benefits of  this style of  computation (which is, incidentally, very similar to the original 

Dataflow style of  parallelism [ARV90]). The exact breakpoint of  how fine of  a grain users 

can break their parallel code into is determined largely by the amount of  overhead incurred 

by the thread scheduler and thread storage in the Q-Machine implementation. One key 

benefit of  the Q-Machine architecture, however, is that distributing the objects over more 

processors can mitigate this overhead. Another key benefit is that the user has the ability to 

choose, through coding discipline, a level of  granularity for their parallel tasks that spans a 

fairly broad spectrum. 

3.2.1.3 Performance Monitor 

An important aspect of  the Q-Machine from the systems standpoint is the on-line 

performance monitor. This is a function likely to be integrated into the thread scheduler 

unit, but important enough to be mentioned in a section on its own. The performance 

monitor plays an important role in the programming and debug of  the machine, in the run-

time environment of  the machine, and in the reliability and fault tolerant aspects of  the 

machine. 

 

A key challenge faced by programmers of  large parallel systems is performance profiling and 

the debugging of  hairy, multithreaded code. Simply wading through core dumps and 

attaching gdb processes to various threads is a tedious and time-consuming process. 

Similarly, inserting system calls to time functions or standard-output functions such as 

printf often incurs locking and kernel overhead that significantly alter the performance of  
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a parallel program. One of  the design goals of  the on-line performance monitor is to be able 

to collect the right kind of  data without any overhead to the running program so that 

programmers can easily discover bugs and tune programs for optimal performance. 

 

The run-time environment for the Q-Machine will also leverage the information collected by 

the performance monitor to optimize data placement and communications patterns in the 

machine. The garbage collection process polls the performance monitor for hot-spots and 

attempts to migrate data and threads to alleviate such hot-spotting. This kind of  dynamic 

data migration and placement has been shown to give significant performance benefits in 

even coarsely parallel, non-speed of  light limited cluster machines such as the Stanford 

DASH. [CHA94] I predict that dynamic data and thread migration will be crucial in future 

machines which are heavily impacted by the locality of  data due to latency limitations placed 

by the speed of  light. 

 

The performance monitor can also be used to monitor the health of  a machine. It can 

collect information about bit error rates on network interfaces and parity errors in memory 

cells. It can also be connected to other key system health indicators, such as core voltage and 

temperature levels or SMART (Self-Monitoring Analysis and Reporting Technology) 

information from hard drives. If  a node seems to be exhibiting signs of  failure, a flag can be 

raised to the garbage collector and data can be migrated out of  the node so that it can be 

powered down and replaced by field service. 

3.2.1.4 Virtual Memory Subsystem 

The memory hierarchy of  a Q-Machine node is illustrated in Figure 3-8. Each node has the 

capability to address up to 1 GByte of memory; however, users are assumed to seldom take 

advantage of  this large address space. Allocating 1 GByte of  objects on a single node 

violates a fundamental premise of  the Q-Machine: optimal performance demands that data 

and processor be intimately located. The allocation of  large amounts of  data on a single 

node should be avoided for good performance scalability. At the same time, forcing users to 

operate within a strict memory budget hampers the ease of  use of  the machine. Thus, each 

node is designed with a fast, small memory co-located with the Execution Core, but has 
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provisions for an extensive virtual memory hierarchy to give coders the headroom they 

require to get the job done when performance is not at a premium.  

 

~ 1M fast (2-3 cycle)
 data SRAM on-chip

~ 64 MB off-chip
DRAM (20-40 cycle)Execution Core TLB / page-walk ~ 200 MB hard

drive backing storage

in local address space--remote access requires a local object to service requests  

Figure 3-8: Virtual Memory hierarchy of a single Q-Machine node. 

A relatively large (64 MB) secondary memory is provided off-chip, backed by an even larger 

non-volatile storage unit. This hierarchy of  degrading performance memory is necessary to 

prevent allocation run-away on a single node. A careless programmer could then be saved by 

the garbage collector, which will make efforts to migrate objects out of  the thrashing node 

before its virtual memory is exhausted. At the same time, a performance-conscious 

programmer can balance object allocation across the machine and get optimal performance 

from their program under a broader range of  conditions. 

 

From the programmer’s standpoint, memory is accessed via load and store queues. However, 

in reality, the far-side of  the queues are processes that run on the execution core. The 

advantage of  the queue-based memory access paradigm is that programmers can leverage 

control and address generation decoupling to hide latency. In addition, programmers can 

make the memory-side handlers more intelligent and embed operations such as pointer 

chases and table lookups on the memory-side of  the queue. 

3.2.1.5 Network Interface and Machine Network 

The Q-Machine nodes are embedded in a fast, low latency, fault tolerant network based on 

the work done by the MIT METRO project. Because of  the extensive prior research devoted 

to this topic, the treatment of  he network interface and the network is brief, and interested 

readers are referred to the original papers on this topic. [DEH93] [Minsky’s thesis, leiserson’s 

paper on fat trees] 

 

The network topology used by the Q-Machine is a hybrid multipath fat-tree/multipath 

multibutterfly topology network. It is a circuit-switched network with self-routing packets 
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and wormhole routing. The design of  the packets and network are optimized for low-latency 

through the network routers; a single bit or pair of  bits sent at the head of  the packets 

determines the state of  the router. The router design is kept simple by making the routing 

protocol source-responsible; blocked paths and errors are reported as dropped message, and 

it is up to the NI to resend the message. Fault tolerance and congestion avoidance are 

designed into the network by proper choice of  topology; the network has a dilation 

(redundancy) factor of  two, and the wiring between nodes is random with a maximal fan-out 

property, so that no individual component failure will leave a destination node unreachable.  

 

All clocks on the Q-Machine originate from a single frequency source. Mesochronous 

clocking with wave pipelining is used to make the sources and destinations skew-insensitive. 

The advantage of mesochronous clocking is that no time is consumed in router stages trying 

to re-synchronize data to the local clock domain. Other designs, such as the CrayLink 

network used in the SGI Origin 2000 series, devote a large portion of  the router time to 

synchronization for metastability resistance. [GAL] 

 

Because the design of  the routers is kept so simple, the dominant latency of  the 

interconnect is wire delay. It is an important assumption of  this thesis work that the 

dominant delay of  the system be the wire delays. Estimations based on scaling previous and 

current implementations of  the METRO network indicate that this is a solid assumption. 

 

One downside of making the routers simple is that more complexity is required in the Q-

Machine nodes to keep track of  open network connections. The implementation of  this 

hardware is a topic of  research, but the current plan is to devote a dedicated RISC processor 

to handling messages along with some reconfigurable hardware, or to integrate this 

functionality into the Thread Scheduler, which also has a dedicated RISC processor with 

some dedicated hardware to handle its tasks. Regardless, the network interface and network 

implementation details are not a major area of  focus for this work because of  the extensive 

body of  prior work in this area. 

 

Some improvements on the METRO network explored within the context of  this research 

are idempotent messaging and message priorities for deadlock avoidance. A three-phase 
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protocol is used with temporary message state on both sides of  the network to guarantee 

message idempotence. Interested readers in these improvements are referred to Bobby 

Woods-Corwin’s Masters of Engineering thesis work-in-progress.  
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4 Directions  
 

 

 

 

 

 

 

 

The architecture described in the previous section addresses many issues, but it is far from 

complete. An important part of  this research effort is to flesh out the architecture and 

discover where the bottlenecks are. The metric for success is ultimately measured in terms 

of  how much wall-clock programmer time is required to produce results— from coding to 

debugging to the actual run-time of  the program. While this metric is very difficult to assess 

due to the variability of  human factors, keeping this end-goal in mind gives this research a 

very systems-oriented approach, for the perfection of  any single piece of  the machine will 

not guarantee good results. On the other hand, careful attention to making sure that the 

nominal case exhibits robustly good performance will have a higher chance of  yielding a 

successful architecture. Simply put, peak performance numbers are bogus, and the important 

number to optimize is the average performance, even if  it hurts the peak performance 

number. In addition, the worst-case number is not important as long as the worst-case is 

never in the critical path, and as long as the worst-case happens infrequently. Thus, a central 

goal of  this thesis is validating the system concept behind the Q-Machine through 

implementation. 

4.1 Implementation 

There is no substitute for building an architecture. Implementation tests the assumptions 

that the architecture rests upon, and exposes uncountable oversights that can lead to serious 

bottlenecks or implementation trade-offs that alter the nature of  the architecture. At the 

same time, it is too easy to become obsessed with tweaking and optimizing small parts of  the 

machine, and miss the big picture. Thus, no chips will be fabricated: rather, this thesis hopes 
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to answer the question of  if  it is worth the effort of  fabricating chips for this architecture. 

Hence, the implementation side of  this thesis will start with behavioral HDL simulations 

implemented in FPGAs and RISC emulations cores, and extend as far as estimated die 

floorplans and trial layouts of  critical machine components. In parallel with the hardware 

development efforts, very high-level simulations of  the data migration and object-oriented 

run-time mechanisms will have to be run to collect crucial information about the expected 

utilization of  key machine components, such as the network, thread scheduler, and on-chip 

memory.  

4.2 Analysis 

The implementation effort is in vain without an analysis of  the shortcomings and strengths 

of  the Q-Machine. Some of  the important questions that I hope to answer and issues I hope 

to address through the implementation effort include: 

• effectiveness of  object migration in the Q-Machine 

• object migration and garbage collection strategies, and how they are different from 

previously proposed strategies 

• programming languages and paradigms for the Q-Machine 

• advantages of  the Q-Machine mechanisms over more conventional, non-queue 

based mechanisms without custom support for object migration 

• analysis of  latency and area overhead of  the synchronization primitives, i.e., Thread 

Scheduler unit and Network Interface unit 

• efficient thread scheduling and thread representation on the Q-Machine 

• analysis of  potential areas of  inefficiency within the Q-Machine architecture, and 

proposals for their resolution 

4.3 Conclusion 

The Q-Machine architecture outlined in section 3 is actually a significant portion of  the final 

thesis work. The proposal for research from this point is to implement and analyze the 

system concept of  the proposed Q-Machine. The research will begin with some high-level 

simulations to extract object interaction and locality properties in Java. This will form a 

baseline set of  assumptions that can be applied to create a machine model. In parallel with 

that, basic elements of  the Q-Machine hardware will be marshaled— the network (from 
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[DEH93]) and simulation vehicles for the processor nodes will be constructed from FPGAs 

and conventional RISC processors. From here, the set of  assumptions and machine models 

derived from the high level simulations will be applied to create a detailed specification of  

implementation requirements for the Q-Machine architecture. These requirements will then 

be run through trial implementations to see if  they are reasonable. Finally, the pieces of  the 

machine that have been implemented will integrated and some simple benchmarks will be 

executed on the architecture that can validate the models and assumptions generated by the 

original high-level simulations. The level of  detail in the implementation is geared at getting 

significant results that can clearly validate the Q-Machine system concepts while keeping on 

track for a graduation target of  June 2002. 

 

 



April 25, 2001  41  

5 References 
 

[DEH93] DeHon, Andre. “Robust, High-Speed Network Design for Large-Scale 
Multiprocessing”. AI Technical Report Number 1445. September 1993. MIT 
Artificial Intelligence Laboratory, 200 Technology Square, Cambridge, MA, 02139. 

 
[IAN88] Iannucci, Robert. “Toward a Dataflow/von Neumann Hybrid Architecture”. 

Proceedings of  the 15th Annual International Symposium on Computer Architecture. 
May 30-June 2, 1988. Honolulu, Hawaii. 

 
[SCO96] Scott, Steven L. “Synchronization and Communication in the T3E Multiprocessor.” 

Proceedings of ASPLOS VII, Massachusetts, 1996. ACM, 1996. 
 
[ARV93] Arvind. Brobst, Stephen. “The Evolution of Dataflow Architectures: from Static 

Dataflow to P-RISC”. International Journal of High Speed Computing. Vol. 5, No. 
2. World Scientific Publishing Company, 1993. 

 
[NIK89] Nikhil, Rishiyur S. Arvind. “Can Dataflow Subsume von Neumann Computing?” 

Proceedings of  the 16th Annual International Symposium on Computer Architecture, 
May 1989, Jerusalem, Isreal. 

 
[LEE94] Lee, Ben. Hurson, A.R. “Dataflow Architectures and Multithreading.” IEEE 

Computer. August 1994. 
 
[SMI82] Smith, James E. “Decoupled Access/Execute Computer Architectures”. 

Proceedings of  the 9th Annual International Symposium on Computer Architecture. 
April 1982, Austin, Texas. 

 
[SMI87] Smith, J. E. Dermer, G. E. Vanderwarn, B.D. Klinger, S. D. Rozewski, C. M. Folwler, 

D. L. Scidmore, K. R. Laudon, J. P. “The ZS-1 Central Processor”. Second 
Internatinoal Conference on Architectural Support for Programming Languages and 
Operating Systems. October 1987. pp. 199-204. 

 
[MAN90] Mangione-Smith, William. Abraham, Santosh G. Davidson, Edward S. “The 

Effects of Memory Latency and Fine-Grained Parallelism on Astronautics ZS-1 
Performance.” Proceedings of  the Twenty-Third Annual Hawaii International 
Conference on System Sciences, 1990. IEEE, 1990. Pp. 288 –296, Vol. 1. 

 
[FAR93] Farrens, Matthew K. Ng, Pius. Nico, Phil. “A Comparison of  Superscalar and 

Decoupled Access/Execute Architectures”. Proceedings of  the 26th Annual 
International Symposium on Microarchitecture, 1993. IEEE, 1993. Pp. 100 –103. 

 
[LOV90] Love, Carl E. Jordan, Harry F. “An Investigation of  Static Versus Dynamic 

Scheduling”. Proceedings of  the 17th Annual International Symposium on 
Computer Architecture, 1990. IEEE, 1990 Pp. 192 –201. 

 



April 25, 2001  42  

[MAN91] Mangione-Smith, William. Abraham, Santosh G. Davidson, Edward S. 
“Architectural vs. Delivered Performance of  the IBM RS/6000 and the Astronautics 
ZS-1”. Proceedings of  the Twenty-Fourth Annual Hawaii International Conference 
on System Sciences, 1991. IEEE, 1991. Pp. 397 -408 vol.1. 

 
[WUL92] Wulf, William A. “Evaluation of  the WM Architecture”. Proceedings of  the 19th 

Annual International Symposium on Computer Architecture, 1992. ACM. Pp. 382 – 
390. 

 
[VEI98] Veidenbaum, Alexander V. Gallivan, K. A. “Decoupled Access DRAM 

Architecture”. Innovative Architecture for Future Generation High-Performance 
Processors and Systems. IEEE, 1997, 1998. Pp. 94-103.  

 
[OLU96] Olukotun, Kunle. Nayfeh, Basem A. Hammond, Lance. Wilson, Ken. Chang, 

Kunyung. “The Case for a Single-Chip Multiprocessor.” Proceedings of ASPLOS-
VII, Cambridge, MA. ACM, 1996. 

 
[KOZ97] Kozyrakis, C. Perissakis, S. Patterson, D. Andreson, T. Asanovic, K. Cardwell, N. 

Fromm, R. Golbus, J. Gribstad, B. Keeton, K. Thomas, R. Treuhaft, N. Yelick, K. 
“Scalable Processors in the Billion-Transistor Era: IRAM.” IEEE Computer. 
September 1997. Pp. 75 – 78. 

 
[OSK98] Oksin, M. Chong, F.T. Sherwood, T. “Active Pages: A Computational Model for 

Intelligent Memory.” The 25th Annual Symposium on Computer Architecture, 1998. 
IEEE, 1998. Pp. 192-203. 

 
[MAR00] Margolus, Norman. “An Embedded DRAM Architecture for Large-Scale Spatial-

Lattice Computations.” The 27th Annual International Symposium on Computer 
Architecture, 2000. IEEE, 2000. Pp. 149-160. 

 
[GOK95] Gokhale, M. Holmes, B. Iobst, K. “Processing in Memory: The Terasys Massively 

Parallel PIM Array.” IEEE Computer. Vol. 28, Issue 4. April, 1994. Pp. 23-31. 
 
[FIL95] Fillo, Marco. Keckler, Stephen W. Dally, William J. Carter, Nicholas P. Chang, 

Andrew. Gurevich, Yevgeny. Lee, Whay S. “The M-Machine Multicomputer.” 
Proceedings of  the 28th Annual International Symposium on Microarchitecture. 
IEEE, 1995. Pp. 146-156. 

 
[LEE98] Lee, Walter. Barua, Rajeev. Frank, Matthew. Srikrishna, Devabhaktuni. Babb, 

Jonathan. Sarkar, Vivek. Amarasinghe, Saman. “Space-Time Scheduling of  
Instruction-Level Parallelism on a Raw Machine.” Proceedings of ASPLOS-VIII, 
California, USA. ACM, 1998. 

 
[BRO00] Brown, Jeremy. Grossman, J.P. Huang, Andrew. Knight, Tom. “A Capability 

Representation with Embedded Address and Nearly-Exact Bounds.” Paper 
submitted to the ASPLOS 2000 committee for review. 

 



April 25, 2001  43  

[GRO01] Grossman, J.P. “Design and Evaluation of  the Hamal Parallel Computer.” 
Proposal for doctoral research submitted to MIT. 

 
[IBMW1] “Blue Logic Cu-11 ASIC.” IBM Publication SA14-2451-00, Copyright 2000. 

Publication may be obtained from http://www.chips.ibm.com. 
 
[TSMW1] TSMC web page, 0.18 micron process summary.  

http://www.tsmc.com/technology/cl018.html 
 
[MOSW1] Mosys web page. TSMC 0.13u process fast 1-T SRAM summary. 

http://www.mosys.com/1t_sram.html . Registration required to access 
design materials. 

 
[PAP93] Papadopoulos, G. A. Boughton. Greiner, R. Beckerle, M. J. “*T: Integrated Building 

Blocks for Parallel Computing”. Proceedings of  the Conference on Supercomputing 
1993. 1993. Pp. 623-635. 

 
[NIK92] Nikhil, R.S. Papadopoulos, G.M. Arvind. “*T: A Multithreaded Massively Parallel 

Architecture.” Proceedings of  the 19th Annual International Symposium on 
Computer Architecture. 1992. Pp. 156-167. 

 
[NUT91] Nuth, Peter R. Dally, William J. “A Mechanism for Efficient Context Switching.” 

International Conference on Computer Design, 1991. 1991. Pp. 301-304. 
 
[WEI98] Weissman, B. Gomes, B. Quittek, J.W. Holtkamp, M. “Efficient Fine-Grain Thead 

Migration with Active Threads.” Proceedings of  the First Merged International 
Parallel Processing Symposium and Symposium on Parallel and Distributed 
Processing, 1998. (IPPS/SPDP 1998). IEEE 1998 Pp. 410 –414. 

 
[HSI93] Hsieh, Wilson C. Wang, Paul. Weihl, William E. “Computation Migration: 

Enhancing Locality for Distributed-Memory Parallel Systems.”  Proceedings of  the 
Fourth ACM SIGPLAN Symposium on Principles & Practice of  Parallel 
Programming, 1993. Pp. 239 – 248. 

 
[CHA93] Chandra, Rohit. Gupta, Anoop. Hennessy, John L. “Data Locality and Load 

Balancing in COOL.” Proceedings of  the Fourth ACM SIGPLAN Symposium on 
Principles & Practice of  Parallel Programming, 1993. Pp. 249 – 259. 

 
[CRO97] Cronk, D. Haines, M. Mehrotra, P. “Thread Migration in the Presence of  Pointers.”  

Proceedings of  the Thirtieth Hawaii International Conference on System Sciences, 
1997. IEEE, Vol. 1, 1997. Pp. 292 –298. 

 
[NUT95] Nuth, Peter R. Dally, William J. “The Named-State Register File: Implementation 

and Performance.” Proceeding of  the First IEEE Symposium on High-Performance 
Computer Architecture. 1995. Pp. 4-13. 

 
[TENW1] Xtensa Application Specific Microprocessor Solutions: Overview Handbook, a 

Summary of  the Xtensa Data Sheet. Tensilica, Inc. Issue date: 2/2000.  



April 25, 2001  44  

 
[ARV90] Arvind. Nikhil, Rishiyur S. “Executing a Program on the MIT Tagged-Token 

Dataflow Architecture.” IEEE Transactions on Computers. Vol 39, No 3. March 
1990. 

  
[CUL91] Culler, David E. Sah, Anurag. Schauser, Klaus Erik. von Eicken, Thorsten. 

Wawrzynek, John. “Fine-grain Parallelism with Minimal Hardware Support: A 
Compiler-Controlled Threaded Abstract Machine.” Proceedings of  the Fourth 
International Conference on Architectural Support for Programming Languages and 
Operating Systems, 1991. ACM, 1991. Pp. 164 – 175. 

 
[NUT97] Nuttall, M. Sloman, M. “Workload Characteristics for Process Migration and Load 

Balancing.” Proceedings of  the 17th International Conference on Distributed 
Computing Systems, 1997. IEEE 1997. Pp. 133 –14. 

 
[ROU96] Roush, Ellard T. Campbell, Roy H. “Fast Dynamic Process Migration.” 

Proceedings of  the 16th International Conference on Distributed Computing 
Systems, 1996. IEEE , 1996. Pp. 637 –645. 

 
[NIK00] Nikolopoulos, Dimitrios S. Papatheodorou, Theodore S. Polychcronopoulus, 

Constantine, D. Labarta, Jesús. Ayguadé Eduard. “User-Level Dynamic Page 
Migration for Multiprogrammed Shared-Memory Multiprocessors.” Proceedings of  
the International Conference on Parallel Processing, 2000. IEEE, 2000. Pp. 95-103. 

 
[CHA94] Chandra, Rohit. Devine, Scott. Verghese, Ben. Gupta, Anoop. Rosenblum, Mendel. 

“Scheduling and Page Migration for Multiprocessor Compute Servers.” Proceedings 
of ASPLOS VI, San Jose, CA. 1994. 

 
[HSI95] Hsieh, W.C. Dynamic Computation Migration in Distributed Shared Memory 

Systems. PhD thesis, Massachusetts Institute of  Technology, Cambridge, MA, 
September 1995. Available as MIT/LCS/TR-665. 

 
[GAL] Galles, Mike. “Scalable Pipelined Interconnect for Distributed Endpoint Routing: 

The SGI SPIDER Chip.” Whitepaper from the SGI website, since removed from the 
web. Contact bunnie@mit.edu for a copy of  this paper. 

 
[MCF97] McFarland, Grant W. CMOS Technology Scaling and Its Impact on Cache Delay. 

PhD Dissertation submitted to the Department of Electrical Engineering of  
Stanford University. June, 1997. 

 
[DALJ98] Dally, William. Chien, Andrew. Fiske, Stuart. Horwat, Waldemar. Lethin, Richard. 

Noakes, Michael. Nuth, Peter. Spertus, Ellen. Wallach, Deborah. Wils, D. Scott. 
Chang, Andrew. Keen, John. “Retrospective: the J-Machine.” 25 Years of  the 
International Symposia on Computer Architecture (Selected Papers). 1998. Pp. 54-
58.  

 



April 25, 2001  45  

[DAL98] Dally, William. Poulton, John W. Digital Systems Engineering. Cambridge 
University Press. 1998. 

 
[NOA93] Noakes, M.D. Wallach, D.A. Dally, W.J. “The J-Machine Multicomputer: An 

Architectural Evaluation.” Proceedings of  the 20th Annual Symposium on Computer 
Architecture. 1993. Pp. 224-235. 

 
[INTW1] Intel Developer Website. http://developer.intel.com.  
 
[AMDW1] AMD Website. http://www.amd.com 
 
[CPQW1] AlphaPoweredLinux Website. 

 http://www.alphapoweredlinux.com/alpha21264.html. 
 
[BAK90] Bakoglu, H.B. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley 

Publishing Company, Reading, MA. 1990. 
 

 


