

Q-Machine: A Spatially-Aware Decentralized

Computer Architecture

Proposal for Research in

Partial Fulfillment of the Requirements for a Doctorate of Philosophy in

Electrical Engineering and Computer Science at the

Massachusetts Institute of Technology

Andrew “bunnie” Huang

April 25, 2001

April 25, 2001 3

Table of Contents
Table of Contents.. 3

Table of Figures ... 4

Table of Tables... 4

1 Introduction... 5

1.1 Technology Scenario ... 5

1.2 The Challenge of Spatially-Aware Decentralized Architectures................................. 8

1.2.1 Latency and Synchronization... 8

1.2.2 Reliability .. 9

1.2.3 Good Single-Threaded Code Performance... 9

1.2.4 Implementation ...10

2 Background..11

2.1 Dataflow..11

2.2 Decoupled-Access/Execute...13

2.3 Processor-In-Memory (PIM) and Chip Multi-Processors (CMP)15

2.4 Latency Reduction ...16

3 The Q-Machine...18

3.1 Programming Model of the Q-Machine ..18

3.1.1 Method Invocations..18

3.1.2 Virtual Queue File...19

3.1.3 Memory Subsystem and Network Interfaces..20

3.1.4 Opcodes, Addresses and Data Types on the Q-Machine......................................20

3.2 Implementation of the Q-Machine...23

3.2.1 Nodes..23

3.2.1.1 Execution Core...24

3.2.1.2 Thread Scheduling ...30

3.2.1.3 Performance Monitor ..33

3.2.1.4 Virtual Memory Subsystem ..34

3.2.1.5 Network Interface and Machine Network ...35

4 Directions...38

4.1 Implementation..38

April 25, 2001 4

4.2 Analysis..39

4.3 Conclusion ..39

5 References ..41

Table of Figures
Figure 1-1: Plot of predicted L1 cache delay versus line width versus cache size. [MCF97] ... 6

Figure 3-1: Programmer’s model of the Q-Machine..19

Figure 3-2: Capability and basic opcode formats. Memories are word-addressed, where a

word is 32 bits..21

Figure 3-3: Basic Q-Machine node structure. The dimensions of the memory subsystem are

approximate. ..24

Figure 3-4: Execution core overview...25

Figure 3-5: A 3-write, 3-read port VQF implementation. pq = log2(# physical registers). Q-

cache details omitted for clarity...26

Figure 3-6: PQF unit cell. ...27

Figure 3-7: Basic thread taxonomy and scheduling chart. ...32

Figure 3-8: Virtual Memory hierarchy of a single Q-Machine node..35

Table of Tables
Table 1-1: Sampling of L1 cache latencies versus clock speed for various commercial

processors. [CHA94] [INTW1] [AMDW1] [CPQW1].. 7

Table 3-1: Rough ISA for the Q-Machine..23

April 25, 2001 5

1 Introduction

The field of computer architecture is in a constant state of flux. The furious pace of

progress in process technology has enabled previously unthinkable architectures to be

implemented. At the same time, it has forced architects to reevaluate system bottlenecks.

With every generation of architecture, complexity is incrementally added to smooth out the

kinks— a few more register file ports, a few more entries in the re-order buffers, some more

branch prediction bits, slightly larger caches. The bad news is that the burden of verifying

and implementing these incremental improvements grows disproportionately with respect to

the ultimate performance gain. Design teams are beginning to fold under the weight of their

own designs, and thus the wheel of reincarnation turns again— computer architects are

rethinking their approach and returning to simpler designs.

Instead of trying to beat the current turn of the wheel of reincarnation, this work will

attempt to address the issues of designing for a scenario one or two turns beyond the

current turn. This chapter will describe this scenario and some of its basic properties.

Chapter 2 will briefly review some ideas, new and old, in the context of this scenario.

Chapter 3 presents the core ideas of this thesis, and Chapter 4 concludes with a discussion

of the challenges that must be met and the goals that must be accomplished by the terminus

of this effort.

1.1 Technology Scenario

This work rests upon the following claims:

April 25, 2001 6

• process scaling is leading to clock frequencies fc with wavelengths ?c significantly

shorter than the characteristic dimension Dc of the system

• the ultimate packing density of performance-critical circuitry will be limited not by

lithography and minimum wire size, but by dimensional requirements set by a

combination of performance requirements, innate electrical parasitics and thermal

dissipation requirements.

The first claim is almost true today for off-chip interconnect, and has been true for a while

for on-chip interconnect. With high-end processors clocking at 1 GHz, the free-space

wavelength is about 300 mm; thus, it is relatavistically impossible to have single-cycle access

to any piece of data more than six inches away from the processor. Once the overhead of

intermediate circuitry, setup and hold times, and lossy transmission lines are considered, the

actual maximum radius of single-cycle access becomes significantly smaller. Thus, as clock

speeds continue to increase, it becomes clear that the traversal of any conventionally sized

computer system will require more clock cycles.

20

25

15

30

35

40

45

50

55

D
el

ay
 (F

O
4)

0.1 0.2 0.3 0.4 0.5

Ldrawn (um)

SIA Cycle Time
128 KB
64 KB
32 KB
16 KB
8 KB

Figure 1-1: Plot of predicted L1 cache delay versus line width versus cache size. [MCF97]

The significance of the second claim is that the reduction in minimum feature size due to

scaling will not be ably to buy us the density we require to get around the limitations

imposed by the first claim. In other words, as clock speeds escalate, the maximum amount

April 25, 2001 7

of memory one can pack within a clock-boundary radius of the processor core is either

constant or decreasing as technology progresses, especially in the on-chip realm. Even though

transistors are becoming smaller and faster, the optimally buffered wire delay is not quite

keeping up. The first-order delay model for optimally buffered wires predicts a linear scaling

of wire delay with device scaling. [BAK90] However, recent designs are demonstrating that

wire delays are exhibiting worse scaling properties than predicted by the simple models. In

particular, the delays of on-chip cache memories have not kept up with the clock rates of

microprocessors. One can see from Figure 1-1, Cache Delay vs. Feature Size, that the

situation is not getting any better. Table 1-1 summarizes the L1 cache performance of some

commercial processors, and gives credence to the predictions of [MCF97]. L1 cache latency

is a critical number for processor performance; increased load latencies impacts IPC and

requires a more complicated microarchitecture to keep the execution units busy. Despite this,

one can see a trend toward multi-cycle L1 caches, driven by the conflicting requirement for a

larger L1 cache.

Thus, in the technology scenario for this thesis, increasing processor clock rate may even

degrade overall performance. The addition of latency-hiding microarchitectural features to

compensate for the higher clock rate grows the processor core area, which again exacerbates

the latency issue. For example, the pieces of the hardware required to support out of order

execution grows roughly as the square of the reorder depth. Also, the effectiveness of

caches diminishes rapidly with increasing cache size.

Processor Clock Rate L1 Data Cache Size L1 Cache Latency

MIPS R3000 33 MHz 64 KB 1

Intel Itanium ~800 MHz 16 KB 2

Alpha 21264 ~800 MHz 64 KB 3

AMD Athlon 1000 MHz 64 KB 3

Intel Pentium III 1000 MHz 16 KB 3

Intel Pentium 4 1400 MHz 8 KB 2

Table 1-1: Sampling of L1 cache latencies versus clock speed for various commercial processors.

[CHA94] [INTW1] [AMDW1] [CPQW1]

April 25, 2001 8

To confound matters, off-chip wiring delays between distributed nodes will grow between

? (N) and ? (3 N), even if the topology provides for log(N) worst-case hops. This is

because even though transistors are becoming smaller, one cannot pack more nodes into a

fixed volume due to the dimension requirements on wires set by parasitics and thermal

dissipation requirements. In the limit that each node is already as small as can be, adding

more nodes means a growth in real space consumed by the machine.

Given that these technology claims are true, continued performance enhancement in the

future will require decentralized processor architectures with distance-aware work-sharing

mechanisms.

1.2 The Challenge of Spatially-Aware Decentralized Architectures

1.2.1 Latency and Synchronization

A decentralized computer architecture is one which distributes its processing and memory

elements throughout the physical body of the machine. This is in contrast with classic von

Neumann architectures that feature a “Central Processor Unit”. Most massively parallel

architectures can be classified as a kind of decentralized architecture, although the

granularity of decentralization varies from PC-based cluster machines to cellular automata

machines.

The primary challenge of designing a decentralized architecture lies in dealing with

computational situations which require centralized control, or more generally, efficient global

connectivity. Events that require global connectivity fall into two related categories:

synchronizing events, and memory events. [IAN88] Synchronizing events involve two or

more control flows agreeing upon a space and time. Memory events typically involve a single

control flow accessing a piece of remote memory. Some parallel architectures implement

synchronizing events using special memory events; other architectures provide explicit

synchronization resources.

April 25, 2001 9

Minimizing the overhead of synchronization and memory reference latency is the challenge

of parallel architecture. Interconnect implementations are rapidly approaching the speed of

light limited domain of operation; architectures have been proposed that could hit this

barrier [DEH93]. Thus, the interesting questions are how to efficiently utilize this network,

and how to beat this speed of light limitation. Many architectures address the issue of

efficient synchronization and latency hiding. The architecture proposed here contains a blend

of old and new ideas tailored toward efficient synchronization and latency reduction through a

spatially-aware dynamic object migration mechanism that minimizes the physical distance

between points of use.

1.2.2 Reliability

A problem sometimes overlooked or treated as an afterthought by computer architects is the

reliability of large, complex systems. The simple fact is that they aren’t reliable; components

will fail and bit error rates are non-zero. Unfortunately, most architectures are very

symmetric, have a rigidly defined topology, and make assumptions about the uniformity of

components. The ability to migrate objects around the system easily, as required by the

latency management criteria, provides a measure of reliability and fault tolerance. Failing

nodes can have objects migrated out of them, and asymmetries in the machine organization

can be accounted for by adjusting the object migration and distribution algorithm. A proper

implementation would also allow the machine can also be dynamically upgraded or serviced

with newer, faster nodes without interruption of service.

1.2.3 Good Single-Threaded Code Performance

Some parallel architectures previously proposed have had problems with good single-

threaded code performance. Despite the advantages of parallelism and the arguments set

forth in this chapter about the limitations of single-node performance due to the limited

packing density of memory around a processor, single-node, single-threaded code

performance is still one of the most important factors in determining system performance.

[SCO96] This is caused, in part, by the fact that parallel speedup is limited by the time

required to execute any sequential portions of the program (Amdahl’s Law).

April 25, 2001 10

The architecture proposed by this thesis attempts to keep single-threaded code performance

high despite the provision of primitives for parallel synchronization and latency

management. This goal is met in part by design philosophy. The architecture is based on a

simple, five-stage pipelined RISC core; all parallel primitives added to this core must incur

minimal overhead when running single-threaded code.

1.2.4 Implementation

The architecture proposed in this work is grounded in the physical world— latency reduction

through spatial awareness. As a result, one important aspect of the architecture is its

implementation, and the spatial and physical constants that are a result of real-world

concerns. The implementer of this architecture is presumed to be working in situation

similar to a fabless semiconductor design house. The standard set of tools, processes and

macros are available, and a very limited number of full-custom blocks are available as well;

the majority of the design will be coded in an HDL such as verilog or VHDL. These

implementation assumptions have a non-negligible impact upon the performance targets and

physical constants used in the analyses of this thesis.

In order to stay true to this implementation model, throughout this work trial

implementations will be run of key architectural components to check assumptions made

about their performance and size. Assumptions that fail the reality check will require a re-

investigation of the architectural techniques proposed in the thesis. [DALJ98], a

retrospective on the J-Machine, provides some commentary upon the importance of

implementation in computer architecture research in the section on “Lessons Learned”.

April 25, 2001 11

2 Background

The genesis of the architecture proposed in this thesis lies in the Dataflow architectures,

Decoupled-Access/Execute (DAE) architectures, and Processor-In-Memory (PIM) and Chip

Multi-Processor (CMP) architectures. As the basic principles of this machine eschew

complexity, superscalar, out of order, and other techniques such as VLIW that require

significant circuit-level complexity are mentioned only in passing. In addition, prior works in

load balancing and object distribution for large parallel machines are discussed here.

2.1 Dataflow

The architecture proposed in this paper is perhaps most closely related to the dataflow

family of architectures, in particular, *T. Hence, a careful examination of the dataflow

machines is important at this time.

Dataflow machines are a direct realization of dataflow graphs into computational hardware.

Arcs on a dataflow graph are decomposed into tokens. Each token is a continuation; it

contains a set of instructions and their evaluation context. The length of the instruction run

and evaluation context method encapsulated within a token can characterize the spectrum of

dataflow architectures. At one end lies the MIT Tagged-Token Dataflow Architecture

(TTDA), where each token represents roughly one instruction and its immediate

dependencies and results, and token storage is managed implicitly. This evolved into the

Monsoon architecture, which has explicit evaluation context management and single-

instruction tokens. Tokens contained a value; pointers to an instruction, and pointers to

evaluation contexts that are compiler-generated frame allocations in a linearly addressed

April 25, 2001 12

structure. Monsoon evolved into P-RISC and *T, which are machines with tokens that

effectively refer to instruction traces and relatively large “stack-frame” style explicitly

allocated frames. The tokens in P-RISC and *T carried only an instruction pointer and a

frame pointer, as opposed to any actual data. [ARV93], [NIK89] One could take this one

step further and claim that an SMT architecture is a dataflow machine with as many tokens

as there are thread contexts, and that a conventional Von Neumann architecture is a single-

token dataflow machine. [LEE94] Provides an excellent overview of dataflow machines and

an analysis of their shortcomings.

Dataflow machines, while elegant, have a few fatal flaws. Their evolution from the TTDA

into near-RISC architectures provides a clue into what these flaws are. The rather abstract

TTDA decomposed dataflow graphs to a near-atomic instruction level. Because tokens can

be formed and dispatched before dependencies are resolved, thousands of tokens are

created in the course of even a simple program execution. [ARV93] states that “these tokens

represent data local to inactive functions which are awaiting the return of values undergoing

computation in other functions invoked from within their bodies”. The execution of any

token required an associative search across the space of all tokens for the tokens that held

the results that satisfied the current token’s data dependencies. This is associative structure is

not implementable even after twenty years of process scaling.

Another flaw of the early Dataflow machines is that every token represented a high-

overhead synchronization event. [IAN88] points out that von Neumann architectures also

perform a synchronization event between each instruction, but its method of

synchronization is very light-weight: IP = IP + 1 or IP = branch target. This allows von

Neumann architectures to grind through straight-line code very quickly; fortunately for the

von Neumann crowd, most code written to date can be straightened out sufficiently with

either branch prediction or trace scheduling to get good performance out of such a system.

P-RISC and *T leveraged this strength of von Neumann architectures somewhat by allowing

a token to represent what are essentially an execution trace and a stack frame. *T actually has

a very similar single-node architecture to the architecture proposed by this thesis: it divides a

single node into a synchronization coprocessor and a data processor. The synchronization

processor is responsible for scheduling threads and dealing with synchronization issues,

April 25, 2001 13

while the data processor’s exclusive job is to execute straight-line code efficiently. However,

the similarity ends there. The *T architecture focuses primarily on latency hiding through

rapid and efficient thread scheduling, starting, and context switching. While this is an

important part of the architecture proposed here, it is also very important to reduce latency

by providing mechanisms for the efficient profiling of communications patterns and the

intelligent migration of data between processor nodes. The machine organization and design

reflects this goal of providing a virtual programming interface that efficiently masks key

details of the machine’s organization without being so opaque as to encourage the

programmer to do naughty things that hurt performance. The proposed architecture is also

targeted at a conventional programming model similar to Java that can easily leverage the

parallelism available in the architecture. Finally, a careful examination of the implementation

strategy outlined in [PAP93] reveals a number of important differences (and similarities)

between the architecture proposed here and *T. One significant difference is this

architecture’s use of a queue-based interface between threads, with implicit synchronization

through empty/full bits, similar to the scheme used in the J-Machine. [NOA93] *T uses a

register-based interface with a microthread cache to enable efficient context switching, and

explicit, program-level handling of messages that could not be injected into the network.

The use of self-synchronizing queues of an opaque depth in this architecture helps cushion

network congestion and scheduling hiccoughs.

2.2 Decoupled-Access/Execute

Decoupled-access/execute (DAE) machines hide memory access latencies with

architecturally visible queues that couple separate execute and access engines. Code for these

machines are typically broken down by hand or compiler into an access and execute thread;

latencies are hidden because the access thread, which handles memory requests, can “slip”

ahead of the execute thread. Relatively few machines have been built that explicitly feature

DAE. The architecture was first proposed in [SMI82] and later implemented as the

Astronautics ZS-1 [SMI87]. [MAN90] characterizes the latency-hiding performance of the

ZS-1 in detail, and [MAN91] compares the performance of the ZS-1 to the IBM RS/6000.

A comparison of DAE versus superscalar architectures can be found at [FAR93], and a

comparison of DAE versus VLIW architectures can be found at [LOV90]. Another

proposed DAE architecture is the WM Architecture [WUL92], and a novel twist on DAE

April 25, 2001 14

architectures where the access unit is actually co-located with the memory is proposed in

[VEI98]. The architecture proposed in this thesis parallels many of the ideas in [VEI98].

The basic message contained in all the previously cited papers is that by judiciously dividing

a processor into two spatially distributed processors, greater than 2x performance gains can

be realized. This super-linear speedup is results from latency that was architecturally bypassed

by either allowing the memory subsystem to effectively slip ahead and prefetch data to the

execution unit, or by physically co-locating the access unit with the memory. DAE ideas can

actually be applied generically to any machine with a large amount of explicit parallelism by

simply dividing every program into two threads, an access thread and an execute thread. The

advantage of explicit DAE machines is that the synchronization between the access and

execute threads is very fast because they are coupled via hardware queues. Some

conventional out of order execution machines also provide a certain amount of implicit

access/execute decoupling via deep, speculative store and load buffers. However, in general,

conventional architectures that emulate these queues in software ultimately find themselves

drowning in synchronization overheads.

Another important message is that queues are like bypass capacitors in computer

architecture. They low-pass filter the uneven access patterns of high-performance code and

help decouple the demand side of a computation from the supply side of a computation.

Like bypass capacitors, the time constant of the queue (i.e., the size of the queue) has to be

sufficiently large to filter out the average spike, but not so large as to reduce the available

signal bandwidth and hamper important tasks such as context switching. The overhead of

the queue structure must also be small so that the benefits of queuing can be realized. An

area of research for this thesis is the modeling of computation in a queue-rich environment,

and exploring the impact of this upon multiprocessor communications and organization.

Unfortunately, DAE machines as a whole are plagued with a few problems. There are no

compilers that generate explicit access and execute code streams; most benchmarks and

simulations in the cited papers were with hand-coded access and execute loops. Also, the

effectiveness of DAE is questionable on complicated loops and programs with complicated

and/or dynamic dataflow graphs. DAE is very specifically targeted at hiding memory

April 25, 2001 15

latencies, and not much else. However, the basic idea of decoupling access and execute units

is a powerful one, especially if one allows the physical access and execute units to be

assigned dynamically to a single virtual control thread. The ability to create these “virtual”

DAE machines allows access and execute units to migrate throughout the machine and

optimize latency on a thread by thread basis. A sufficiently flexible infrastructure would also

allow several execute units to be chained together, thus providing a kind of loop unrolling

and a facility for streaming computations without any modification to the code. Because this

chaining is dynamic, such a machine could be upgraded to have more processors and a

greater performance would be realized without recompiling the code. The architecture

proposed in this thesis allows such virtual DAE machines to be created in a compiler-

friendly fashion.

2.3 Processor-In-Memory (PIM) and Chip Multi-Processors (CMP)

PIM architecture has recently become accessible due recent advances in process technology.

[TSMW1] [IBMW1] [MOSW1] Very fine-line geometries have made it possible to integrate a

sufficient amount of SRAM on-chip to make an interesting processor node. Also, the

availability of DRAM embedded on the same die as a processor opens the door to even

more interesting possibilities. The fact that the memory is included on the same die as the

processor implies a power and performance advantage due to the elimination of chip-chip

wiring capacitances and wire run lengths. It also offers a performance advantage because

more wires can be run between the memory bank and the processor than in a discrete

processor-memory solution. The advent of extremely high integration process technology

has also made it possible to put several processor cores on a single silicon die. A paper that

summarizes some of the key arguments for CMP architectures can be found in [OLU96].

Some architectures that have been proposed which take advantage of some combination of

embedded memory technology and chip multiprocessor technology include RAW [LEE98],

I-RAM [KOZ97], Active Pages [OSK98], Decoupled Access DRAM [VEI98], Terasys

[GOK95], SPACERAM [MAR00], and Hamal [GRO01].

The level of performance available to users of embedded DRAM is remarkable.

Traditionally, DRAM is thought of as the sluggish tanker of memory, while SRAM is the

speed king. A recent DRAM core introduced by MoSys (the so-called 1-T SRAM), available

April 25, 2001 16

on the TSMC process, has proven that DRAM has a place in high performance architectures.

[MOSW1] The 1-T SRAM is based on a DRAM technology, but has a refreshless interface

like a SSRAM (synchronous SRAM). The performance of this macro is also sufficiently

high— 2-3 cycle access times at 450 MHz in a 0.13µ process— to entirely eliminate the need

for data caches in the processor design. Note that the processor frequency target for this

thesis work is on par with compiled processor frequency targets, which is typically a factor of

2-4 below the level of the full-custom processors developed by Intel, AMD, and Compaq.

The nVIDIA series of graphics processors are the canonical speed benchmark used for

compiled processors in this work. Private conversations with employees at nVIDIA and

observations of the die layout reveal that their processors are designed using a behavioral

HDL design flow, and that physical design is done using primarily synthesis tools and timing

guided placement. Anecdotal evidence gleaned from websites indicates that nVIDIA

achieves 200 to 250 MHz performance at the 0.15µ technology node. Finally, because the 1-

T SRAM has the memory cell structure of DRAM, the density of these macros is similar to

the embedded DRAM macros offered in other processes (2.09 mm2 per Mbit for a DRAM

macro on IBM’s Cu-11 process [IBMW1] versus 1.9 mm2 per Mbit for a MoSys macro on a

TSMC 0.13µ logic process [MOSW1]).

The architecture proposed in this work leverages both the high level of logic integration

available in future process technology and the availability of off-the-shelf, fast, dense

memories to create a distributed massively parallel architecture with good single-threaded

code performance.

2.4 Latency Reduction

There is a large body of relevant work in the area of data placement and thread migration as

latency optimization techniques in parallel machines. Many techniques are specific to a

particular class of machine, with the closest relative of the architecture proposed here being

NUMA (non-uniform memory access) style machines.

The two broad categories of migration techniques are data migration and computation

migration; many techniques combine aspects from both categories. Data migration is the

movement of data toward a point of computation to reduce latency; dynamic page-

April 25, 2001 17

migration techniques explored in [CHA94] and [NIK00] are examples of this. Simple page

migration techniques have been shown to improve performance on NUMA machines by

over a factor of two in many cases. Computation migration is the movement of code

execution toward synchronization points (other code) or accessed memory. Examples of this

include the fine-grained Active Threads explored in [WEI98] and computation migration in

[HSI93] and [HSI95], and the coarse-grained dynamic process migration explored in

[ROU96]. Techniques to make data placement easier through better programming languages

has also been explored [CHA93] [CHA94], and a method for dealing with pointers through

thread migrations is outlined in [CRO97].

A general observation of all the works surveyed so far is that the architectural overheads for

migration are enormous— some papers quote thread migration times in milliseconds or

hundreds of microseconds, often times due to the need to perform asynchronous traps to

the kernel. While significant performance gains were demonstrated in the face of such

overheads, some papers reported a near net zero gain. [NUT97] [ROU96] Making thread

migration, data movement and profiling cheap is a key objective of the architecture

proposed here. Another important objective is the integration of migration into the system

as a whole, from the language level to the hardware level. Part of the reason why most

migration schemes suffered from such high overheads is that they are an afterthought or

retrofit upon existing architectures. A cleanly integrated migration scheme will not only

reduce overheads, but also make it easy for programmers to leverage migration in their code.

April 25, 2001 18

3 The Q-Machine

This thesis proposes a decentralized architecture that is spatially-aware: the Q-Machine. This

architecture provides a rich synchronization namespace, a low-overhead synchronization

mechanism, a low-latency, scalable interconnect topology, an introspective mechanism for

profiling machine behavior and status, and a mechanism for transparently migrating objects

around the machine. This architecture is also designed to give good single-threaded code

execution performance despite its support for a native multiprocessor environment.

3.1 Programming Model of the Q-Machine

The programmer’s-eye view of the Q-Machine is very simple, but slightly novel. A

programmer develops code in a sanitary object-oriented environment with garbage

collection. The object paradigm implies an intimate pairing of code and data, and this

information is made available to the architecture so that it may optimize data access patterns

more easily. Figure 3-1 summarizes the machine model presented to the coder.

3.1.1 Method Invocations

Every method invocation is treated as a new thread insofar as the local temporary

namespace is re-used. Thus, there is no concept of a stack or stack frames, as there is no

concept of a procedure call: each method invocation has a unique context ID and a private

set of 128 names with queue semantics. These lightweight threads are probably better

described as “continuations”, because when they block on a queue becoming empty or full,

their state is recorded as a register frame and an instruction pointer. Unlike the dataflow

machines, these continuations cannot be passed around during normal operation as a token,

as this would incur by far too much communications overhead. Continuations are executed

April 25, 2001 19

on the local processor until the garbage collector decides to migrate the continuation to

another processor for either load balancing or locality reasons.

3.1.2 Virtual Queue File

The Q-Machine uses queues in lieu of registers in the structure that is conventionally

referred to as the “register file”. Thus, successive writes to a queue does not clobber the

preceding writes’ data (although at the assembly level, this option is provided for): rather, the

values queue up until successive reads from the queue consumes these values. Reads from an

empty queue cause the machine to stall or block; writes to a full queue also block. As

mentioned previously, an option is provided in the instruction opcodes that cause values to

be copied or clobbered, so that a queue can be used as a normal register if the compiler so

desires. As a final twist, the heads and tails of queues may be remapped to different contexts,

thus allowing for a synchronized mechanism for inter-thread communication. This

remapping happens via the network interface to allow for the possibility that the source and

destination contexts do not exist on the same physical node. Arguments are passed between

threads through remapped queues. Knowledge about remapped queues are stored as

pointers in memory, so that a reference counting garbage collection mechanism can be used

to efficiently migrate continuations about the machine through the use of forwarding

pointers.

IP

q0

q1

q2

q126

q127

...
head data

full
tail data
empty

(depth not specified)

64-bit entries

context ID (capability)

map

q-file

large self-throttling
virtual memory

virtual queue
interface

accessed via Q-map

Figure 3-1: Programmer’s model of the Q-Machine

April 25, 2001 20

3.1.3 Memory Subsystem and Network Interfaces

As far as the programmer is concerned, memory is also accessed via queue structures. A pair

of queues is allocated for a load or a store, representing the address and data path for these

operations. Addresses can be speculatively generated and queued before the first piece of

data becomes available. Multiple memory queue maps can be allocated for a thread.

Tables of network communication statistics are accumulated in a set of registers that are not

visible to the applications programmer. The accumulation of statistics is accomplished by a

fiduciary processor, so that there is no performance penalty associated with this operation.

The operating system accesses these tables during garbage collection, and as part of the GC

algorithm, objects may be moved to optimize access latency between objects.

Finally, there is no coherent global shared memory in this machine, as is the case on

ccNUMA machines. Instead, a large shared address space is presented to the user, where the

physical node that owns a piece of data is hard-coded into the address. Thus, method

threads running on an object must be located on the same physical node as the storage for

that object. This discipline is maintained in part by the way context IDs are represented in

the Q-Machine’s implementation.

Each processor node has a large virtual memory space. The memory hierarchy is structured

so that it is self-throttling; allocating large amounts of memory on a single processor will

dramatically increase the access latency to memory, so that the allocation process itself slows

down. This gives the GC a chance to run and move objects out of that node before the

physical memory is exhausted.

3.1.4 Opcodes, Addresses and Data Types on the Q-Machine

The format of instructions, addresses and data types on the Q-Machine is given in Figure

3-2. A table for an initial ISA for the Q-Machine is given in Table 3-1.

Branch instructions encode in them a 12-bit branch history field, which is updated by the

instruction fetch unit based on the direction that the branch took after the arguments are

evaluated. The history field is written back into the instruction cache, but no effort is used to

April 25, 2001 21

ensure global coherence of this field between processors. The compiler may specify the

initial value of this field if it wishes to be clever, but by default, it is either initialed to all

“branch taken” or “branch not taken”. The branch history field allows the instruction

prefetcher to make better decisions without actually consuming any processor real-estate for

a branch prediction table. This technique gives an effective branch prediction table as large

as the instruction memory. It can also give persistent branch predictions if the values

eventually find their way to the original binary code written to disk.

Jump opcodes encode in them a 28 bit destination storage field. This field, like the branch

history bits in the branch opcode, is updated every time the jump is taken, written to the

instruction cache, but no effort is consumed to ensure global consistency. The destination

field allows the instruction prefetcher to speculatively fetch the next instruction after a jump;

some check and rollback mechanism is required in the case that the actual jump destination

is different, as would be the case in a dynamic dispatch table.

Capability Format

8 bits
opcode

7 bits
VQA

7 bits
VQB

7 bits
VQC 32 bits constantstandard OP

8 bits
opcode

7 bits
VQA

7 bits
VQB 28 bits rel. offsetbranch OP

link cond

8 bits
opcode

7 bits
VQA

7 bits
VQB 28 bits dest storagejump OP

link dest

12 bits
history

28 bits address15 bits base/
bounds/finger

1 bit inc-only

side band 8 bits
(on all data even if

not shown)
primary data 64 bits

4 bits sideband tag

4 bits parity

6 bits
tag
and
prot.

14 bit proc ID

invalid

Figure 3-2: Capability and basic opcode formats. Memories are word-addressed, where a word is 32

bits.

April 25, 2001 22

In order to accelerate GC and to help make continuation storage in memory more efficient,

addresses are represented using a capability format. [BRO00] This capability format allows

methods to extract a conservatively correct object base and bounds given any valid pointer.

Notice how the capability format explicitly codes the processor ID in the address field. This

is used to accelerate object migration and backing storage allocation, as described later in this

proposal. Other uses for the capability format, including sparse object allocation across

multiple processors, are outlined in [GRO01].

One will also note that while the addressable space of the machine is limited to 16 TB, an

individual node can only address up to 1 GByte of virtual memory. This limitation is

considered acceptable because one of the critical assumptions of this thesis is that physical

distance to memory combined with the packing density of memory cells places a lower

bound on the access latency to memory. Any programmer interested in optimal performance

should not be allocating 1 GByte monolithic objects on a single node; rather, a distributed

approach should be taken to allocating very large objects to enhance performance and take

advantage of the fine-grained multiprocessor nature of the Q-Machine.

ADD qa, qb, qc - qc <- qa+qb
SUB qa, qb, qc - qc <- qa-qb
MUL qa, qb, qc - qc <- qa*qb
DIV qa, qb, qc - qc <- qa/qb
ADDC qa, n, qc - qc <- qa+n
SUBC qa, n, qc - qc <- qa-n
MULC qa, n, qc - qc <- qa*n
DIVC qa, n, qc - qc <- qa/n
AND qa, qb, qc - qc <- qa & qb bitwise
OR qa, qb, qc - qc <- qa | qb bitwise
XOR qa, qb, qc - qc <- qa ^ qb bitwise
SHL qa, qb, qc - qc <- qa << qb bitwise
SHR qa, qb, qc - qc <- qa >>> qb bitwise, 0 fill
SRA qa, qb, qc - qc <- qa >> qb bitwise, sign extend
ANDC qa, n, qc - qc <- qa & n bitwise
ORC qa, n, qc - qc <- qa | n bitwise
XORC qa, n, qc - qc <- qa ^ n bitwise
SHLC qa, n, qc - qc <- qa << n bitwise
SHRC qa, n, qc - qc <- qa >>> n bitwise, 0 fill
SRAC qa, n, qc - qc <- qa >> n bitwise, sign extend
SEQ qa, qb, qc - qc <- qa == qb ? 1 : 0
SNE qa, qb, qc - qc <- qa != qb ? 1 : 0
SLT qa, qb, qc - qc <- qa < qb ? 1 : 0
SGT qa, qb, qc - qc <- qa > qb ? 1 : 0
SLE qa, qb, qc - qc <- qa <= qb ? 1 : 0
SGE qa, qb, qc - qc <- qa >= qb ? 1 : 0
SEQC qa, n, qc - qc <- qa == n ? 1 : 0
SNEC qa, n, qc - qc <- qa != n ? 1 : 0
SLTC qa, n, qc - qc <- qa < n ? 1 : 0
SGTC qa, n, qc - qc <- qa > n ? 1 : 0
SLEC qa, n, qc - qc <- qa <= n ? 1 : 0
SGEC qa, n, qc - qc <- qa >= n ? 1 : 0
FADD qa, qb, qc - qc <- qa+qb (float)

April 25, 2001 23

FSUB qa, qb, qc - qc <- qa-qb (float)
FMUL qa, qb, qc - qc <- qa*qb (float)
FDIV qa, qb, qc - qc <- qa/qb (float)
FADDC qa, n, qc - qc <- qa+n (float)
FSUBC qa, n, qc - qc <- qa-n (float)
FMULC qa, n, qc - qc <- qa*n (float)
FDIVC qa, n, qc - qc <- qa/n (float)
FCPYS qa, qb, qc - qc <- qa[63] || qb[62:0]
FCPYSEX qa, qb, qc - qc <- qa[63:52] || qb[51:0]
FCPYSN qa, qb, qc - qc <- NOT(qa[63]) || qb[62:0]
BR label - ip <- index(label)
BRL label, qc - qc <- ip, ip <- index(label)
BRZ qa, label - qa == 0, ip <- index(label)
BRNZ qa, label - qa != 0, ip <- index(label)
JMP qa - ip <- qa
MOVE qa, qc - qc <- qa
MOVEC n, qc - qc <- n, where n is long or float
FLUSHQ qc - set qc empty
MML qi, qj - map 'qi to load addr, 'qj to data return
MMS qi, qj - map 'qi to store addr, 'qj to data
PROCID qc - qc <- thread.context_id
FORK label, qc - new thread starting at label,
 qc <- new thread.context_id
MAPQ qi, qj, qa - 'qi mapped to 'qj in context qa
MAPQI qi, qb, qc - 'qi mapped to qb in context qc
UNMAPQ qi - 'qi unmapped in current context
CONSUME qa - read from qa, discard
EEQ qc - nop conditional on empty qc
HALT arg1, arg2 - kill current thread

Above, 'qi means the literal queue, not the value stored in the queue.
Table 3-1: Rough ISA for the Q-Machine

3.2 Implementation of the Q-Machine

The Q-Machine consists of two basic components: nodes and network.

3.2.1 Nodes

The basic structure of a Q-Machine node is illustrated in Figure 3-3. A node consists of an

execution core, a network interface, a thread scheduler/performance monitor, and a virtual

memory subsystem.

April 25, 2001 24

Execution
Core

Thread
Scheduler &
Performance

Monitor

Network Interface

context ID

IP

queue blocked

queue retired

message to queue
arrival notification

message to queue
data

message to other
context data

Virtual
Memory

Subsystem
(1 MB fast acess, ~32 MB backing,

~200 MB disk)

programmed
loads and stores Q-cache port

to network

Figure 3-3: Basic Q-Machine node structure. The dimensions of the memory subsystem are

approximate.

3.2.1.1 Execution Core

The organization of the execution core is illustrated in Figure 3-4. The execution core

consists of the virtual queue file (VQF), a MAP box, an ALU/MEM box, and connections

to the network interface and thread scheduler. The diagram does not show pipeline stages

for clarity; however, the entire execution core pipeline is kept very short and simple so that

stalls and restarts are fast. A very simple scheduler built into the core that observes the

incoming work queue and the state of the machine enables limited out-of-order execution

between different thread contexts in the case of stalls and blocks.

April 25, 2001 25

VQF
(read half)

ALU,
MEM

VQF
(write half)

from NI

to NI

MAP

issue VQN,
context ID,
from thread
scheduler

A

A

D D

D D

work window/
round robin

Figure 3-4: Execution core overview.

The virtual queue file (VQF) implements the following functionality:

• given a read command, read <context ID, Q #>, return the bottom piece of

data at that queue or a block if there is no data

• given a write command, write <context ID, Q #, data> , write the given

data to the top of the specified queue, and block if that queue is full

The astute reader will notice by this point that the VQF as described is not feasible for direct

implementation. The fact that a virtually unlimited number of thread contexts are available

at the drop of a hat to the programmer should have been cause enough for alarm. The truth

is that these contexts don’t actually exist in exactly the same way that the majority of the

memory pages in a virtual memory system don’t exist. The context ID for a thread

continuation corresponds directly to the virtual address used as backing storage for the

context’s active queue state and local variables. Thus, the VQF itself has a memory hierarchy.

At the heart of the VQF is the physical queue file (PQF), which directly implements an

architecturally unspecified number of queues. The PQF is attached directly to the

computational units. The size of the PQF should be set by the details of the target

implementation process; however, for good single-threaded performance, the PQF should

embody at least the 128 queues available to a single context. The PQF has a structure similar

to a multi-ported register file, and it is capable of swapping an entire queue into and out of a

Q-cache (QC) in a single cycle. Empty queues are not swapped into the QC; rather, they are

April 25, 2001 26

simply marked as empty and they consume no further bandwidth or space. The memory

subsystem contains special hardware to accelerate the marking and swapping of empty

queues. A good compiler will arrange for threads to have all empty queues when execution

stops, so that dead threads consume a minimal amount of space until they are GC’d.

The QC has a structure similar to a memory cache; when it overflows, cache lines are

strategically written out to main memory. The fact that every queue in the system has some

location in memory reserved for its storage is a feature that is used by the GC mechanism to

clean up after dead threads or to migrate objects.

wr rd

CAM
64-to-6,

64 entries

CAM
64-to-6,

64 entries

CAM
55-to-6,

2^pq entries

CAM
64-to-6,

64 entries

CAM
64-to-6,

64 entries

CAM
55-to-6,

2^pq entries

Q$ write port

Q$ read port

2^pq *
65

65 6565656565

65 65 65 65

pq

65 65 65

context ID + reg # context ID + reg #write data +
full bit

read data +
empty bit

spill to memory

underflow from memory

qdepth
* 65

qdepth
* 65

q depth

pq

pq

pq

pq

pq

tag

tag

Figure 3-5: A 3-write, 3-read port VQF implementation. pq = log2(# physical registers). Q-cache

details omitted for clarity.

The physical queue file actually does not take up significantly more space than a regular

multiported register file. The reason for this is the fact that a register file is wire-dominated;

the active transistor area underneath a register file cell is a small fraction of the area allocated

for wires.

April 25, 2001 27

Figure 3-6 illustrates the unit cell for a 3 read-, 3 write-port PQF with sufficient Q-cache

wires to manage a 4-deep queue. The wiring pitch is based on numbers taken from the

TSMC 0.18u process guide [TSMW1]. The wiring requirements for the unit cell of the PQF

would consume 4851 ? 2 alone, using minimum-pitch M5/M6 wires. For comparison, the

area of a 6-T SRAM cell in the TSMC 0.18u process is 574 ? 2, allowing eight such cells to be

placed underneath a PQF unit cell. For better performance, fatter wires with wider spacing

may be employed, thus increasing the area underneath the unit cell for the implementation

of the actual Q structure storage and control logic.

EXWDn

NAWDn

NBWDn

QCDAn

QCDBn

QCDCn

QCDDn

XARDn

XBRDn

NTRDn

EXWCq

NAWCq

NBWCq

QWCq

QRCq

XARCq

XBRCq

NTRCq

7 lamda

signal contact area

pwr/gnd on m3/m4,
signals on m5/m6
local on m1/m2

buried pwr/gnd
contacts

77 lamda

63 lamda

unit cell is 4851 lamda square
39.3 micron square in 0.18 u

TSMC 0.18u puts 6T
SRAM cell at 4.65 micron
square or 8 such cells in

this area

Figure 3-6: PQF unit cell.

Hence, a PQF implementation which has relatively shallow queues (4 to 8-deep) can be

implemented within a factor of two of the amount of space as a regular register file with a

similar number of ports. As process technology progresses, even greater depth queues will

April 25, 2001 28

be enabled, at the expense of either more or faster wires required for swapping to the Q-

cache.

A similar idea to the VQF implementation outlined here is the Named-State Register File

(NSRF). [NUT91], [NUT95] The NSRF is a register file with an automated mechanism for

spilling and filling thread contexts. It utilizes context ID numbers to uniquely identify the

threads, and a CAM memory to match the individual register file entries to their proper

contexts. Unlike the VQF, the NSRF dumps its state directly into the processor data cache.

The Q-Machine does not do this because there is no data cache on the Q-Machine, and even

if there were, the combination of having to add an extra read/write port to the D-Cache and

cache pollution issues would present a strong case for having a separate Q-cache. While the

VQF is introduced primarily to support a disassociated physical-to-logical mapping of

processors to threads, it is interesting to note that the NSRF did provide small (9% to 17%)

speedups to parallel and sequential program execution. Also of note is that cache-style

register files such as the NSRF and VQF provide higher overall register file utilization: the

NSRF was demonstrated to have 30% to 200% better utilization than a conventional register

file. [NUT95]

The MAP block is responsible for determining if a queue is mapped to another context. The

MAP block is issued a request to discover a queue mapping at the time the instruction is

issued, giving it the whole pipeline latency of the machine to do this work. The MAP

operation is potentially complex and could be a cause of many stalls if the machine is not

designed correctly.

The reason the MAP block only needs to be decoded for write targets is because the only

legal queue mappings allowed on the Q-Machine are forward mappings. In other words, it is

impossible to create a mapping that “pulls” data out of another context; instead, one can

only inject data into a target context. As apparent from the diagram, the MAP function is

thus invoked for both incoming writes from the NI and for local results from the

ALU/MEM unit. This keeps the read latency from the VQF low, while giving the MAP

function time to do its translation for writes.

April 25, 2001 29

Recall that the context ID for a thread is in fact a capability that points to the storage region

for the thread’s backing storage and local data storage. This capability has permissions set

such that a user process cannot dereference this capability and use it as a memory pointer,

but the OS and MAP function have access at all times to this information. Refer to Figure

3-2 for a review of the capability address format of the Q-Machine. Given this, the basic

algorithm for the MAP block is as follows:

• If the Proc ID field of the context ID does not equal to the Proc ID of the local

processor, send the write to the NI

• Otherwise, consult an internal cache that records the presence of a mapping on the

specified queue for the specified context. If there is no map present, pass the write

on to the VQF. If there is a map present, consult the map table to discover the

proper mapping and ship the data off to the NI for routing (even if it is a map-to-

self). Mark the queue as full and block the thread until the NI reports successful

delivery of data

The map presence cache is used to help accelerate the typical case where there is no

mapping. A larger map presence cache can be held in memory than a cache with presence

bits and the actual mappings. In the case that the mapping table overflows, a lookup into a

backup table must occur and the machine thrashes. Also, in the case that a mapping does

exist, it is okay to take a few extra cycles to retrieve the mapping from memory. Perhaps a

small cache of mappings will also be maintained if the mapping lookups are determined to

be a severe bottleneck.

The ALU/MEM subsystem is relatively straightforward. The ALU implements all the

standard execution core functions— integer and floating point arithmetic, compares, and

logicals. It is pipelined to a depth of two or three stages. The MEM subsystem contains a

fast path to the local on-die memory. No caches are required in this path; the on-die memory

is designed to return hits within two to three processor cycles, plus a cycle for the TLB

operation. Memories on a likely target process, such as the TSMC 0.13u process, already

exist which achieve this performance goal, and they can be purchased as hard-cores from

Mosys. [MOSW1]

April 25, 2001 30

Let us now take a moment to consider the performance of a single node on single-threaded

code. In the case that a single thread is running on the machine, the PQF, if it has at least

128 queues, is capable of holding an entire context in-core. Thus, no stalls are incurred when

executing from a single context. Also, the MAP function is able to complete its

determination that no mappings occur within the latency of the arithmetic pipeline, so no

stalls are incurred as a result of that, either. Finally, the memory subsystem of the Q-

Machine is fast, or at least on par with conventional uniprocessors. The local ~ 1MByte of

data is accessible within a couple of clock cycles (on par with the L1 cache latencies of

conventional processors on the market today), and access latency to the virtual memory

subsystem is on par with conventional processors. Thus, the entire critical path of the Q-

Machine node resembles, to a good approximation, that of a conventional RISC machine

when executing single-threaded code. This is in-line with the goal of not sacrificing single-

threaded code performance on the Q-Machine.

3.2.1.2 Thread Scheduling

The basic unit of execution on the Q-Machine is called a thread. Threads are very

lightweight on the Q-Machine, and are similar in nature to continuations or microthreads in

other architectures, such as the Dataflow machines. [PAP93] The Q-Machine architecture is

similar to the hybrid dataflow architectures in that thread state is not passed around as a part

of tokens on the network; rather, a message may be passed to activate or invoke a thread,

but the actual migration of thread data is considered to be a high-cost operation that is

managed by the garbage collector. A subtle difference between the dataflow machines and

the Q-Machine is that the duration of the run-time for a thread varies dramatically

depending upon the demands of the user program. A thread of execution may run for a

long period of time, as is the case when the working set for the local processor exhibits good

locality and poor parallelism. Other threads may execute for just a few instructions, as would

be the case on a sparse-matrix operation, or on a memory reference thread.

Because procedure calls are treated like threads, the number of threads on a single processor

can grow quite rapidly. In order to manage this potential explosion of threads, the thread

scheduler imposes a hierarchical structure on the thread state of the machine. This structure

is outlined in Figure 3-7.

April 25, 2001 31

There are two general classes of threads on a Q-Machine node: active and retired. Active

threads are considered for execution on each round of scheduling; retired threads are

swapped out until some condition (typically a queue blockage) is resolved. Each object on

the machine is given a light-weight server thread that always remains in the active set of

scheduled threads. Beneath each object is a set of threads grouped by method invocation;

these threads are referred to as a method group. A method group is scheduled essentially

depth-first, under the premise that each method is implemented in a single-threaded frame

of mind. Method groups may not be executed in strictly depth-first order, because queues

used to link arguments between procedure calls within the group may block because they are

full, and the predecessor to the bottom-most active thread may have to scheduled in again to

drain the last few arguments waiting to be passed. This method of dividing threads into

groups is similar to the H- and V-threads scheme used in the M-Machine. [FIL95] Similarly, a

method for scheduling threads (continuations) based on empty/full bits of work queues is

used in the J-Machine [NOA93].

Thus, the active set of threads consists of object servers and the bottom-most procedure

call of each method group. These threads in the active set are scheduled in some fashion

that guarantees fairness without starvation. It is a topic of research to discover the optimal

scheduling algorithm given the limited set of computational resources available in the Q-

Machine scheduler implementation.

April 25, 2001 32

object server created
by new object

method
invocations

Messages from NI

messages from local
threads mapped to local

threads

messages from remote
threads mapped to local

threads

time

= threads scheduled for unfair execution

= threads retired until a successor blocks

object server created
by new object

object server created
by new object

depth-first scheduled
method group

Figure 3-7: Basic thread taxonomy and scheduling chart.

The thread scheduler of the Q-Machine is implemented as a conventional RISC

microprocessor with some dedicated hardware resources to facilitate the task of scheduling.

Note that the Tensilica [TENW1] configurable microprocessor core, for example, can be

implemented in as little as 0.7 mm2 in a 0.18u process with a typical performance of 320

MHz. The actual area would be about 50% larger because an instruction cache would be

required to sustain high performance, but a data cache is not required because the core

would be fed by a dedicated MoSys memory macro that can run at processor speeds.

[MOSW1] In order to accelerate the task of scheduling threads, application specific

hardware is necessary. The total response latency from an incoming network request to a

thread being scheduled into the Execution Core’s work queue should be a few cycles at most

under light loads. Depending upon the area restrictions of the machine, this special hardware

will be implemented as a combination of reconfigurable hardware and auspiciously chosen

hard-cores. [CUL91] gives insight into an architecture that has addressed similar thread

scheduling issues and tradeoffs. [NIK92] describes the *T architecture which has a similar

April 25, 2001 33

single-node organization with a separate synchronization coprocessor to handle thread

scheduling, and a RISC microprocessor to handle straight-line code execution.

The ability of the thread scheduler to handle its workload will have a strong impact upon the

multi-threaded performance of the Q-Machine. It will also have an impact upon the

structure of the user’s code. A pathological example would be if a user allocated a large array

of objects based on the Integer class that implement a specific computational method,

and simply issued a large number of messages to invoke methods on these objects for a

massively parallel computation. Each integer would have a thread assigned to it; even if the

threads are lightweight, the synchronization and storage overhead is likely to outweigh the

benefits of this style of computation (which is, incidentally, very similar to the original

Dataflow style of parallelism [ARV90]). The exact breakpoint of how fine of a grain users

can break their parallel code into is determined largely by the amount of overhead incurred

by the thread scheduler and thread storage in the Q-Machine implementation. One key

benefit of the Q-Machine architecture, however, is that distributing the objects over more

processors can mitigate this overhead. Another key benefit is that the user has the ability to

choose, through coding discipline, a level of granularity for their parallel tasks that spans a

fairly broad spectrum.

3.2.1.3 Performance Monitor

An important aspect of the Q-Machine from the systems standpoint is the on-line

performance monitor. This is a function likely to be integrated into the thread scheduler

unit, but important enough to be mentioned in a section on its own. The performance

monitor plays an important role in the programming and debug of the machine, in the run-

time environment of the machine, and in the reliability and fault tolerant aspects of the

machine.

A key challenge faced by programmers of large parallel systems is performance profiling and

the debugging of hairy, multithreaded code. Simply wading through core dumps and

attaching gdb processes to various threads is a tedious and time-consuming process.

Similarly, inserting system calls to time functions or standard-output functions such as

printf often incurs locking and kernel overhead that significantly alter the performance of

April 25, 2001 34

a parallel program. One of the design goals of the on-line performance monitor is to be able

to collect the right kind of data without any overhead to the running program so that

programmers can easily discover bugs and tune programs for optimal performance.

The run-time environment for the Q-Machine will also leverage the information collected by

the performance monitor to optimize data placement and communications patterns in the

machine. The garbage collection process polls the performance monitor for hot-spots and

attempts to migrate data and threads to alleviate such hot-spotting. This kind of dynamic

data migration and placement has been shown to give significant performance benefits in

even coarsely parallel, non-speed of light limited cluster machines such as the Stanford

DASH. [CHA94] I predict that dynamic data and thread migration will be crucial in future

machines which are heavily impacted by the locality of data due to latency limitations placed

by the speed of light.

The performance monitor can also be used to monitor the health of a machine. It can

collect information about bit error rates on network interfaces and parity errors in memory

cells. It can also be connected to other key system health indicators, such as core voltage and

temperature levels or SMART (Self-Monitoring Analysis and Reporting Technology)

information from hard drives. If a node seems to be exhibiting signs of failure, a flag can be

raised to the garbage collector and data can be migrated out of the node so that it can be

powered down and replaced by field service.

3.2.1.4 Virtual Memory Subsystem

The memory hierarchy of a Q-Machine node is illustrated in Figure 3-8. Each node has the

capability to address up to 1 GByte of memory; however, users are assumed to seldom take

advantage of this large address space. Allocating 1 GByte of objects on a single node

violates a fundamental premise of the Q-Machine: optimal performance demands that data

and processor be intimately located. The allocation of large amounts of data on a single

node should be avoided for good performance scalability. At the same time, forcing users to

operate within a strict memory budget hampers the ease of use of the machine. Thus, each

node is designed with a fast, small memory co-located with the Execution Core, but has

April 25, 2001 35

provisions for an extensive virtual memory hierarchy to give coders the headroom they

require to get the job done when performance is not at a premium.

~ 1M fast (2-3 cycle)
 data SRAM on-chip

~ 64 MB off-chip
DRAM (20-40 cycle)Execution Core TLB / page-walk ~ 200 MB hard

drive backing storage

in local address space--remote access requires a local object to service requests

Figure 3-8: Virtual Memory hierarchy of a single Q-Machine node.

A relatively large (64 MB) secondary memory is provided off-chip, backed by an even larger

non-volatile storage unit. This hierarchy of degrading performance memory is necessary to

prevent allocation run-away on a single node. A careless programmer could then be saved by

the garbage collector, which will make efforts to migrate objects out of the thrashing node

before its virtual memory is exhausted. At the same time, a performance-conscious

programmer can balance object allocation across the machine and get optimal performance

from their program under a broader range of conditions.

From the programmer’s standpoint, memory is accessed via load and store queues. However,

in reality, the far-side of the queues are processes that run on the execution core. The

advantage of the queue-based memory access paradigm is that programmers can leverage

control and address generation decoupling to hide latency. In addition, programmers can

make the memory-side handlers more intelligent and embed operations such as pointer

chases and table lookups on the memory-side of the queue.

3.2.1.5 Network Interface and Machine Network

The Q-Machine nodes are embedded in a fast, low latency, fault tolerant network based on

the work done by the MIT METRO project. Because of the extensive prior research devoted

to this topic, the treatment of he network interface and the network is brief, and interested

readers are referred to the original papers on this topic. [DEH93] [Minsky’s thesis, leiserson’s

paper on fat trees]

The network topology used by the Q-Machine is a hybrid multipath fat-tree/multipath

multibutterfly topology network. It is a circuit-switched network with self-routing packets

April 25, 2001 36

and wormhole routing. The design of the packets and network are optimized for low-latency

through the network routers; a single bit or pair of bits sent at the head of the packets

determines the state of the router. The router design is kept simple by making the routing

protocol source-responsible; blocked paths and errors are reported as dropped message, and

it is up to the NI to resend the message. Fault tolerance and congestion avoidance are

designed into the network by proper choice of topology; the network has a dilation

(redundancy) factor of two, and the wiring between nodes is random with a maximal fan-out

property, so that no individual component failure will leave a destination node unreachable.

All clocks on the Q-Machine originate from a single frequency source. Mesochronous

clocking with wave pipelining is used to make the sources and destinations skew-insensitive.

The advantage of mesochronous clocking is that no time is consumed in router stages trying

to re-synchronize data to the local clock domain. Other designs, such as the CrayLink

network used in the SGI Origin 2000 series, devote a large portion of the router time to

synchronization for metastability resistance. [GAL]

Because the design of the routers is kept so simple, the dominant latency of the

interconnect is wire delay. It is an important assumption of this thesis work that the

dominant delay of the system be the wire delays. Estimations based on scaling previous and

current implementations of the METRO network indicate that this is a solid assumption.

One downside of making the routers simple is that more complexity is required in the Q-

Machine nodes to keep track of open network connections. The implementation of this

hardware is a topic of research, but the current plan is to devote a dedicated RISC processor

to handling messages along with some reconfigurable hardware, or to integrate this

functionality into the Thread Scheduler, which also has a dedicated RISC processor with

some dedicated hardware to handle its tasks. Regardless, the network interface and network

implementation details are not a major area of focus for this work because of the extensive

body of prior work in this area.

Some improvements on the METRO network explored within the context of this research

are idempotent messaging and message priorities for deadlock avoidance. A three-phase

April 25, 2001 37

protocol is used with temporary message state on both sides of the network to guarantee

message idempotence. Interested readers in these improvements are referred to Bobby

Woods-Corwin’s Masters of Engineering thesis work-in-progress.

April 25, 2001 38

4 Directions

The architecture described in the previous section addresses many issues, but it is far from

complete. An important part of this research effort is to flesh out the architecture and

discover where the bottlenecks are. The metric for success is ultimately measured in terms

of how much wall-clock programmer time is required to produce results— from coding to

debugging to the actual run-time of the program. While this metric is very difficult to assess

due to the variability of human factors, keeping this end-goal in mind gives this research a

very systems-oriented approach, for the perfection of any single piece of the machine will

not guarantee good results. On the other hand, careful attention to making sure that the

nominal case exhibits robustly good performance will have a higher chance of yielding a

successful architecture. Simply put, peak performance numbers are bogus, and the important

number to optimize is the average performance, even if it hurts the peak performance

number. In addition, the worst-case number is not important as long as the worst-case is

never in the critical path, and as long as the worst-case happens infrequently. Thus, a central

goal of this thesis is validating the system concept behind the Q-Machine through

implementation.

4.1 Implementation

There is no substitute for building an architecture. Implementation tests the assumptions

that the architecture rests upon, and exposes uncountable oversights that can lead to serious

bottlenecks or implementation trade-offs that alter the nature of the architecture. At the

same time, it is too easy to become obsessed with tweaking and optimizing small parts of the

machine, and miss the big picture. Thus, no chips will be fabricated: rather, this thesis hopes

April 25, 2001 39

to answer the question of if it is worth the effort of fabricating chips for this architecture.

Hence, the implementation side of this thesis will start with behavioral HDL simulations

implemented in FPGAs and RISC emulations cores, and extend as far as estimated die

floorplans and trial layouts of critical machine components. In parallel with the hardware

development efforts, very high-level simulations of the data migration and object-oriented

run-time mechanisms will have to be run to collect crucial information about the expected

utilization of key machine components, such as the network, thread scheduler, and on-chip

memory.

4.2 Analysis

The implementation effort is in vain without an analysis of the shortcomings and strengths

of the Q-Machine. Some of the important questions that I hope to answer and issues I hope

to address through the implementation effort include:

• effectiveness of object migration in the Q-Machine

• object migration and garbage collection strategies, and how they are different from

previously proposed strategies

• programming languages and paradigms for the Q-Machine

• advantages of the Q-Machine mechanisms over more conventional, non-queue

based mechanisms without custom support for object migration

• analysis of latency and area overhead of the synchronization primitives, i.e., Thread

Scheduler unit and Network Interface unit

• efficient thread scheduling and thread representation on the Q-Machine

• analysis of potential areas of inefficiency within the Q-Machine architecture, and

proposals for their resolution

4.3 Conclusion

The Q-Machine architecture outlined in section 3 is actually a significant portion of the final

thesis work. The proposal for research from this point is to implement and analyze the

system concept of the proposed Q-Machine. The research will begin with some high-level

simulations to extract object interaction and locality properties in Java. This will form a

baseline set of assumptions that can be applied to create a machine model. In parallel with

that, basic elements of the Q-Machine hardware will be marshaled— the network (from

April 25, 2001 40

[DEH93]) and simulation vehicles for the processor nodes will be constructed from FPGAs

and conventional RISC processors. From here, the set of assumptions and machine models

derived from the high level simulations will be applied to create a detailed specification of

implementation requirements for the Q-Machine architecture. These requirements will then

be run through trial implementations to see if they are reasonable. Finally, the pieces of the

machine that have been implemented will integrated and some simple benchmarks will be

executed on the architecture that can validate the models and assumptions generated by the

original high-level simulations. The level of detail in the implementation is geared at getting

significant results that can clearly validate the Q-Machine system concepts while keeping on

track for a graduation target of June 2002.

April 25, 2001 41

5 References

[DEH93] DeHon, Andre. “Robust, High-Speed Network Design for Large-Scale
Multiprocessing”. AI Technical Report Number 1445. September 1993. MIT
Artificial Intelligence Laboratory, 200 Technology Square, Cambridge, MA, 02139.

[IAN88] Iannucci, Robert. “Toward a Dataflow/von Neumann Hybrid Architecture”.

Proceedings of the 15th Annual International Symposium on Computer Architecture.
May 30-June 2, 1988. Honolulu, Hawaii.

[SCO96] Scott, Steven L. “Synchronization and Communication in the T3E Multiprocessor.”

Proceedings of ASPLOS VII, Massachusetts, 1996. ACM, 1996.

[ARV93] Arvind. Brobst, Stephen. “The Evolution of Dataflow Architectures: from Static

Dataflow to P-RISC”. International Journal of High Speed Computing. Vol. 5, No.
2. World Scientific Publishing Company, 1993.

[NIK89] Nikhil, Rishiyur S. Arvind. “Can Dataflow Subsume von Neumann Computing?”

Proceedings of the 16th Annual International Symposium on Computer Architecture,
May 1989, Jerusalem, Isreal.

[LEE94] Lee, Ben. Hurson, A.R. “Dataflow Architectures and Multithreading.” IEEE

Computer. August 1994.

[SMI82] Smith, James E. “Decoupled Access/Execute Computer Architectures”.

Proceedings of the 9th Annual International Symposium on Computer Architecture.
April 1982, Austin, Texas.

[SMI87] Smith, J. E. Dermer, G. E. Vanderwarn, B.D. Klinger, S. D. Rozewski, C. M. Folwler,

D. L. Scidmore, K. R. Laudon, J. P. “The ZS-1 Central Processor”. Second
Internatinoal Conference on Architectural Support for Programming Languages and
Operating Systems. October 1987. pp. 199-204.

[MAN90] Mangione-Smith, William. Abraham, Santosh G. Davidson, Edward S. “The

Effects of Memory Latency and Fine-Grained Parallelism on Astronautics ZS-1
Performance.” Proceedings of the Twenty-Third Annual Hawaii International
Conference on System Sciences, 1990. IEEE, 1990. Pp. 288 –296, Vol. 1.

[FAR93] Farrens, Matthew K. Ng, Pius. Nico, Phil. “A Comparison of Superscalar and

Decoupled Access/Execute Architectures”. Proceedings of the 26th Annual
International Symposium on Microarchitecture, 1993. IEEE, 1993. Pp. 100 –103.

[LOV90] Love, Carl E. Jordan, Harry F. “An Investigation of Static Versus Dynamic

Scheduling”. Proceedings of the 17th Annual International Symposium on
Computer Architecture, 1990. IEEE, 1990 Pp. 192 –201.

April 25, 2001 42

[MAN91] Mangione-Smith, William. Abraham, Santosh G. Davidson, Edward S.
“Architectural vs. Delivered Performance of the IBM RS/6000 and the Astronautics
ZS-1”. Proceedings of the Twenty-Fourth Annual Hawaii International Conference
on System Sciences, 1991. IEEE, 1991. Pp. 397 -408 vol.1.

[WUL92] Wulf, William A. “Evaluation of the WM Architecture”. Proceedings of the 19th

Annual International Symposium on Computer Architecture, 1992. ACM. Pp. 382 –
390.

[VEI98] Veidenbaum, Alexander V. Gallivan, K. A. “Decoupled Access DRAM

Architecture”. Innovative Architecture for Future Generation High-Performance
Processors and Systems. IEEE, 1997, 1998. Pp. 94-103.

[OLU96] Olukotun, Kunle. Nayfeh, Basem A. Hammond, Lance. Wilson, Ken. Chang,

Kunyung. “The Case for a Single-Chip Multiprocessor.” Proceedings of ASPLOS-
VII, Cambridge, MA. ACM, 1996.

[KOZ97] Kozyrakis, C. Perissakis, S. Patterson, D. Andreson, T. Asanovic, K. Cardwell, N.

Fromm, R. Golbus, J. Gribstad, B. Keeton, K. Thomas, R. Treuhaft, N. Yelick, K.
“Scalable Processors in the Billion-Transistor Era: IRAM.” IEEE Computer.
September 1997. Pp. 75 – 78.

[OSK98] Oksin, M. Chong, F.T. Sherwood, T. “Active Pages: A Computational Model for

Intelligent Memory.” The 25th Annual Symposium on Computer Architecture, 1998.
IEEE, 1998. Pp. 192-203.

[MAR00] Margolus, Norman. “An Embedded DRAM Architecture for Large-Scale Spatial-

Lattice Computations.” The 27th Annual International Symposium on Computer
Architecture, 2000. IEEE, 2000. Pp. 149-160.

[GOK95] Gokhale, M. Holmes, B. Iobst, K. “Processing in Memory: The Terasys Massively

Parallel PIM Array.” IEEE Computer. Vol. 28, Issue 4. April, 1994. Pp. 23-31.

[FIL95] Fillo, Marco. Keckler, Stephen W. Dally, William J. Carter, Nicholas P. Chang,

Andrew. Gurevich, Yevgeny. Lee, Whay S. “The M-Machine Multicomputer.”
Proceedings of the 28th Annual International Symposium on Microarchitecture.
IEEE, 1995. Pp. 146-156.

[LEE98] Lee, Walter. Barua, Rajeev. Frank, Matthew. Srikrishna, Devabhaktuni. Babb,

Jonathan. Sarkar, Vivek. Amarasinghe, Saman. “Space-Time Scheduling of
Instruction-Level Parallelism on a Raw Machine.” Proceedings of ASPLOS-VIII,
California, USA. ACM, 1998.

[BRO00] Brown, Jeremy. Grossman, J.P. Huang, Andrew. Knight, Tom. “A Capability

Representation with Embedded Address and Nearly-Exact Bounds.” Paper
submitted to the ASPLOS 2000 committee for review.

April 25, 2001 43

[GRO01] Grossman, J.P. “Design and Evaluation of the Hamal Parallel Computer.”
Proposal for doctoral research submitted to MIT.

[IBMW1] “Blue Logic Cu-11 ASIC.” IBM Publication SA14-2451-00, Copyright 2000.

Publication may be obtained from http://www.chips.ibm.com.

[TSMW1] TSMC web page, 0.18 micron process summary.

http://www.tsmc.com/technology/cl018.html

[MOSW1] Mosys web page. TSMC 0.13u process fast 1-T SRAM summary.

http://www.mosys.com/1t_sram.html . Registration required to access
design materials.

[PAP93] Papadopoulos, G. A. Boughton. Greiner, R. Beckerle, M. J. “*T: Integrated Building

Blocks for Parallel Computing”. Proceedings of the Conference on Supercomputing
1993. 1993. Pp. 623-635.

[NIK92] Nikhil, R.S. Papadopoulos, G.M. Arvind. “*T: A Multithreaded Massively Parallel

Architecture.” Proceedings of the 19th Annual International Symposium on
Computer Architecture. 1992. Pp. 156-167.

[NUT91] Nuth, Peter R. Dally, William J. “A Mechanism for Efficient Context Switching.”

International Conference on Computer Design, 1991. 1991. Pp. 301-304.

[WEI98] Weissman, B. Gomes, B. Quittek, J.W. Holtkamp, M. “Efficient Fine-Grain Thead

Migration with Active Threads.” Proceedings of the First Merged International
Parallel Processing Symposium and Symposium on Parallel and Distributed
Processing, 1998. (IPPS/SPDP 1998). IEEE 1998 Pp. 410 –414.

[HSI93] Hsieh, Wilson C. Wang, Paul. Weihl, William E. “Computation Migration:

Enhancing Locality for Distributed-Memory Parallel Systems.” Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming, 1993. Pp. 239 – 248.

[CHA93] Chandra, Rohit. Gupta, Anoop. Hennessy, John L. “Data Locality and Load

Balancing in COOL.” Proceedings of the Fourth ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming, 1993. Pp. 249 – 259.

[CRO97] Cronk, D. Haines, M. Mehrotra, P. “Thread Migration in the Presence of Pointers.”

Proceedings of the Thirtieth Hawaii International Conference on System Sciences,
1997. IEEE, Vol. 1, 1997. Pp. 292 –298.

[NUT95] Nuth, Peter R. Dally, William J. “The Named-State Register File: Implementation

and Performance.” Proceeding of the First IEEE Symposium on High-Performance
Computer Architecture. 1995. Pp. 4-13.

[TENW1] Xtensa Application Specific Microprocessor Solutions: Overview Handbook, a

Summary of the Xtensa Data Sheet. Tensilica, Inc. Issue date: 2/2000.

April 25, 2001 44

[ARV90] Arvind. Nikhil, Rishiyur S. “Executing a Program on the MIT Tagged-Token

Dataflow Architecture.” IEEE Transactions on Computers. Vol 39, No 3. March
1990.

[CUL91] Culler, David E. Sah, Anurag. Schauser, Klaus Erik. von Eicken, Thorsten.

Wawrzynek, John. “Fine-grain Parallelism with Minimal Hardware Support: A
Compiler-Controlled Threaded Abstract Machine.” Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, 1991. ACM, 1991. Pp. 164 – 175.

[NUT97] Nuttall, M. Sloman, M. “Workload Characteristics for Process Migration and Load

Balancing.” Proceedings of the 17th International Conference on Distributed
Computing Systems, 1997. IEEE 1997. Pp. 133 –14.

[ROU96] Roush, Ellard T. Campbell, Roy H. “Fast Dynamic Process Migration.”

Proceedings of the 16th International Conference on Distributed Computing
Systems, 1996. IEEE , 1996. Pp. 637 –645.

[NIK00] Nikolopoulos, Dimitrios S. Papatheodorou, Theodore S. Polychcronopoulus,

Constantine, D. Labarta, Jesús. Ayguadé Eduard. “User-Level Dynamic Page
Migration for Multiprogrammed Shared-Memory Multiprocessors.” Proceedings of
the International Conference on Parallel Processing, 2000. IEEE, 2000. Pp. 95-103.

[CHA94] Chandra, Rohit. Devine, Scott. Verghese, Ben. Gupta, Anoop. Rosenblum, Mendel.

“Scheduling and Page Migration for Multiprocessor Compute Servers.” Proceedings
of ASPLOS VI, San Jose, CA. 1994.

[HSI95] Hsieh, W.C. Dynamic Computation Migration in Distributed Shared Memory

Systems. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
September 1995. Available as MIT/LCS/TR-665.

[GAL] Galles, Mike. “Scalable Pipelined Interconnect for Distributed Endpoint Routing:

The SGI SPIDER Chip.” Whitepaper from the SGI website, since removed from the
web. Contact bunnie@mit.edu for a copy of this paper.

[MCF97] McFarland, Grant W. CMOS Technology Scaling and Its Impact on Cache Delay.

PhD Dissertation submitted to the Department of Electrical Engineering of
Stanford University. June, 1997.

[DALJ98] Dally, William. Chien, Andrew. Fiske, Stuart. Horwat, Waldemar. Lethin, Richard.

Noakes, Michael. Nuth, Peter. Spertus, Ellen. Wallach, Deborah. Wils, D. Scott.
Chang, Andrew. Keen, John. “Retrospective: the J-Machine.” 25 Years of the
International Symposia on Computer Architecture (Selected Papers). 1998. Pp. 54-
58.

April 25, 2001 45

[DAL98] Dally, William. Poulton, John W. Digital Systems Engineering. Cambridge
University Press. 1998.

[NOA93] Noakes, M.D. Wallach, D.A. Dally, W.J. “The J-Machine Multicomputer: An

Architectural Evaluation.” Proceedings of the 20th Annual Symposium on Computer
Architecture. 1993. Pp. 224-235.

[INTW1] Intel Developer Website. http://developer.intel.com.

[AMDW1] AMD Website. http://www.amd.com

[CPQW1] AlphaPoweredLinux Website.

 http://www.alphapoweredlinux.com/alpha21264.html.

[BAK90] Bakoglu, H.B. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley

Publishing Company, Reading, MA. 1990.

