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Abstract

There are many computationally-intensive applications that hunger for high-perform-
ance computer systems to manage their enormous memory and processing require-
ments. There is a need for a scalable, massively-parallel processing supercomputer
that can satisfy this hunger. Developing such an architecture requires evaluation of
hard data when making design decisions. Software-based simulations can be helpful,
but a physical implementation of the hardware runs faster and can reveal fatal flaws
that were overlooked. It also grounds the design in reality. Since fabrication of a
chip implementing a brand new architecture is not immediately feasible, the use of
configurable logic devices is favored. This thesis presents an implementation of the
ARIES Hamal Parallel Computer architecture, targeted at FPGA configurable logic
devices. This experience revealed that although FPGAs are extremely flexible de-
vices, synthesis of a complete processor is a time-consuming task and that the logic
capacity of typical FPGAs are insufficient for processors with very large (128-bit)
data paths.
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Chapter 1

Introduction

Although advances in microchip fabrication technology are constantly making faster

and denser microprocessors available, there are still many applications that require

far more computational power than is achievable with current computer architectures.

Problems such as protein folding, physical simulations, graphics rendering, computer-

assisted design, and cryptographic application demonstrate this need. To solve this

problem, it is best to start with a “clean-slate” approach, looking at what we need

and what we have available from a fresh perspective, without any ties to legacy

architectures or implementations.

1.1 Motivation and Goals

A major motivator is the fact that there are problems which could be better solved

if there existed supercomputers that could compute results faster than is currently

possible. In particular, these are problems for which algorithms exist for operating on

subsets of them in parallel, such that having multiple processing elements would be

helpful, if they could communicate efficiently. The goal is not to create a single proces-

sor which has the best performance characteristics possible on sequential programs–

the computer industry has been doing a good job of this recently. Multi-threaded

performance is the goal.

Performance itself is not the only concern. When taking the time to design the
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next best supercomputer architecture, there are several other key points which must

not be overlooked. The first is scalability. It should be the case that expanding

the size of the system also expands its processing power. If there is to be a point

beyond which adding additional processing hardware is no longer feasible or helpful,

it should be well beyond just a handful (or a few hundred) processing elements. If

doubling the performance of the machine takes fifty times the hardware, then this

goal is not being met. A large part of the issue of scalability is dependent on the

design of the communication network that allows processors to communicate, as well

as the semantics in the architecture for utilizing this resource.

Programmability is also an important goal of such a system. The memory model,

architectural features, instruction set, programming language support, and operating

system should be designed in such a fashion that the machine is not incredibly difficult

to program. Specifically, it is not unreasonable, as a programmer, to expect to be able

to craft software for the machine in a relatively straight-forward manner and have it

perform well– this precludes, for example, a situation where only expert assembly-

language hackers who are intimately familiar with the machine’s architectural details

are able to produce code that causes the machine to perform at its maximum effi-

ciency. This goal influences the design of the instruction set architecture, along with

compilers, libraries, the operating system, and possibly new programming language

design.

The final goal is engineering a high-confidence system. One such feature would

be fault-tolerance. Given a supercomputer of any large size, faults will be extremely

common [30]. There is a need to plan for this when designing the architecture, so

that the detection and recovery from faults is possible. Another aspect of a high-

confidence system is perhaps less obvious: hardware protections from misbehaving

programs or users. Architectural features should be implemented to help program-

mers avoid common mistakes that can lead to incorrect results or even a breach in

system security. For example, many contemporary architectures are renowned for

the common problem of a faulty program writing beyond the end of an array, either

accidentally or intentionally [28].
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1.2 Scope of this Work

Designing a supercomputer architecture from scratch is an onerous task. There are

several different pieces of the system which need to be designed: the processor, the

memory system, the individual nodes, and the network. This work is concerned only

with issues relating to the implementation of the processor component. Specifically,

this includes an approach to prototyping a potential processor design in order to de-

termine feasibility and potential performance. A hardware implementation has many

advantages over a software-only solution. Grounding the design in reality by actually

building it often finds overlooked design flaws. More importantly, the hardware im-

plementation can run faster than the software solution and is more scalable. While a

software-only simulation of potential architectures is feasible [31, 23], prior work, such

as Stanford’s DASH project [26] found that software simulations of complex hardware

are orders of magnitude slower than the real system would be. To this end, this the-

sis presents a hardware description, in Verilog, of the processor that is suitable for

synthesis into an FPGA. This thesis also discusses lessons learned in using an FPGA

as a processor prototyping platform, along with verification tools and strategies.

1.3 Organization

Chapter 2 expands upon this introduction’s description of a desirable supercomputer

architecture by introducing the ARIES high-performance computing (HPC) research

project, of which this work is a part. The third chapter focuses on a particular

processor architecture, named Hamal. Chapter 4 describes all of the details of this

work’s implementation of that architecture. Following that, Chapter 5 details of

interfacing the processor with other elements of an HPC system. The matter of

verifying the implementation is tackled in Chapter 6. Finally, Chapter 7 concludes

with a summary of results, lessons learned, and recommendations for future work.
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Chapter 2

Project ARIES

This research is part of the Advanced RAM Integration for Efficiency and Scalability

(ARIES) project. The project’s goals are to meet the previously mentioned HPC

design challenges. Specifically, the project’s objective is to feature massive scalability,

silicon efficiency, and RAM integration in the design of an HPC system. In order to

help provide context for this thesis, this chapter will give some background on the

ARIES project.

2.1 Motivations

At the system level, the ARIES project wishes to produce a scalable and efficient

HPC system which is well-suited to applications that have enormous memory and/or

computational requirements. Currently, parallel systems suffer because they are dif-

ficult to program, have poor network performance, or cannot be scaled to a very

large number of processors. A goal of the ARIES project is to design a system which

has support for a million or more simple processing elements and that still is pro-

grammable.

There have been enormous strides in technology during the last twenty years. We

have seen transistor counts increase by a factor of a thousand in this time period.

Because of the steps taken during the evolution of the technology, one particular

path has been followed in the design of microprocessors, progressively adding on new
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layers of functionality as technology improves. This results in modern microproces-

sors using a small amount of the available die area for computation and the rest for

control and speed-optimizations to make that small area better. Thus, another goal

of Project ARIES is to achieve better silicon-efficiency. This can be accomplished

by eliminating some of the complex area-consuming logic that results in only small

performance gains, popular in processors targeted as maximal single-threaded per-

formance, and using the area saved to perform more computation through the use of

multiple hardware execution contexts and multiple processing elements on a single

die.

Additionally, advances in the area of tight processor and memory integration

[15, 29, 25] combined with improvements in memory technology [14] suggest and allow

for new design paradigms for efficient processor architectures. Specifically, the ability

to closely couple memory and processing elements results in being able to perform

computation with lower memory latency and much greater memory bandwidth. RAM

integration is an important goal of Project ARIES.

Scalability is one of the biggest motivations. The project seeks to develop an

architecture where having more than one million nodes is both feasible and worth-

while. That is, with each processor added there is performance gained, such that

1 million processors would have far more processing power than half as many. Any

point of diminishing returns must be pushed well above the million-processor mark.

The network interconnect between all of the processors is the largest constraint. The

plan is to use a variation of the MIT Transit Group’s METRO network [10], keeping

in mind existing work on networks for HPC systems [7, 9]. An important property

of the network is that it is fault-tolerant; there are multiple ways to route from one

processor to another such that some number of failures in the network infrastructure

can be tolerated.
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2.2 Design Overview

At the chip level, the vision is of a single silicon die containing an array of processor-

memory nodes connected by an on-chip network, as shown in Figure 2-1. Notice that

there are no caches in the system. Globally-consistent caches inherently work against

scalability [2] and have high costs in die area and complexity. Figure 2-2 is a look at

the design of a single processor-memory node with this array.

Figure 2-1: ARIES chip-level design

The next level of the plan is to assemble several of the ARIES nodes along with

appropriate routing into a “processing node.” The node will also need additional

hardware– some local disk to use for permanent storage, power supply hardware,

cooling hardware, and a processor for monitoring the status of the node. Figure 2-3

illustrates this with a block diagram of a processing node.

Some applications may require a large amount of network interconnect and redun-

dancy in order to enable a large amount of communication between processor nodes

and to benefit from a higher level of fault tolerance. As a result, the concept of a

“network node” was conceived; it is a collection of network interface (NI) chips which

essentially make a much larger number of wires available for the processor nodes to
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Figure 2-2: Block diagram of a single processor-memory node

Figure 2-3: Block diagram for a processing node
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use in communications. This is shown in Figure 2-4.

Figure 2-4: Block diagram for a network node

Since the processing and communication requirements of different applications

vary greatly, there needs to be some level of configurability. One user may want

to maximize computational power for an application, while another might have a

communications-intensive application which performs better when lots more wires

are available. A solution is to construct “boxes” containing either a processing node

or a network node. These boxes can be placed into a rack which has a backplane

for inter-box communication (see Figure 2-5). It is possible to add additional racks

if more nodes are needed. In this manner, the end user can decide the best way to

configure his machine. This flexibility is demonstrated in Figures 2-6 and 2-7which

show different configurations for four racks.
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Figure 2-5: Basic Box and Rack Architecture

Figure 2-6: Processor-Intensive Configuration

Figure 2-7: Communications-Intensive Configuration
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Chapter 3

The Hamal Architecture

This thesis implements a subset of J.P. Grossman’s on-going work with his Hamal Par-

allel Computer architecture [19, 17, 18, 16]. Part of Project ARIES, Hamal is guided

by research into design principles for the creation efficient, scalable, massively paral-

lel high-performance computer systems. This chapter summarizes this architecture

in order to provide context before the author’s actual implementation is presented.

Emphasis is placed on the processor component of Hamal, as that is the component

implemented in this work.

The Hamal architecture specifies a computer constructed out of many processor-

memory nodes, connected by a fat tree network. Each node consists of data memory,

instruction memory, a network interface, the processor, and controller logic to arbi-

trate data flow among these parts. This is shown in Figure 3-1, from [16].

Data DataData Data

Network
Interface

CodeProcessor

Node Controller

Figure 3-1: The Hamal Processing Node
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3.1 Memory

The word size of the machine is 128-bits. Each word in memory is tagged with four

additional bits: P, T, U, and V. The P (pointer) bit is used to distinguish pointers

from non-pointer data. The T (trap) bit, when set, will cause the processor to

generate an event any time this word of memory is accessed. The operating system’s

trap handler would then be notified, allowing implementation of features such as

debugger breakpoints and forwarding pointers. The U and V (user) bits can cause

traps to a handler specified by a user program. Each memory instruction specifies

how the U and V bits should be interpreted and updated on each access.

3.1.1 Atomic Operations

The memory subsystem itself is capable of performing simple, single-cycle, atomic

operations on the data it contains and a value from the processor. These operations

are addition, subtraction, minimum, maximum, and any two-input boolean operation.

3.1.2 Memory Model and Capabilities

The memory model is that of a single shared-memory image over the entire machine.

There is no global caching of data, as that would severely restrict scalability, and

is difficult to implement correctly without considerable effort. There is one virtual

address space. This address space can be shared safely between all processes, without

requiring them to trust each other, through the use of unforgeable capabilities ([8]

[11]). Capabilities are a construct that give specific access rights to a region of mem-

ory, known as a segment. Past capability architectures have used special tables [24],

or registers [1], or software support [3] to verify that memory was being accessed le-

gitimately. However, these approaches incur an expensive performance penalty while

the system performs the lookup. Instead, Hamal extends the capability format pro-

posed in [6] to pack all of the relevant permission and segment information along

with a 64-bit address into a 128-bit data word[5]. When the word’s P bit is set, the

128-bit value is interpreted as a pointer with capability information encoded into it.
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Figure 3-2 illustrates Hamal’s capability format.

1224 6551021 20
K L BSQUIDUserPermP Type Node Offset

44

Figure 3-2: Capability Format

Capability types

There are four kinds of capabilities: code capabilities which give access to program

memory, data capabilities which give access to data memory, input/output capa-

bilities which allow the use of I/O devices, and join capabilities which allow the use of

the special join inter-thread synchronization instruction. Join will be covered later.

Permission bits

For data and I/O capabilities, the permission bits control the use of the pointer

for reading (R) from and writing (W) to that address. Additionally, the Take (T),

Grant (G), Distributed Take (DT), and Distributed Grant (DG) bits restrict how this

pointer may be used to read and write other pointer data, as in [32]. Code capabilities

do not use the W, T, G, DT, or DG permissions. They add two more capabilities,

Execute (X) and Execute Privileged (P). All capabilities also have Decrement-only

(D) and Increment-only (I) bits. These restrict the addition or subtraction of offsets

to or from the pointer, respectively.

Segment size

Three values in the capability place restrictions on the size of the segment for which

the capability applies: B, L, and K. The segment is composed of blocks, each being

2B bytes in size. There are L + 1 blocks in the segment, for total size of (L + 1) ∗ 2B

bytes. In the worst case, with the given sizes of L and B, a loss of 6% to internal

fragmentation is possible as a slightly larger object than requested would need to

be allocated. For any given pointer address, K indicates the block offset into the

segment. It is possible to recover the base address of any object by first zeroing the
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last B bits of the address (to achieve block alignment) and then by subtracting K ∗2B

bytes. The equation for this operation is: base = ((offset >> B)−K) << B, where

base it the base address and offset is the address stored in the pointer.

As a matter of vocabulary, this encoding of capability information and the pointer

together means that this work uses the words “capability” and “pointer” interchange-

ably. Also, since the segment size can be relatively small with little slack, it is possible

to allocate individual data objects as segments unto themselves; thus, “segment” and

“object” are also synonyms.

Migrated Objects and SQUIDs

The use of forwarding pointers, which indicate that the object to which a pointer

points has been relocated, has been shown to be useful in garbage collection and data

compaction [4] [27]. However, this introduces the possibility that two pointers may

have a different base address but actually refer to the same object, making pointer

comparisons an expensive operation. Hamal’s solution to this is the use of Short

Quasi-Unique IDs (SQUIDs) [22, 21]. A SQUID is assigned to an object when it

is allocated. This is a randomly generated identifier, which is not guaranteed to be

unique. A uniqueness guarantee would require global communication, which works

against scalability. Any two pointers to the same object will always have the same

squid; if the SQUIDs do not match, then there are definitely two different objects

involved. Only when the squids do match is a more complicated analysis, pointer

dereference, required to determine if the objects are the same. To assist with this

process, the Migrated (M) capability bit will be set in any pointers that point to the

new home of a moved object. This bit being set means that objects with the same

squid and differing base addresses might be the same object; without the M bit being

set in either capability, they cannot be.

Sparse Objects

The Hamal architecture has support for lazily-allocated distributed objects. Known

as sparse objects, these objects have “facets” on multiple nodes of the machine. That
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is, the object appears to be the same segment base and length on all nodes. However,

when allocated, space is only reserved on the node that requested the allocation.

When a pointer to a facet on some other node is used, that node will see that it

is now time to allocate the facet, (thus, lazily). This node is free to put the object

wherever it would like in the memory it has, and is not restricted to using the same

base that the original node did. Indeed, such a restriction would require all nodes to

co-operate and find free space in their memories that were in common. Instead, the

network interface keeps a translation cache that maps between the object’s common,

(or ’global’), base address and the actual base address used locally. The processor

recognizes these special sparse objects, which will have the Sparse (S) bit set in any

capabilities that refer to them. The network interface will notify the processor if the

translation cache misses, enabling the operating system to take appropriate action.

User Bits

Twenty-four bits are left over in the capability. These are reserved for use by the

operating-system. One example is to use them to encode additional permission bits.

Another is to produce a sub-segmentation scheme to further restrict a capability over

a subset of its segment.

3.1.3 Paging

The data memory is divided into multiple banks, each equipped with an SRAM

hardware page table. Each entry corresponds to a physical page in the memory. An

entry contains the virtual base address of the page, status bits, and the P, T, U,

and V bits for each word in the page. A page-out transfers these bits and then the

words in the page to the node controller, which will pass the data on to the network

interface, and from there to a secondary storage device. A page-in accepts this same

data from the node-controller along with the physical page number to occupy. To

assist the operating system in deciding which page to evict when space is needed, the

data memory tracks exact Least Recently Used (LRU) information for the pages it
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controls.

3.2 Network Interface

The network interface is responsible for sending and receiving data to and from remote

nodes. It is equipped with request buffers to track pending requests, caches for

speeding up local-to-global and global-to-local sparse object pointer translations, and

a fork buffer for holding data for a fork operation. This buffer collects the thread

state from a thread issuing a fork operation and delivers it to the node referenced in

the request.

3.3 Instruction Memory

As one would expect, instruction memory holds code to be executed. Similar to

the data memory, there is a hardware page table with one entry per physical page.

However, the words in the instruction memory are not tagged with the pointer (P)

and user (U, V) bits. Instruction memory is read-only. Page-outs are not supported.

The only way to get code into the instruction memory is by performing a page-in in

response to an instruction memory page fault. The instruction memory is otherwise

read-only.

3.4 Node Controller

The node controller has direct control over all other components in a node. Its job

is to manage the flow of data between all of the components. It can receive data

and requests from data memory, instruction memory, the network interface, the fork

buffer, the context-load controller, and the processor. The potential sinks for this

data are data memory, instruction memory, the network interface, the fork buffer, the

processor’s data input path, and the processor’s event input path. The controller’s

management of resources helps the processor devote more cycles to computation, and
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fewer to tasks such as micro-managing page-ins and page-outs.

3.5 Processor

The processor is a Very-Large Instruction Word (VLIW) processor with 129-bit data

paths. Additionally, the processor has support for four hardware thread contexts. The

memory execution unit includes hardware for enforcing the permissions in capabilities,

and the arithmetic unit includes support for fine-grained Single Instruction Multiple

Data (SIMD) style parallelism.

3.5.1 Instruction Group Format

Each VLIW instruction group consists of three instructions and an immediate value.

One control instruction, one arithmetic instruction, and one memory instruction

may appear in an instruction group. The control instruction may have zero or one

operands, the arithmetic instruction up to two, and the memory instruction up to

three.

3.5.2 Multiple Hardware Contexts

The Hamal architecture dictates that the processor must store enough state to be

able to issue from any hardware thread each cycle without suffering context-switching

penalties. The architecture further suggests that four hardware threads be supported.

That number may change as additional data is collected regarding the number of con-

current threads needed to make most efficient use of the remaining silicon [16]. The

first context, Context 0, is reserved for event-handling, while the others are available

for user programs. Each context’s state includes the general-purpose register file,

predicate registers, special-purpose registers, resource-use data for in-flight instruc-

tions, and a small instruction queue. Context 0 includes an event queue which stores

global events which are awaiting processing. A piece of hardware known as a “trace

controller” is responsible for operating a single hardware thread.
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General-Purpose Register File

The Hamal register file consists of 32 129-bit registers. The 129th bit is the P bit,

which indicates the presence of a pointer, just as the P bit in the memory subsystem

does. This width accommodates the pointer format well. To support arithmetic

operations, each register may be divided into 64-bit and 32-bit pieces. Each piece

may be referenced independently. For example, the name “r0” would refer to all 129

bits of the first GPR. “r0x” and “r0y” refer to the low 64 and high 64 (not including

the P bit) bits of r0. Finally, “r0a,” “r0b,” “r0c,” and “r0d” refer to non-overlapping

32-bit pieces of r0. This is illustrated in Figure 3-3.

r0bP P r0ar0cr0dr1ar1br1y

P r2xr2yr3 P

Figure 3-3: GPR Granularity

Predicate Registers

Hamal supports predicated execution; each instruction in an instruction group may

depend on the true/false value of one of 31 predicate registers to determine if it will be

executed or ignored. These one-bit registers can be set or cleared individually using

the comparison instructions in the instruction set, or they can be handled en-masse

like a 32-bit register, named pr with the highest bit always set. This 32-bit register

can be further decomposed into a pair of 16-bit registers, px and py. Some of the

predicates have special meaning. The highest modifiable predicate, p30, is used by the

non-trapping memory instructions to indicate an error, as explained later. Predicates

p29 and p28 are used to indicate signed and unsigned overflows when performing

arithmetic instructions.

Pointer Registers

In addition to the predicate registers, there are four kinds of registers which cannot

rightfully be called “general-purpose.” The first are the pointer registers: the branch
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pointer (bp), the trap return pointer (tr), and the trap vector (tv). bp holds a code

capability which indicates an address to transfer control to if a branch instruction is

executed. tv holds the address of the thread’s trap handler. In the case of a trap,

tr will be filled-in with the address where execution should resume after the trap is

serviced.

Other Special-Purpose Registers

The seven event registers, e0 through e6, are filled in with information regarding

an event which just occurred. These values can be read, but not modified, by an

event handler to determine how to recover from the event. Table 3.1, adapted from

[18], shows how these registers are used. Not all events make use of all registers.

Finally, there are two global registers shared by all threads: g0 contains a 20-bit node

identifier, and g1 contains the number of clock cycles that have passed since processor

reset, in a 64-bit value.

Register Contents
e0 Event code
e1 Operation that caused the event
e2 Address of the instruction that caused the event
e3 First operand to the instruction
e4 Second operand to the instruction
e5 Extra information, varies with event type
e6 Instruction’s destination register

Table 3.1: Event Registers

Event Queue

The event queue can only be accessed by context 0. There is a special instruction

named poll which will cause the thread to become inactive until an event arrives.

These events are global events which originate in the memory subsystem, the net-

work subsystem, or the processor itself and require special operating-system handling.

Other events which happen in the processor are known as thread, or local, event.
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Thread events are handled by the trap handler of the thread that caused them; they

are not placed into the event queue. Table 3.2, adapted from [18], lists the different

kinds of events.

Event Description
Capability thread events - detected in memory pipeline
EV BOUND Segment bound violation during address calculation
EV ALIGN Misaligned memory address
EV BADP Attempt to use non-pointer as an address
EV PERM Permission violation
EV SQUID Pointer dereference needed to check pointer equality
Instruction thread event - detected by trace controller
EV BADIP Attempt to execute code at an invalid address
EV BADOP Invalid op code or register specification in instruction
Global memory events - generated by memory subsystem
EV PGF CODE Page fault: code page not present
EV PGF DATA Page fault: data page not present
EV PG IN Requested page-in operation has completed
EV MEM T Trap due to T bit set on memory word
EV MEM UV Trap due to U or V bits on memory word
Global processor events
EV BREAK A thread has executed a break instruction
EV SUSPEND A thread has executed a suspend instruction
EV REPLY Memory reply received for a swapped-out thread
Global network interface events
EV XLATEIN Global to local translation cache miss
EV XLATEOUT Local to global translation cache miss
EV FORK Fork buffer contains fork request for this processor

Table 3.2: Events

Instruction Queue

The instruction queue is a small First In First Out (FIFO) structure which stores

instruction groups which have had their control portions executed, but are waiting to

issue into the processor’s main data paths. If a context’s queue fills up, the context

will not request additional instructions from the instruction memory. On a trap, the

instruction queue is cleared and any side-effects caused by execution of the control

portion of those cleared instruction groups are un-done. The contents of the instruc-

tion queue is also discarded in the event that the context is swapped-out to memory in

favor of another thread; it is not considered part of the context state for this purpose.
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Tracking the Resource Use of In-flight Instructions

The trace controller must track which registers will be written to by instructions that

have issued but not yet completed execution. This is necessary to avoid read-after-

write (RAW) and write-after-write (WAW) hazards on a register. A RAW hazard

occurs when an instruction issues and reads a register that is going to be modified

by an instruction that issued before it. The second instruction should operate on the

value that the first writes and not the older value. Thus, the second instruction must

not be allowed to issue until the first is finished. A WAW hazard can occur because

instructions are not guaranteed to complete in the order the issued. This is due to

the fact that instructions do not have a fixed execution latency.

A “busy bit” is stored for each addressable register in the machine. For the GPRs,

this means four bits per register, one for each 32-bit piece. Each predicate has its own

busy bit. A busy bit is set when an instruction that will write to the corresponding

register has issued. The bit is cleared when the write-back has completed. These busy

bits are examined by the trace controller when determining if its next instruction

group is allowed to issue.

Since control instructions are executed when the instruction group arrives from

instruction memory, the trace controller must make sure none of the instructions in the

instruction queue target a register needed by the control instruction it is executing.

This is in addition to any instruction which has issued but not completed. The

“pre-busy bits” are used to track the predicates and few SPRs upon which a control

instruction can depend. These pre-busy bits operate like the normal busy bits, but

they reflect the pending writes of instructions that are in the instruction queue.

3.6 Instruction Issue

Each trace controller indicates to the issue logic if it has an instruction group, (minus

the control instruction), which is ready to issue. This readiness test means assuring

that no writes are pending on a register that needs to be read, and that any other re-

sources which will be used are available. Context 0 is always given first shot at issuing,
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followed by a round-robin ordering of the others. The chosen instruction’s arithmetic

instruction is passed on to the Arithmetic Pipeline, and its memory instruction is

passed on to its Memory Pipeline.

3.7 Execution Pipelines

The Arithmetic and Memory Pipelines have a different number of pipeline stages

which serve different purposes. The first stage of both has some similarities, however.

For each instruction, the predicate is checked, if one is specified, to determine if the

instruction will execute or not. Also, the first execution stage is used to compute new

predicate values for instructions that modify predicates.

3.7.1 Arithmetic Pipeline

Arithmetic instructions may take one, two, or three cycles to complete. The Arith-

metic Pipeline is tasked with producing only one value per cycle for register write-

back, while moving other candidates along the pipeline for write-back on a future

cycle. Arithmetic exceptions are not generated in the Hamal architecture; however,

predicate bits p28 and p29 are set in the case of signed or unsigned integer overflow,

respectively.

3.7.2 Memory Pipeline

The first stage of the memory pipeline is the only source of thread events. A trap

is generated if the trace controller indicated one should happen, (such as in the case

of an invalid op code), or due to a bad memory operation. If a trap occurs, the

corresponding trace controller is notified that it should flush its instruction queue

and start issuing instructions from its context’s trap handler. These are not global

events, so the context 0 event queue is not involved.

In the absence of events, the first stage’s purpose is to perform address calcu-

lations and manipulations. Some memory instructions do not need to manipulate
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data memory and will instead perform a write-back to the register file at the end of

the cycle. The second memory pipeline stage is used by instructions wanting to be

exported to the data memory via the Processor’s data output. In the case that the

memory instruction in the second memory pipeline stage is not permitted to go out

to memory, (it is rejected, conflicts with another read or write from this context, or

a higher priority source was selected), it will be queued-up in a per-context memory

request buffer.

Most requests that go out have book-keeping information placed into a per-context

request table. The table records which register, if any, should receive the data when

the memory subsystem replies. The table is also used to prevent read-after-write

(RAW), write-after-write (WAW), and write-after-read (WAR) hazards involving a

particular location in memory; the assumption is that the requests might get re-

ordered after they leave the processor, so conflicting writes should not be issued.

The table also notes the permission bits of the capability used to access the data

memory, so pointers that are read into the processor can be modified in accordance

with the Take (T) and Diminished Take (DT) rights. Pointers read in without either

permission have their P bit turned off; pointers read in with just the DT right have

their W, T, G, and DG bits stripped in accordance with [32].

It should be noted that Hamal makes very few guarantees about the relative or-

dering of memory operations. It guarantees that operations to a single location in

memory will appear to occur in the order they were issued, thus avoiding WAW,

RAW, and WAR hazards. However, no guarantee is made about the relative ordering

of requests to different locations in memory. Sequential consistency is not guaranteed.

The wait instruction may be used to force a thread to stall until all of its outstand-

ing memory operations have been completed. This is enough to implement “release

consistency,” as described in [12].

There is the possibility of contention among multiple sources of data wishing to

access the data memory from the processor at the same time. Additionally, the

node controller may reject a request if it lacks the resources to handle it at that

moment in time. Context 0 is also given priority, as it is reserved for performing
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critical operating-system operations and event handling. Requests that come out of

the memory pipeline but cannot be dispatched due to contention are placed in a

context-specific buffer. The sources are prioritizes as follows:

1. A request from context 0 that was previously rejected by the node controller.

2. A buffered request from context 0.

3. A new request from the memory pipeline, belonging to context 0.

4. A request from a context other than 0 that was previously rejected by the node

controller.

5. A buffered request from a context other than 0.

6. A new request from the memory pipeline, belonging to a context other than 0.

Another complication is that the processor may be in the process of swapping a

context’s state out to make room for another thread. If there exists a rejected request

from a context other than 0, then this context swap is prioritized between items 3 and

4, above. Otherwise, it has a priority lower than all of the items in the list. Finally,

if the event queue is starting to get too full, all memory requests from contexts other

than 0 are suppressed.

3.8 Instruction Set

This section presents the instructions that are specified in the Hamal Instruction Set

Architecture [18]. Control instructions which accept a source operand only accept an

immediate value. Control instructions do not have destination registers, although they

may modify bp in the course of execution. For arithmetic and memory instructions,

however, operands may be:

• General-purpose registers.

• Special-purpose registers (pointer, event, and global).
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• Predicates, as pr, ~pr1, px, and py.

• A 64-bit immediate.

• The constants 0 and 1.

GPRs can be used for any operand if an instruction has multiple operands. The

others can only be used for one operand. Possible destinations for arithmetic and

memory instructions are:

• General-purpose registers.

• The pointer registers bp, tr, and tv.

• Predicate registers en-masse: pr, px, and py.

• Individual predicates – compare and test instructions only.

Eight bits are required to encode the name of the operand or destination. For the

set of compare and test instructions, the eight destination bits are interpreted not as a

name of a register, but as five bits indicating a predicate and three bits indicating how

the predicate should be updated. The update methods are enumerated in Table 3.3,

from [18]. In the table, p refers to the predicate being set, and v refers to the one-bit

result of the comparison instruction.

Bits Meaning
000 p = v
001 p = p & v
010 p = p | v
011 p = p ˆ v
100 p = !v
101 p = !(p & v)
110 p = !(p | v)
111 p = !(p ˆ v)

Table 3.3: Predicate updates

1The bit-wise negation of pr
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3.9 Arithmetic Instructions

Name Width Ops Description
Predicate Instructions
eq, neq 64 2 Integer equality test
gt, lt 64 2 Integer comparison
igt, ilt 64 2 Signed integer comparison
feq, fneq N 2 N bit fp equality test. N = 64, 32.
fgt, flt N 2 N bit fp comparison. N = 64, 32.
test 128 2 AND test – set predicate to (src1 AND src2) != 0

Table 3.4: Arithmetic Predicate Instructions

The arithmetic instructions are meant to be handled by some number of func-

tional units (FUs); implementations may decide the number of FUs and distribution

of instructions to them. Predicate instructions, which perform comparisons and set

or clear a single predicate, must complete in one cycle. The latency of other instruc-

tions is left as an implementation detail, although three cycles is likely a reasonable

maximum.

The arithmetic instructions which have register destinations are listed in Table 3.5.

The instructions which modify a predicate are listed in Table 3.4. The tables contain

the name of the instruction, the width of each operand, the number of operands

accepted, and a short description. The format of an arithmetic instruction is

dst = OP src1 [, src2]

where dst is a valid destination, and src1 and the optional src2 are valid sources, as

described earlier. There may be a mismatch between the width of the data expected

by the instruction, and the data provided by the selected sources. If the source data is

narrower than the instruction data width, the data is zero or sign-extended depending

on the instruction. Conversely, if the source data is too wide, it is truncated to the

correct width. Extension and truncation are also used when attempting to place the

data in the desired destination register.

Many of the arithmetic instructions operate on packed data in parallel, in a SIMD

fashion. For example, the add64 instruction operates on 128-bit operands, and thus

40



1a 0a 1b 0b

bop 0 op 0a 1 1 a b

Figure 3-4: Parallel Arithmetic Operation

does two independent 64-bit adds in parallel. The low 64-bits of the destination will

contain the result of adding the low 64-bits of the two sources, and likewise for the

high 64-bits. Figure 3-4 illustrates this.

The busy instruction is a special instruction. It operates on no operands. Its

purpose is to mark the destination register busy. This is useful for thread synchro-

nization; see the description of the join memory instruction in section 3.10.6.

3.10 Memory Instructions

Five types of memory instructions are available: address computation instructions,

load/store instructions, atomic memory operations, fork/join instructions, and the

wait memory barrier instruction. The format of the address in memory instructions is

pointer[offset], where pointer is one of r0-r31 and must contain a valid pointer.

The offset is a 64-bit register or immediate and a multiplier of 1, 4, 8, or 16. Thus

r2[4*r3x] is in the correct format. The third operand which can be provided to a

memory instruction, src3, is a data word.

3.10.1 Address Computation Instructions

Address computation instructions, shown in Table 3.6, do not actually access memory.

Instead, they perform calculations on pointers. The pointer comparison and equality

testing instructions target predicates and can update the chosen predicate in the

manner described earlier. Furthermore, peq and pneq will cause the EV SQUID thread

event if they cannot make the equality determination without more information– this

happens when one or both pointers are for migrated objects and the SQUIDs and
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Name Width Ops Description
Integer Arithmetic
addN 128 2 N bit parallel integer addition. N = 64, 32, 16, 8
subN 128 2 N bit parallel integer subtraction. N = 64, 32, 16, 8
mulN 128 2 N to 2N bit parallel unsigned multiplication. N = 64, 32
muliN 128 2 N to 2N bit parallel signed multiplication. N = 64, 32
maxN 128 2 N bit parallel integer maximum. N = 64, 32, 16, 8
minN 128 2 N bit parallel integer minimum. N = 64, 32, 16, 8
Floating Point (fp) Arithmetic
faddN 64 2 N bit parallel fp addition. N = 64, 32
fsubN 64 2 N bit parallel fp subtraction. N = 64, 32
fmulN 64 2 N bit parallel fp multiplication. N = 64, 32
fmaxN 64 2 N bit parallel fp maximum. N = 64, 32
fminN 64 2 N bit parallel fp minimum. N = 64, 32
fabsN 64 1 N bit parallel fp absolute value. N = 64, 32
frcpaN 64 1 N bit parallel fp reciprocal approximation. N = 64, 32
frsqrtaN 64 1 N bit parallel fp inverse square root approx. N = 64, 32
Shifting
shlN 64 2 N bit parallel logical shift left. N = 64, 32
shrN 64 2 N bit parallel logical shift right. N = 64, 32
asrN 64 2 N bit parallel arithmetic shift right. N = 64, 32
rolN 64 2 N bit parallel rotate left. N = 64, 32
rorN 64 2 N bit parallel rotate right. N = 64, 32
Bit Rearrangement
revN |src1| 1 Reverse the order of N bit blocks. N = 16,8,1
swiz 64 2 Swizzle
iswiz 64 2 Inverse swizzle
Move
move |src1| 1 Copy the contents of one register into another
imove |src1| 2 Copy src1 into the register specified by src2
packN 128 2 Parallel pack two N bit values → 2N bits. N = 64, 32.
Bitwise Boolean
not 128 1 128-bit bitwise negation
and 128 2 128-bit bitwise AND
or 128 2 128-bit bitwise OR
xor 128 2 128-bit bitwise XOR
Pattern Searching
scanN |src1| 2 Scan N bit blocks for specified pattern. N = 16, 8, 1
scanrN |src1| 2 Scan N bit blocks in reverse for pattern. N = 16, 8, 1
countN |src1| 2 Count N bit pattern in N bit blocks. N = 16, 8, 1
Hashing
hash 128 2 256 to 128 bit hash (two 128 bit inputs)
Miscellaneous
busy 0 0 Marks the destination register busy

Table 3.5: Arithmetic Instructions
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Instruction Description
addr Address computation (pointer + offset)
base Compute the base address of an object
bound Compute the maximum valid address of an object
peq, pneq Pointer equality test
plt, pgt Pointer comparison
psub Subtract two pointers into the same object

Table 3.6: Address Computation Instructions

other properties are the same. Whether or not they really are the same would require

dereferencing. Finally, plt and pgt will only return meaningful information if used

on two pointers to the same object, although object migration is not an issue.

3.10.2 U and V Bits

User programs are allowed to modify, read, and trap on the U and V bits of each

128-bit word in memory. Every instruction which access memory is prefixed by eight

bits which instruct the data memory how to modify and when to trap on these bits.

Each bit is dealt with independently. For updates, the choices are set, clear, toggle,

and no change. For trapping, the choices are ignore, trap if clear, and trap if set. To

specify this in writing assembly language for Hamal, suffixes are added to memory

instructions. The suffixes @u0 and @u1 indicate to trap if the U bit is 0 or 1. The

update suffixes for U are +u, -u, and ^u, which cause U to be set, cleared, and toggled,

respectively. The same style is used for the V bit. Thus, to indicate a desire to load

a 64-bit value from memory, toggling the U bit, ignoring U for purposes of trap, not

modifying the V bit, and and trapping if V is set, one would write:

r1x = load64@v1^u r3[0]

3.10.3 Load/Store Instructions

These instructions allow writing to and reading from memory, at multiple granulari-

ties; 8, 16, 32, 64, or the full 128 bits (plus the P bit) can be operated on at a time.
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As far as address alignment is concerned, the address must be a multiple of the data

size. The loadN and storeN instructions do reads and writes, where N is one of the

allowed granularities. The swapN instruction is combination of the two, reading an

address’ value and then storing another in its place. The U and V bits for a memory

word may be loaded by using the loaduv instruction.

3.10.4 Non-trapping Instructions

When a memory instruction is executed by the processor, the capability used to access

memory is checked for permissions, bounds violations, and granularity violations. If

there is an error, the processor will generate an exception. However, non-trapping

versions of the memory instructions are available if this behavior is not desired. If

a trap would normally happen, it is suppressed, and predicate p30 is set, but the

instruction is still not allowed to continue execution. Otherwise, p30 is cleared. To

specify this in assembly language, one would prepend an underscore to the instruction.

3.10.5 Atomic Memory Instructions

The data memory is expected to be able to perform simple atomic operations on the

data it contains. The atomic memory instructions specify an operand and an address.

The memory subsystem will perform the desired operation with the current contents

of that address and the operand, storing the result back into the same address. The

original value of the data at that address is optionally returned. It is also possible to

negate the original contents, the operand, and the result, as indicated by the optional

tildes (˜) in the syntax:

[dst =] [~]operation [~]pointer[offset], [~]src3

The available operations are addition, bitwise AND, bitwise XOR, and integer

maximum. The operands may be 8, 16, 32, or 64 bits wide. The ability to negate

certain values leads to even more functionality: any two-input boolean operation,

integer minimum, and the functions listed in Table 3.7 can be computed.
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Addition with optional negation Same as
a + b a + b
a + ˜b a - b - 1
˜a + b -a + b - 1
˜a+ ˜b -a - b - 2
˜(a + b) -a - b - 1
˜(a + ˜b) b - a
˜(˜a + b) a - b
˜(˜a + ˜b) a + b + 1

Table 3.7: Atomic Addition and Subtraction Operations

3.10.6 The Fork and Join Instructions

Threads are a central element of the Hamal architecture. In order to start a new

thread, the fork instruction is used. This instruction takes two operands, an address

and a 32-bit mask. The address indicates where the new thread should start executing;

the processor in the node where this address resides will perform the execution. The

mask indicates which of the 129-bit GPRs should be copied to the new thread.

The join instruction is used to send a value to a register in a different thread. It

takes as operands the data to send and a join-type capability which indicates which

node the thread is on and what the thread’s identifier (swap address) is. The intended

use is to perform register-based synchronization between threads. One thread uses the

busy instruction to mark a register busy and then attempts to read from it, causing

it to stall. When the other thread writes a value into the register, the register will be

marked as ready and the first thread will be allowed to continue execution.

3.11 Control Instructions

The control instructions, in Table 3.8 from [18], all take zero or one operand. The

only possible operand is a 24-bit immediate. The only register which can be modified

is bp. The other side-effect, of course, is the changing of the next address to fetch an

instruction from.
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Instruction Description
branch Branch to the address in bp

branch immediate Branch to a relative offset
return Synonym for branch
treturn Branch to the address in tr

call Branch to the address in bp

Store the next address in bp as the return address
call immediate Same as call but with a relative offset
break Terminate the thread and generate a global event
suspend Suspend the thread and generate a global event

Table 3.8: Control Instructions

3.12 Privileged Instructions

There are a set of instructions that require additional privilege to execute. These in-

structions will only be permitted to execute if they are read from instruction memory

using a code capability with the Privileged (P) bit set. Conceptually, threads using

these instructions would be part of the operating system. Thanks to the use of capa-

bilities, however, any thread could be handed a very restricted capability representing

an entry point for one particular part of the operating system. Table 3.9, courtesy

of [18], lists these privileged instructions. Some of the instructions are meant to be

executed by context 0 only, and are noted with an asterisk (*).

3.12.1 Context Swapping

The operating system must be able to stop and remove a currently executing thread

from the processor. It must also be able to reload and restart previously removed

threads. When a thread is created, the operating system sets up a piece of memory

where its state can be placed when it is swapped out. The address of this memory is

known as the thread swap address and is used as a unique identifier for that thread.

The cstore instruction takes as an operand a thread swap address. It causes the

corresponding thread to be swapped out to memory. The cload instruction takes

as operands the swap address of a thread to load and the number of the hardware
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Instruction Functional Unit Description
poll * arithmetic Block until there is an event in the queue
cload * memory Background load a context from memory
cstore * memory Background store a context to memory
cwait * memory Wait for all cstores/cloads to complete
fload * memory Background load a context from fork buffer
fstore * memory Store fork buffer to memory
setp arithmetic Set the pointer bit of a 128-bit data word
loadt memory Get the T trap bit for a word in memory
storet memory Set the T trap bit for a word in memory
getmap memory Get the virtual address for a physical page
setmap memory Set the virtual address for a physical page
assoc memory Get the physical page for a virtual address
gets memory Get the status bits for a physical page
sets memory Set the status bits for a physical page
pgin memory Load a page of memory from secondary storage
pgout memory Store a page of memory to secondary storage
xlate memory Place an entry in the translation cache

Table 3.9: Privileged Instructions

context into which it should be loaded.

3.12.2 Managing the Fork Buffer

When the network controller’s fork buffer contains a fork destined for the local pro-

cessor, the processor will receive an EV FORK event. The operating system handles

must determine whether or not the processor has an unused hardware context. If it

does, it can use the fload instruction to move the context data into the free context.

Otherwise, it uses the fstore instruction to send the data to memory. The operating

system can load this data later after it has swapped out one of the contexts.
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Chapter 4

Processor Implementation

This chapter describes the heart of this work, the actual implementation of a subset

of the Hamal Parallel Computer Architecture. The implementation is written in the

Verilog Hardware Description Language, using only language constructs which make

it suitable for synthesis into a Field-Programmable Gate Array (FPGA) produced by

Xilinx, Inc. The goal is to have an FPGA implementation of the processor, although

it is also possible to re-target the source code at an Application-Specific Integrated

Circuit (ASIC) silicon fabrication process at some point in the future.

4.1 FPGA Details and Synthesis Tools

The processor implementation is targeted at the XCV2000E model of Xilinx’s Virtex-

E line of FPGAs [34] in a 680-pin package. Other parts in this line may be suitable, if

they have greater or equal logic capacity and I/O pins, as the implementation makes

use of almost all of the available chip resources in that model. The Foundation series

of tools from Xilinx provided the logic synthesis, FPGA implementation, and timing

analysis tools needed to complete the implementation. The Virtex-E FPGAs and

these tools are now briefly described to give background on the equipment used in

this work.
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4.1.1 FPGA Features

An FPGA is a reconfigurable logic device that can implement arbitrary digital logic

functions. The Xilinx Virtex-E FPGAs perform this using 4-input look-up tables

(LUTs), as shown in [37]. Two LUTs, combined with dedicated carry-chain logic and

two flip-flops, compose a “slice.” A Combinational Logic Block (CLB) is composed

of two slices, along with additional logic to tie the LUT outputs together. A slice

can compute any 5-input function, a 4:1 multiplexor, or selected functions of up to

nine inputs. A pair of slices in a CLB can implement any 6-input function, an 8:1

multiplexor, or selected functions of up to nineteen inputs. Additionally, a CLB has

local routing resources that can move data through a CLB without consuming any

logic resources. The flip-flops are suitable for creating shallow RAM structures, which

are called Distributed SelectRAM in the Xilinx nomenclature. Finally, CLBs also have

three tri-state drivers, called BUFTs, for driving on-chip busses. The XCV2000E has

19,200 slices and 19,520 BUFTs.
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Figure 4-1: Detailed View of a Virtex-E Slice, from [37]
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In addition to the logic resources in the FPGA, there are also dedicated static

RAM, routing, I/O, and clock management resources. Block SelectRAM is the name

given to the static RAM resource, which is organized into columns and is placed

among columns of CLBs, as shown in Figure 4-1 from the Virtex-E data sheet, [37].

Each Block SelectRAM is a dual-ported synchronous 4 kilobit static RAM device. The

XCV200E has 640 kilobits of this type of memory divided among 160 RAMs. Several

types of programmable local and global routing resources are available, including

dedicated global wires suitable for distributing clock signals in a low-skew manner.

On-chip digital Delay Locked Loops (DLLs) are provided to assist in clock generation.

Finally, a large number of common I/O standards are supported with the help of 512

I/O buffer (IOB) resources.

4.1.2 Tools Features

Implementation was completed with version 3.1i of the Xilinx Foundation tools, with

Service Pack 7 applied. This suite of tools handles tasks such as design entry, simu-

lation, synthesis, timing analysis, and implementation. The schematic entry tool was

not used as the entire design was implemented in Verilog. Foundation’s Hardware

Description Language (HDL) editor was eschewed in favor of Emacs with Michael Mc-

Namara’s excellent verilog-mode elisp package [33]. The simulator was also avoided,

in favor of Model Technology, Inc.’s ModelSim product. The synthesis tools take a

Verilog description and convert it to a netlist describing connections among simple

logic primitives for the targeted device. The implementation tools take the output

of the synthesis and map it onto the resources of the device. This is a multi-step

process which includes a rather time-consuming place-and-route step. Xilinx’s timing

analyzer can be used after the implementation step to determine critical path length

and maximum clock frequency. Figure 4-2 illustrates how the tools work together.

The Core Generator is a very useful tool which allows the creation of modules

which efficiently use the resources of the FPGA to perform a certain task. For ex-

ample, “cores” were available for FIFOs, tri-state multiplexors, and RAM structures.

This tool outputs a netlist describing the Xilinx primitives to use, which is an input
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to the implementation tools. Additionally, it generates a Verilog model of the mod-

ule, so that functional verification of the design is possible with third-party Verilog

simulators, such as ModelSim. Instantiating these modules in the Verilog code for

the processor was preferable to trying to use the Xilinx primitives directly. Doing

so allows the clear textual separation of the parts of the implementation which are

Xilinx-dependent from those that are not. While it may have been preferable to avoid

Xilinx-specific features altogether in favor of a pure Verilog description, this turned

out not to be feasible. The Xilinx synthesis tools perform well in general, but to make

best use of the on-chip tristate and memory resources, at least, it is necessary to be

more explicit.

One really useful feature is the powerful logic optimizations that synthesis and

implementation tools perform. In addition to detecting errors, such as multiple drivers

on a single net, the tools also analyze the design enough to notice nets that do not

have drivers, and nets that have no load. This extraneous logic is removed and noted

in the tools’ output. This is useful for two reasons. First, there is a chance that

this is evidence of a design error. Second, the need to micro-manage busses and port
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connections is considerably reduced. For instance, connecting a large bus to several

modules, each of which only reads some parts of it, does not result in inefficient logic.

The tools will remove unneeded ports and logic resources specified in the design. This

extends to even removing registers and tri-state drivers for unused parts of the bus.

Finally, the trimmed logic report may reveal to the implementor properties of the

design that he was not aware of, and this information may help him make design

optimizations beyond what the tools can do.

4.2 Implementation Details

Having introduced the technology being used, the implementation details of the pro-

cessor are now presented. This description begins with the processor’s interface to

other parts of the Hamal Parallel Computer. A discussion of the various pipeline

stages is next, followed by a detailed analysis of the context-specific hardware con-

structs, and then specifics of the memory output and input data paths. Finally the

event-handling hardware is explained.

4.2.1 Node Controller Interface

There are three data paths between the node controller and the processor: Data

output, data input, and event input, as shown in Figure 4-3.

183173

Data InData Out / 
Rejected
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Node Controller

Busy /
Event In /

293

High-water

Figure 4-3: Processor-Node Controller Interface
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Processor’s Data Output

The data output is used to make memory requests and to swap out contexts. This

data path is 273 bits wide. It it comprised of an address, the type of capability used

(code, data, I/O, or join), a 129-bit tagged data word as an operand, the memory

operation requested, the return address, and a bit indicating the validity of the re-

quest. Requests should be valid shortly after the rising clock edge. One additional

wire is used by the node controller to reject or accept the processor’s data output re-

quest. The node controller will examine the request, and may refuse it, if a necessary

resource is unavailable, later in the same clock cycle.

Processor’s Data Input

Replies to memory requests are received by the processor on its data input path.

There are two busses and one control line associated with this interface. The busses

provide the actual data and the return address. Along with one bit for indicating that

the buses are valid, this data path is 193 bits wide. The processor is not at liberty to

reject this input. Figure 4-4 shows the data paths involved.
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Figure 4-4: Memory Reply Data Path

The return address contains a thread swap address which identifies the thread for

which the data is intended. If that thread is not loaded into a hardware context, the
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processor will generate an EV REPLY event and place the data into the event queue for

the operating system to handle. The return address also indicates if this context data,

from a cload or fload operation, or if it is a reply to a normal memory instruction.

In the former case, the context control unit will decode the lower six bits of the return

address to determine where to send the data.

In the latter case, the lower eight bits indicate the register to receive the data.

This value will refer to a read-only register value if the memory instruction does not

put data in a register when it completes, as is the case for store. This value, and the

number of the hardware context which is receiving the reply, are sent to the memory

request tables. The table corresponding to that context will clear the corresponding

entry to indicate the memory operation has completed. Additionally, a check is made

to see if the data read in is a pointer. If it is, the T and DT bits of the pointer

originally used to make the memory reference are examined, and if necessary the

incoming pointer is modified, as described in the previous chapter.

Processor’s Event Input

The memory and network subsystems may have events to report to the processor, such

as a page fault or a fork request arriving from a remote node. The processor’s 185-bit

wide event interface supports this. This interface is composed of the type of event,

the memory operation involved in the event, the return address, and an additional

event-dependent data word. The processor has a control line for indicating that an

event will not be accepted in the following cycle. It also has the “event high-water”

control line, which is asserted when the processor’s event queue is starting to fill

up. The node controller will stop accepting network events, joins, or remote memory

requests to ease the pressure.

4.2.2 Instruction Memory Interface

Each clock cycle, the processor looks at the trace controllers which are ready to

receive another instruction group from the instruction memory. It selects one of these
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contexts, giving context 0 priority and using a round-robin schedule for the others.

The processor outputs the address being requested and the number of the context

which requested it and asserts the instruction memory request line to notify the

instruction memory of the desire for service. The selected trace controller is notified

that the request succeeded; it will not make further instruction memory requests until

it is supplied with the requested data. If the instruction memory decides it is busy

and unable to accept a request this cycle, it will assert imem busy, and the processor

will not make a request. Figure 4-5 shows how the processor and instruction memory

communicate.

Request

Context

Address
Memory

Instruction

Ready

Processor Context

Busy

Decoded Instruction Group

Figure 4-5: Processor-Instruction Memory Interface

The instruction memory responds with the desired instruction group and the

number of the context which requested it. It may take multiple cycles to fulfill

the request. If the latency in cycles is always greater than the number of contexts

that typically are active an accessing instruction memory at the same time, then

the processor will be starving for instructions to execute. Another issue is that if a

context with a pending request is stopped by the operating system to be swapped

out, the new context which is swapped in must not start until the instruction memory

has responded to the request. This prevents the new context from being handed an

instruction group meant for the old context. The instruction memory’s maximum

latency must be less than the minimum number of cycles required to install and start

a new thread. Since a context swap takes at least 110 clock cycles, this should not

be an issue. Contexts which terminate or suspend themselves by executing a break

or suspend will not have pending requests.
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Decoded Instruction Group Format

Field Size Field Size
Predication Memory Instructions
Predicated 1 Predicate Destination 1
Invert Predicate 1 Privileged only 1
Predicate Number 5 Context 0 only 1
Arithmetic Instructions Opcode 6
Predicate destination 1 Flags 20
Privileged only 1 First operand 8
Context 0 only 1 Second operand 8
Opcode 6 Third operand 8
N 2 Destination 8
Sets overflow flags 1 Immediate 64
First operand 8 Control Instructions
Second operand 8 Opcode 3
Destination 8 Immediate 21
Immediate 64

Table 4.1: Decoded Instruction Format

Table 4.1 lists the elements of a decoded instruction group. Included are the

opcodes for the three instructions in the group, the sources and destinations for the

arithmetic and memory instructions, predication information for each instruction,

and immediate values. The 64-bit immediate is shared between by arithmetic and

memory instructions. In encoded form, which is only 128 bits long, an instruction

group will not be able to provide data for all of these fields. Different instruction

templates would require different subsets; the implementation is able to support the

union of these sets. Without much effort, a control instruction can be packed into 3

bits, an arithmetic instruction into 40, and a memory operation into 56. Allowing 6

bits for predicate selection and two for template selection, four possible ways to pack

instructions into a single instruction group are:

1. Arithmetic + Memory + Control + 21 bit immediate

2. Arithmetic + Memory + 24 bit immediate
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3. Arithmetic + Control + 64 bit immediate + 13 bit immediate

4. Memory + 64 bit immediate

Other instruction templates are certainly possible. This implementation does not

make assumptions regarding instruction group encoding. It expects instruction groups

to be delivered in decoded form.

Flag Name Size
Scale 2
Granularity 3
uv options 8
Physical Page Operand 1
Store Operation 1
Load Operation 1
Uses ptr[offset] addressing 1
Address computation only 1
Do not add to request table 1
Atomic memory operation 1
No trap on exception; set flag 1

Table 4.2: Memory Instruction Flags

4.2.3 Split-Pipeline

The Hamal architecture involves a pipeline that splits in two after the issue stage. As

shown in Figure 4-6, there are two stages before the split, instruction fetch and issue.

The control instruction is executed in the instruction fetch stage, if its dependents

are not going to be overwritten by a queued or in-flight instruction; otherwise the

trace controller waits for the next cycle to try again. Only one context can receive

an instruction group from instruction memory per cycle, although all contexts can

execute stalled control instructions at any time.
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4.2.4 Trace Controller

The trace controller is responsible for managing all of the context-specific resources. It

determines the address of the next instruction to request from the instruction memory,

executes control instructions, tracks pending register use, determines if its context is

ready to issue, handles thread events, and executes write-backs to its special-purpose

registers. A register named tp serves as the thread’s current instruction pointer. This

is not an architecturally-visible register, but is needed for the trace controller to know

where to get the next instruction from.
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Instruction
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To Instruction
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From Code Memory

Figure 4-7: Trace Controller Instruction Flow
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Control Execution Unit

Each trace controller includes a control execution unit. This unit is responsible for

executing the control portion of an instruction group. For a given control instruction,

this unit first does dependency checking to determine if the register(s) which need

to be read from are going to be modified by an instruction that is in the instruc-

tion queue or has already issued. If the resources are available, the predication of

the instruction is checked. Then, the address of the next address is determined. As

shown in Table 4.3, this will be one of the following: tp + 1, tp + an immediate, the

contents of bp, or the contents of tr. Finally, the opcode is examined to determine

if bp should be loaded with the next address to execute; this happens in the case of

call instructions only. The trace controller is notified if: the instruction executed

successfully, resources were not available, or the executed instruction was suspend

or break. If the resources are not available, the trace controller will place the in-

struction group in its stall registers and try again next cycle. It will also refrain from

requesting another instruction group from the instruction memory. Figure 4-7 shows

how instruction groups flow through the trace controller.

Instruction Next Address
branch bp

branchi tp + immediate
treturn tr

call bp

calli tp + immediate
The rest tp + 16

Table 4.3: Next Address Determination

Generating Events

There are four events, or traps, that could be generated by the trace controller.

They are EV SUSPEND, EV BREAK, EV BADOP, and EV BADIP. The first two are processor

(global) events, and the last two are thread (local) events. In the case of the global

events, execution of the thread stops, and the the trace controller waits for any
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arithmetic and single-cycle memory instructions it has issued to finish. Then, the

trace controller indicates to the issue logic that it has an event it would like to

submit to the processor. It will continue to indicate such until an acknowledgement

is received, at which point the context will be idle, waiting for operating system

intervention.

For the local events, a special memory operation is created to replace the actual

memory operation for the instruction group in question. This special operation indi-

cates that a trap should be generated when the instruction reaches the first stage of

the memory pipeline. The arithmetic instruction is replaced with the no-operation

instruction, NOP. The bad opcode event, EV BADOP, will occur if the instruction decode

logic deems the instruction group to be invalid; in this case, the instruction received

from the decode logic will already have the memory instruction altered as described.

The bad instruction pointer event BAD IP occurs when the the trace controller at-

tempts to fetch an instruction but tp contains a capability that is not valid.

Instruction Queue

After instruction groups are successfully executed by the control execution unit, they

are added to the instruction queue. Attempts to issue are done using the instruction

group that is at the head of the queue, by peeking at this entry but not dequeuing

it. The instruction queue must also report on the writing of the predicates, bp, and

tr by instructions sitting in the queue. These are known as the pre-busy bits, and

are needed by the control execution unit to determine if it is safe to read or modify

these registers.

Thus the implementation requires a FIFO-structure, but with the ability to read

certain bits from all entries and the ability to peek at the item at the front of the

queue. A modest depth, two entries, is the minimum desired. Whether or not a

greater depth is an efficient use of resources is not yet known; simulations should

reveal if these queues typically fill causing the instruction memory to go idle or not.

This was implemented in straight Verilog, hard-coding for two elements, since the

Xilinx FIFO core does not provide the desired features– the top entry cannot be read
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without dequeuing it, and parallel access to all of the pre-busy bits of all the entries

is not possible.

Resource Usage and Issue Readiness Determination

Each trace controller must guarantee that that sequential consistency is achieved for

reads and writes to a given register. As described in the previous chapter, busy bits

are used for to track pending register writes. The trace controller checks the sources

and destinations of the instruction group that is at the front of the instruction queue.

If any of those registers have a write pending, the instruction is not allowed to issue.

The GPRs, due to their multi-granularity, require a small amount of additional

effort. If even part of the chosen GPR is busy, the instruction must wait. This could

happen if, for example, r0x is busy, and the candidate instruction group has r0 or

r0b as a source or destination. On the other hand, using r0y would be fine. The

predicates have a similar concern, as they can be read and written en-masse, as pr,

px, or py, and they can be read and written individually, by comparison instructions

or predicated instructions.

Other than the sources, destinations, and optional predication, there are other

more subtle register resource uses that must be checked for. Non-trapping memory

instructions will set or clear p30, and some arithmetic operations will set or clear

the inexact flags, p28 and p29. Finally, any memory instruction which could trap

implicitly reads the trap vector register, tv, and writes the trap return register, tr.

As stated before, the control execution unit has to do these resource checks as

well, although on a much smaller set of registers due to what control instructions

can actually manipulate. The need for pre-busy bits is now clear– checking the busy

bits for instructions which have already issued is not enough, and it is important to

consider the resource use of the instructions in the instruction queue.

The busy bits for an instruction which issued are not committed at the end of the

issue stage. Instead, they are committed at the end of the next pipeline stage, ex1.

The reason for this is that a trap could occur, or one or both instructions could get

squashed due to failed predication. The possibility of a trap is not known until the
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first stage of the memory pipeline, and predicates are also not checked until ex1. The

execution unit reports to the trace controller whose instruction group is in ex1 about

the result of predication and the presence of absence of a trap.

There are resources other than registers whose usage which must be tracked. First,

there are a finite number of memory request buffers and request table slots for each

context. These structures are described in the description of the memory output

path below. If these structures do not have enough space to hold any more memory

requests, then instruction groups with memory instructions that access memory are

not allowed to issue. Additionally, the wait instruction causes issue to be delayed

until their are no pending (or in-flight) memory requests.

Finally, there are global resources which must be shared by all contexts on the

processor. Only one fork or context swap-out can be happening at a time. Also, only

one page-out operation is allowed at a time. The trace controller must check these

resources as well. Each of the two resources has a busy bit associated with, like the

registers, but these busy bits reside outside the individual trace controllers.

Handling Thread Events

All thread events, or traps, are generated in the first stage of the memory pipeline.

All of the trace controllers share a bus which reports these events. This bus, shown

in Figure 4-8, carries the type of trap, the address of the instruction group that

caused the trap, and details of the memory instruction in that group. Arithmetic and

control instructions do not directly generate thread events. The details of the memory

instruction include the operation being performed, the operands, and the destination

register. If this trap is the result of bad instruction encoding, as described earlier,

then only the trap type and instruction group address are valid. This information is

stored in the seven event registers e0 through e6. Additionally, the busy bits for the

memory instruction are not committed, as if the instruction had been squashed by

failed predication. The address of the erring instruction is placed in the trap return

register, tr, and the thread instruction pointer, tp, is loaded with the contents of the

the thread trap vector register, tv.
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Traps are precise in the Hamal architecture. To undo the execution of the control

portions of instruction groups in the instruction queue, the instruction queue is flushed

and the branch pointer, bp, is restored to the value saved when the faulty instruction

group was executed by the control execution unit. The only other side-effect that the

execution of control instructions has is modifications to tp, but this register receives

a new value as a result of the trap anyway. These modifications are all made at the

end of the ex1 stage for the instruction that caused the problem. Additionally, the

trace controller will not indicate it is able to issue this cycle due to the trap. However,

it will be able to begin execution of the trap handler on the cycle following, if chosen

to issue. Thus, if this were the only thread ready to issue, there would be a one-cycle

bubble where no context issued.

Special-Purpose Register Write-back

The general-purpose register file handles all GPR writes, but it is up to each trace

controller to execute writes to all other registers, the SPRs. Predicate write-back is

one part of this. The execution unit will provide information about how predicates

change as a result of executing the arithmetic and memory instructions; this always

happens during the ex1 pipeline stage.

Instructions are also able to write to a subset of the SPRs, including the predi-

cates en-masse, as described in the previous chapter. At the end of each cycle, the

trace controllers must check to see if there are any SPR write-backs for their context

happening and execute them if there are. The trace controllers may assume that

there will never be multiple writes to a single SPR in the same cycle, as it would be

a breach of the architectural rules to issue an instruction which intended to write to

a register which already had a write pending.

4.2.5 Issue Logic

The issue stage is examined next. At the start of the clock cycle, all of the trace

controllers indicate whether or not they have an instruction group that is ready
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to issue. Each trace controller accesses its special-purpose registers to produce the

operands requested by the instruction group. At the same time, the issue logic looks at

which contexts can issue, which context issued last time, and whether or not context

0 wants to issue in order to determine which context will issue at the end of the cycle.

Context 0 is given priority, with the other contexts taking turns in a round-robin

fashion. For four contexts, the logic is not too complicated, although if eight contexts

were used, a table-lookup approach might be more efficient. If a context is not ready

to issue, it is skipped in the round-robin handling. The selected instruction group is

chosen out of the candidates from each context using a multiplexor. Having decided

which context will issue, the GPR operands of the instruction group are fetched. The

rising clock edge at the end of the cycle is the commit point. The issuing trace-

controller removes the issued instruction from its instruction queue, and the chosen

instruction group and accompanying operands are clocked into the pipeline register

of the first execution stage, ex1. The processor informs the execution unit that the

instruction in ex1 is valid and should be executed.

4.2.6 General-Purpose Register File

The general-purpose register file holds the GPRs for each hardware context. It has

six read ports and 3 write ports. Two read ports are for the sources of an arithmetic

65



instruction, three are for the sources of a memory instruction, and the third is for

swapping out a context. The three write ports are for write-backs from the arithmetic

and memory pipelines as well replies from memory. It was necessary to understand

the FPGA resources available when designing this part. Simply generating a Verilog

description of what should happen was inadequate; the synthesis tool were not able

to process this effectively. The tool spent about 12 hours executing on a dual Intel

Pentium-III 550Mhz machine before conceding that it could not fit the register file

into the FPGA at all.

The solution was to be more explicit about how the FPGA resources were to be

used, as the synthesis tool was not able to infer this on its own. For storing the

data, the FPGA’s static RAM resources were used. The RAM primitive is dual-

ported, so simultaneously supporting six reads and three writes took some doing.

The implementation clocks the register file twice as fast as the clock for the rest of

the system. This effectively splits each cycle of the system into two phases, a write

phase and a read/write phase. During the write phase, both ports are used to write,

while during the read/write phase, one port is used to write and one is used to read.

That covers the requirement of three writes per cycle. To get the six reads, six copies

of the RAMs are used, all set to write the same data.

Another complication is the fact that due to the granularity of the register file,

there are four 32-bit portions and one 1-bit portion that can be written to separately.

There are logically five RAMs, with six copies each. Physically, the 32-bit wide RAMs

require two Xilinx Block RAMs to implement. Thus, 54 Block RAMs are used in total,

requiring 216 kilobits of RAM resources to implement the 16.1 kilobit register file.

This may seem wasteful, but the FPGA has enough Block RAM resources that this

the optimal, and perhaps only, way to implement a register file with these specification

in this FPGA.

Finally, five of the read ports, shown in Figure 4-9, must support the reading of

a 32, 64, or 129-bit value. Reads from the b, c, d, and y register slices require bit

shifting so that the output bits start at the least significant bit out of the output bus.

The data output multiplexors handle this task.
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Figure 4-9: General Purpose Register File Read Ports

4.2.7 Execution Unit

There are two parallel ex1 pipeline stages, one for arithmetic instructions and one

for memory instructions. They are referred to as apipe ex1 and mpipe ex1 for short.

The Execution Unit checks the predication for each of the two instructions and the

current value of the predicates from the issuing context to determine if either instruc-

tion should be replaced with a NOP. Another task that the execution unit performs

is combining the predicate write-back requests from the the hardware executing the

arithmetic and memory instructions. Either instruction might have a predicate des-

tination and/or want to set or clear one or more of the predicates used to flag error

conditions. Additionally, instructions that target individual predicates specify an

update method, and that is handled here as well.

This pipeline stage is the commit point for the instruction group. If the predication

allows it, and the Memory Execution unit indicates there is no trap this cycle, then at

the end of the cycle the trace controller that issued this instruction group will commit

the busy bits for that group. The trace controller assumes that the instruction group

will not be squashed when making the determination if it is safe to issue on the cycle

following a successful issue. This is conservative, and results in an issue bubble in the

case of a trap. However, traps are supposed to be exceptional situations and there
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are up to three other threads waiting to issue.

4.2.8 Memory Pipeline

The first stage of the memory pipeline will execute instructions that do not require

communicating with the memory subsystem. These are the address-manipulation

instructions described in the previous chapter. For memory instructions that require

it, the given offset and base address are combined to produce the actual address being

referenced. For all memory instructions, checks are performed to determine that valid

capabilities are being used for addressing, and if the requested operation violates the

permissions specified in the capability. For example, data supplied as an address must

have the pointer bit set, indicating it is a capability.

Bounds checking will be performed on the computed address, and security viola-

tions such as using a pointer without the Read capability to perform a read operation

will be caught. Additionally, an address alignment check is made using the granu-

larity of the memory reference. For example, if a memory instruction is writing a

64-bit value, the address’ lowest three bits must be zeroes. It calculates if a trap

should happen, or if the result of an address-manipulation instruction should be writ-

ten back to the register file, or if the instruction needs to continue on to the second

memory pipeline stage to communicate with the memory subsystem. Additionally, if

instead of a memory instruction an event from the issuing trace controller is present

(EV BADOP or EV BADIP), the need for a trap will be signalled.

All of the traps that can get signalled at this stage, listed in Table 4.4, are thread

events. The notification of a trap will be forwarded to the trace controller that issued

this instruction group.

The second stage of the pipeline is a staging ground for the processor’s data

memory output. The details of this memory output stage are discussed later.
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Event Cause
EV BADIP Thread’s instruction pointer is invalid

Attempt to execute outside allowed segment
EV BADOP Illegal opcode or register selection
EV SQUID SQUIDs of one or more migrated objects match in pointer

compare; pointer dereferencing required to judge equivalence
EV BADTHREAD A cstore operation referred to a non-existent thread
EV PERM Capability permissions forbid the requested operation
EV BOUND Address is outside the segment permitted by capability
EV ALIGN Address is improperly aligned for the chosen granularity

Table 4.4: Thread Events

4.2.9 Arithmetic Pipeline

The arithmetic pipeline consists of three stages. The arithmetic logic unit (ALU) is

divided into groups of functional units based on the number of cycles the functional

units need to compute their results. There are one, two, and three stage units. Note

that the depth of the pipeline is not fixed in the architecture, although three seems to

be quite reasonable. One complication in the ALU’s logic is the fact that up to three

instructions may complete in a single cycle. This occurs when the ALU receives, on

successive cycles, a three-cycle operation, a two-cycle operation, and a single-cycle

operation. Any time multiple instructions complete and are ready to write-back to

the register file at the same time, the instruction finishing closest to the end of the

pipeline is allowed to write-back. Any other instructions which are also done have

their results moved forward to the next set of pipeline registers.

Parallel Arithmetic Operations

The multi-granular parallel arithmetic operations that are part of the Hamal speci-

fication add complexity and area to the implementation of the ALU. Sometimes, it

is an efficient use of logic resources to share pieces of the hardware meant to oper-

ate on data of different widths. The addition/subtraction hardware illustrates this

well. The instruction set architecture calls for 8, 16, 32, and 64 bit addition and

subtraction. This work’s implementation of this feature uses 16 eight-bit adders. The
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carry/borrow output of each adder is connected to the carry/borrow input of the

next through a small multiplexor. That multiplexor controls whether or not to allow

carry/borrow propagation to the next piece of the adder by choosing either the carry

out from the previous stage or a 0 for addition or 1 for subtraction. The desired width

of the data to be operated in parallel is used to determine the control signals for these

multiplexors. For 8-bit data, none of the carries would be allowed to propagate. For

a 64-bit add, all of the carries propagate except for the one between the upper and

lower 64-bit chunks.

Other times, separate hardware is needed for separate bit widths. The two 32-bit

and one 64-bit multipliers are an example of this. The amount of extra logic required

to augment the results of the two 32-bit products to get the 64-bit product is more

than the logic required to just implement them separately.

4.2.10 Memory Output Path

Requests to talk to the memory subsystem originate from two sources: the second

stage of the memory pipeline, and a context swap-out. The output path ends at

the interface to the node controller. There are some complications, however. First,

there’s the fact that there are two competing sources of data. Second, that node

controller has the right to reject requests. The need to be able to buffer requests that

cannot yet go out is apparent. Finally, each context needs to track pending memory

operations to prevent write-after-write (WAW), read-after-write (RAW), and write-

after-read (WAR) hazards since requests may get reordered after being handed off

to the memory system. There is also a priority system, described in the architecture

description of the previous chapter, which must be followed when multiple requests

are ready to be sent out at the same time.

Rejected Requests

The node controller is permitted to reject outgoing data requests. In such a situation,

two possible scenarios can occur. First, if nothing with higher priority needs to go
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Figure 4-10: Memory Output Data Path

out, (a context 0 request), then the request is tried again the next cycle. If, however,

a higher priority request exists, then the rejected request is buffered in what is known

as the third stage of the memory pipeline, mpipe ex3. The request stays there until

there are no more higher-priority requests waiting. All of the requests that would be

favored in this manner have equal priority, and would thus keep retrying if rejected.

There would be no attempt to overwrite the buffered rejected request.

Memory Request Buffer

In order to handle requests from mpipe ex2 that cannot go out, either due to a conflict

with a pending request, or because a higher-priority request has been selected to

output, each context has a memory request buffer. The buffer is basically a shallow

queue, and much like the instruction queue, it is possible to read the item at the

front of the queue without dequeuing it. Requests sit in the buffer until that buffer

is selected as the source for the next outgoing memory request. The contents of this

buffer are part of the context’s state for purposes of context swapping.
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Request Format

Figure 4-11 shows the elements that form a complete memory request, which is 269

bits wide. This is what is stored in the memory request buffers as well as in the

mpipe ex3 pipeline registers. When a request actually is transferred to the node

controller, additional bits are added. The context ID is removed, while the node ID

and the swap address of the context issuing the request are combined and added to

the return address for the request. This is information which the node controller must

have to reply to the request when it completes, but data which need not be stored in

various buffers before the request is issued.

Address Type DT SQUID ContextDataT B K Op Return RegL
64 2 1 1 12 5 5 34 2 81296

Figure 4-11: Memory Request Format

Once a request goes out, far less information must be retained for storage in the

memory request table. This information is the SQUID, B, L, word offset, and the

Take and Diminished Take permissions from the capability used to address memory.

The word offset is the offset without its lowest five bits; this uniquely identifies a

128-bit word rather than a byte. With the exception of the two permission bits, these

items are combined to form the “tag” in the memory request tables.

Memory Request Table

MaskAddressV
1

TAG

R/W T DT
116 5 16 1

SQUID B L
12 64

Figure 4-12: Memory Request Table Entry

Each entry in the table consists of a valid bit, an 87-bit tag, just described, a

16-bit byte mask, the two permission bits extracted from the original request, and an

8-bit destination. This is illustrated in Figure 4-12. The table must satisfy several

properties. First, it must be possible to compare an incoming request with all others
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in parallel to check for a conflict. Second, it must be possible to add a request to

a free slot. Third, requests with no destination must store the index number of

the slot position occupied rather than the null destination. This provides a unique

identifier for all pending requests without destination, such that is possible to remove

the correct entry when the reply is received. Fourth, it must be possible to lookup

an entry by supplying the eight destination bits and retrieve the permission bits, and

optionally remove the entry from the table. Fifth, it must be possible to read and

write each entry individually for the purposes of swapping context data in and out.

Thus, the table must in some ways act as a typical RAM structure while in others in

must be more like Content-Addressable Memory (CAM).

The ultimate purpose of this table is to prevent RAW, WAR, and WAW hazards.

Thus, the table must detect memory accesses to the same bytes in an object. The

first step is to create a byte mask based on which bytes out of the sixteen in a 128-bit

word the request is accessing. The lower four bits of the offset combined with the

granularity of the request are sufficient to determine the mask. A conflict may occur

if the SQUID, word address, B, and L values for any existing entry and the new

request match. It is possible for two SQUIDs to match but for different objects to be

involved; this scheme is conservative to avoid having to do an expensive dereference

operation to determine if two pointers are absolutely pointing to the same object

when migration is involved. A conflict will be judged as having occurred if the new

request entry is a write operation, or if the conflicting entry is a write operation.

This catches WAR, WAR, and RAW without tripping on read-after-read, which is

not hazardous.

Each entry in the table shares a bi-directional bus to enable reading and writing of

the entire entry during swap operations. Also, each entry is able to accept new data,

clear its valid bit, and report if the shared bus contains a conflicting request. The

logic for the table itself is mostly concerned with checking to see if any entries conflict

with a candidate request, and setting the write-enable for just the first available entry

if there is no conflict and the request is to be committed to the table.
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4.2.11 Thread Management and the Context Control Unit

The Hamal Parallel Computer features hardware support for thread management.

Specifically, a single instruction is sufficient for starting a background context swap-

in or swap-out operation. Also, the fork instruction, which creates a new thread of

execution, allows the user to specify which GPRs should be copied from the executing

thread to the new thread. The hardware takes care of this request without further

instruction from the user.

The Context Control Unit (CCU) is the piece of logic responsible for making this

a reality. It generates control signals that arbitrate access to the context state bus.

This bus can be driven by the trace controllers, for writing SPRs, by the register file,

for writing GPRs, and by the memory interface for writing buffered memory requests

and memory request table entries. Swapping out a context, which is initiated by the

cstore instruction, involves sending all of this data out. New thread creation, with

fork, only involves sending out some number of GPRs. No matter what the data,

the request goes onto the context state bus which is connected to the memory output

path.

Fork

The fork instruction includes a 32-bit operand which indicates which of the 32 general-

purpose registers should be copied to the new thread. The CCU must generate

memory output requests for each of the registers that has the corresponding bit set

in the 32-bit mask. Additionally, the CCU must be able to generate one new request

per cycle, in case each request is accepted as soon as it is ready. In other words,

if there are M bits set in the mask, only M cycles should be required to send the

requested data out, if there is no contention for the processor’s data output. A Finite

State Machine (FSM) is used to accomplish this. When a fork request is made, the

FSM state is initialized to the mask value. The FSM outputs the next state, which

is the old state with the lowest set bit now cleared, as well as the GPR number to

read from, and a single bit indicating that the mask is all zeroes.
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Figure 4-13: Fork Control Finite State Machine

The FSM is implemented with a ROM encoding the state information. Rather

than having a single ROM with 232 entries, four ROMs are used as shown in Figure 4-

13. The ROMs are Xilinx block RAMs, initialized to a particular pattern of bits. A

simple C program creates these patterns. One useful feature of these synchronous

memory devices is the enable input. If the enable is low when the rising clock edge

arrives, the ROM will not perform a read operation; instead its output pins will hold

the previous value. This provides a way of holding state without needed to use any

of the FPGA’s logic resources. The enables are wired up so that each ROM will only

transition to the next state if the Advance signal is asserted and all of the lower-order

ROMs are in the state with no bits set. This allows the clearing of bits to proceed

from least significant bit to most significant bit, as desired. The Advance signal is

asserted when the memory output logic accepts this fork data memory request; the

fork FSM will then produce control signals to drive the next chosen GPR onto the

context state bus.

Cstore

When swapping-out a context, the same amount of data is always transferred. The

GPRs, SPRs, predicates, busy bits, memory request buffers, and memory request
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table are transferred out to memory. Table 4.5 shows the data that makes up each

of the 55 memory requests in a cstore operation. Once again, an FSM is used to

generate the control signals. The state is the index into the context state table.

Although the next state is always one more than the previous, it is a better use of

FPGA resources to put that data into a ROM rather than employing a counter. The

FSM state fits neatly into a single Xilinx block RAM device; as in the fork FSM, the

ROM is also able to store the current state through judicious use of the enable pin.

Very little external logic is required. The ROM outputs the next state, four control

lines, a resource number, a “done” signal, as shown in Figure 4-14.

Index Description
0 Request buffer 0, low word
1 Request buffer 0, middle word
2 Request buffer 0, high word
3 Request buffer 1, low word
4 Request buffer 1, middle word
5 Request buffer 1, high word
6 Request table entry 0
7 Request table entry 1

. . .
13 Request table entry 7
14 General-Purpose Register 0
15 General-Purpose Register 1

. . .
45 General-Purpose Register 31
46 Predicates
47 tv and tp

48 tr and bp

49 e2, e1, and e0

50 e3

51 e4

52 e6 and e5

53 GPR busy bits
54 Busy bits for: tr, tv, bp, and pr

Table 4.5: Context State

The control lines are a one-hot encoding of which of the GPRs, SPRs, request
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buffers, or request table is selected. The resource number is used to indicate which

GPR, SPR, request buffer, or memory request table entry is being targeted. For the

memory request buffers, the high bits indicate which third of the buffer is selected,

as the entire buffer is too wide to fit into a single data word. One of the unused bits

in the third data word is used to indicate if the entry is valid or not; this indicates

whether or not the request should be enqueued on the request buffer FIFO when the

data is loaded again later.

Lookup
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ADDR A ADDR B

OUT BOUT A

EN A

6

6 6

Advance

Init

Next Index

Done

Control Lines
Reg Num

0

Control Lines
Reg Num

54 54

Dual-Port
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Figure 4-14: Context Store FSM and Context Load Look-up ROM

Cload

When a cload operation is executed, the Node controller will handle requesting the

individual data words from memory. They arrive at the processor’s data input with

the Context bit set in the return address. This means that the destination register

in the return address is an index into the Context State Table. The processor hands

this index to the Context Control Unit for translation. The CCU looks up the index

in a ROM and produces the corresponding resource number and control lines. This

is identical to the data stored in the cstore FSM ROM. Since Xilinx block RAMs

are dual-ported, it is possible for the CCU to lookup indexes in the same physical
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memory device that is driving the finite state machine for controlling cstore. This is

shown in Figure 4-14. The resource number and control lines produced by the lookup

are used to send data into the request buffers and table via a dedicated data path,

or to send data to the GPRs or SPRs on the normal Memory Reply Data write-back

bus. The busy bits are treated as SPRs for this purpose, even though it is not possible

to use them as SPRs in normal operation.

4.2.12 Global Events

Global events compose the class of events that require special attention from the

operating system to be handled correctly. These events come from three different

sources. First, the node controller may submit events to the processor due to ex-

ceptional memory or network conditions. Second, each trace controller generates a

global event when its thread executes a suspend or break instruction. Finally, if

the processor receives a memory reply for a context that has been swapped-out, the

EV REPLY event is generated.

Events go into an event queue when they occur. However, only one event may be

admitted to the queue per clock cycle, so some arbitration is necessary. Any time a

trace controller wants to submit an event but one of the other sources also has an

event, the trace controller simply waits. If the node controller submits an event at

the same time that a memory-reply event is generated, then the data for the memory-

reply event is clocked into a set of registers and stored for a cycle. The event from

the node controller goes to the event queue. The processor also asserts its “Event

busy” output, so that the node controller will not submit an event next cycle. The

following cycle, the buffered memory-reply event is sent the event queue. If a second

memory-reply event happens at the same time, then it is stored into the registers that

the first memory-reply event just vacated.

There is some in the Hamal architecture about overrunning the event queue. The

high-water mark is used to throttle event inputs when the event queue is in danger

of filling up. However, page-in events, which are generated which the node controller

has finished paging-in memory on behalf of the processor, cannot be suppressed.
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The operating system needs to receive these acknowledgements so that it can then

take event-handling actions that were waiting on the page-in, thus making forward

progress. Out of fear of swamping the event queue with page-in requests, two separate

queues are actually used. One queue is for page-in events, and the other is for

everything else.

The implementation uses the Xilinx FIFO core. This core uses block RAMs to

store the queue’s data, which has an interesting side-effect. A queue of depth 16 uses

the same amount of block RAM resources as a queue of depth 256. This is due to

the way the static RAMs are constructed. There is a very marginal increase in logic

resources associated with this depth increase, as shown by the statistics for the normal

event queue in Table 4.6. This detail is pointed out to stress the “use-it-or-lose-it”

mentality that seems to be quite applicable to FPGA designs, at least with the Xilinx

Virtex-E series.

Depth LUTs Flip-flops Block RAMs Other
16 36 14 12 29
32 40 17 12 35
64 46 20 12 43

128 50 23 12 49
256 56 26 12 54
512 60 29 23 63

Table 4.6: Resource use for a 182-bit wide FIFO

4.2.13 Moving signals on and off the chip

A large amount of pin resources is needed to move data out of and into the processor.

At a minimum, 931 pins are required. This does not include bringing the processor’s

node ID number in, (thus requiring it be hard-coded), nor does it allow the export of

extra debugging information that might be useful in a test environment. The FPGA

package being targeted has only 512 I/O pins available. Time-multiplexing of the

wires is used to overcome this limitation. For some of the data buses connected to

the processor, the system clock cycle is divided in half. During the first phase, the
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wires are used for the transport of some signals, and during the second phase, other

signals get a turn. The particular break-down used is shown in Table 4.7. 422 pins

are used in this manner. The other 59 signals have dedicated pins. Only 481 pins

are used as a result of this process, with 31 pins left over. A more aggressive split

is certainly possible to free-up more pins if this were desired. All of the pins are

unidirectional despite having multiple uses. This reduces complexity and eliminates

turn-around delays on the shared busses.

Phase Data Direction Width
1 First half of new instruction group Input 97
1 Data input, except valid bit Input 172
1 Data output, except data word and valid bit Output 143
2 Second half of new instruction group Input 97
2 Event input, except valid bit Input 182
2 Data word for data output Output 129

Table 4.7: Time-multiplexing the FPGA I/O pins

4.3 Re-targeting Guidelines

Most of the source code for the processor implementation is a subset of Verilog which

should be synthesizable by any Verilog synthesis tool. However, there are some pieces

which are specific to the Virtex-E XCV2000E FPGA and would require some modi-

fication if a different FPGA was used, or if an ASIC was process was being targeted.

This section enumerates the problems that might be encountered and suggests solu-

tions.

4.3.1 Multiplexors and Tri-State Bus Drivers

A single source code file contains module definitions for several multiplexors and tri-

state bus drivers. Some of these modules are functional models produced by the Core

Generator for XCV2000E-specific modules; these models are not synthesizable. These

would need to be replaced with alternate implementations for other synthesis targets.
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The other modules that appear in that file are wrappers around the Xilinx modules.

For example, mux8x3 is an three-input eight-bit wide multiplexor. It is implemented

by instantiating some of the XCV2000E-specific modules.

4.3.2 Clock Generation and Distribution

Xilinx-specific constructs are used once again in generating and distributing two low-

skew clocks based off of an input reference clock. One clock is twice the frequency

of the other, with negligible phase shift. Using a synthesis target other than the

Xilinx Virtex-E series of FPGAs may require different technology-dependent imple-

mentations of these features. Specifically, the features are a delay-locked loop with

frequency doubling and global buffered wires suitable for low-skew clock distribution.

The Xilinx Application Note describing how the Virtex-E Delay-Locked Loop works

is in [36].

4.3.3 Input/Output Drivers

Virtex-E devices support a myriad of I/O standards. Using any of them requires

device-specific features, of course. Therefore, a target other than the Virtex-E FPGAs

will require some effort on the I/O drivers and pads. The signalling used, simple 1.8V

low-voltage CMOS, is not particularly complex. It is also likely that constraints placed

on the system as a whole, such a board design and clock rate, will dictate much of

the work that needs to be done in this area.

4.3.4 General-Purpose Register File

The multi-context general-purpose register file will require modification if targeted

at a different line of FPGAs or at an ASIC process, if only for better efficiency. As

described earlier, the Virtex-E primitive for memory is a dual-ported static RAM

device. The register file, as specified by the Hamal architecture, needs to support

at least four contexts and be equipped with six read ports and three write ports. If

a more powerful RAM primitive is available on the new device, redesigning the way
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the register file is constructed may be advisable. For an ASIC process, one would

definitely want to design a reasonable register file cell and replicate it. There would

be no need for six copies to accommodate porting. The Hamal architecture dictates

that five of the read ports will always be using the same context, as they are used for

operand fetch during the issue pipeline stage. A good approach would be to construct

a register file cell that contained all four storage elements and had the small amount

of decode logic to select one right in the cell. As shown in [17], the register file

layout will be completely dominated by wires, and there will be ample area to place

the necessary logic beneath these wires. Also, there may not be a need to split the

processor clock cycle into a read and a write phase, so the generation and distribution

of the second clock could be omitted.

It should also be possible to construct the cell such that a “snapshot” of one

context’s state could be taken [20]. This would allows forks and cstores to truly

operate in the background and not tie up a context. Once the snapshot is taken, the

context can continue execution, in the case of a fork, or start receiving a swapping-in

context, in the case of a cstore. Currently, executing a fork requires the issuing

thread to wait until the fork is complete before going to the next instruction. A cload

cannot be started on a context until it is finished swapping out. Although the swap-in

and swap-out operation consist of the same number of memory requests, starting the

swap-out first is not sufficient. The swap-in may overtake the swap-out, in terms

of progress through the context’s state, if the processor’s data output is particularly

swamped with requests.
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Chapter 5

Beyond the Processor

This chapter discusses what components, in addition to the processor implementation

presented in this thesis, are necessary to fabricate a prototype of a complete node of

the Hamal parallel computer. While the processor is the most complex component,

the node is not complete without the node controller, data and instruction memory,

and the network interface. Finally, multiple nodes combined with a network and I/O

devices would allow an implementation of an actual Hamal machine. This chapter

makes recommendations on how best to accomplish this in a timely manner.

5.1 Current Status

In parallel with this work, Robert Woods-Corwin has been implementing a high-speed

fault-tolerant interconnect fabric, described in [35], which will make an excellent net-

work for the Hamal Parallel Computer. Additionally, Brian Ginsburg and Andrew

Huang are developing boards which will allow the implementation of an ARIES net-

work node [13], as described in the second chapter. The board uses FPGAs to imple-

ment the switching logic.

The ARIES group plans to create a processor board as well, to support both

Hamal and other architectures which are being explored. This board is planned to

incorporate two Xilinx Virtex-E FPGAs, an Intel StrongARM microprocessor, and a

healthy amount of memory. The FPGAs will be an XCV2000E, 680-pin version, and
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an XCV1000E, 1156-pin version. This second FPGA has fewer logic resources than

the XCV2000E, but it makes up for it in I/O pin resources.

5.2 The Next Step

For Hamal, the smaller FPGA would make an excellent Node Controller, and Network

Interface with its abundance of I/O pins. The larger FPGA will house the processor

implementation presented here. This board is in turn paired with a network board

to produce one Hamal node.

Memory, in the form of DRAM for the bulk and SRAM for the hardware page

tables, is also necessary. It would probably be most convenient to implement the

smart atomic memory operations and LRU-tracking in the same FPGA as the node

controller, and use traditional commercially-available ’dumb’ memory. As the entire

system itself is only running at 25MHz, the fact that the FPGA can access the memory

at a much higher rate (on the order of 200MHz) should make it simple to do a read,

compute, and write in a single cycle to implement the atomic operations.

The matter of I/O devices has been largely ignored. It would be reasonable to

imagine a Hamal node augmented with an I/O subsystem, accessed through the

network interface. It might be wise to add another board to perform the interface

logic, implementing perhaps the PCI bus standard for generic devices, like video cards

and disk controllers. Or, perhaps, the StrongARM could be used as a gateway to such

devices. To provide a uniform output path from the processor and through the node

controller, the network interface would need to identify requests as heading for a

local device. An added benefit is that remote nodes could access these local devices

without the participation of the processor.

Another interesting consideration is that of boot-strapping a multi-node system.

At boot, each node will attempt to start executing at address 0, using a code capability

with all permissions and access to the entire address space. Since the instruction

memory is empty, a page fault is caused. Since the O/S has not been loaded, there

would be no way to process this request and ask the node controller to get some data.
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A solution is to have the instruction memory, on boot, be set to map the beginning of

the virtual address space to a programmable read-only-memory device (ROM). This

ROM would contain code for the operating system loader– a simple program to go out

to disk at a certain location and start reading bits into memory, page them into the

instruction memory, and transfer execution to what was just read in. Alternatively,

the ROM could contain enough of an operating system and test program to perform

whatever testing and data collection is desired.
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Chapter 6

Verification

The processor implementation is not useful unless it can be deduced that it is likely

to be correct. Thus, a large effort was made to test the implementation, both as it

was being developed and after it was completed. This chapter documents some of

the verification methods which were employed to that end. These methods revolve

around having scripts which the Verilog simulator can execute to stimulate the inputs

of the device under test and then allow for the verification of correct behavior on the

outputs. The scripts were invaluable for testing the initial implementations of each

module, as well as for performing regression testing when small changes were made

late in the implementation process.

6.1 Testing environment

The product used to perform verification of the implementation is ModelSim, devel-

oped by Model Technology, Inc. This tool includes a Verilog simulator which was used

to perform functional verification. Additionally, the Xilinx implementation tools are

capable of outputting timing information that ModelSim can import. Known as tim-

ing back-annotation, this allows ModelSim to factor time into its simulation. Without

such information, that is, when doing a strictly functional simulation, the simulator

assumes zero propagation delay in combinational logic.

Additional timing analysis was provided by Xilinx’s Timing Analyzer. This tool
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can determine the maximum clock rate that can be used and still avoid register setup

and hold violations, as it computes the delays of all paths in the design. It can also be

used to help locate critical paths and modify the design to achieve a higher clock rate,

although it was not used for this purpose, as correctness was a larger concern, and the

clock rate was high enough for what was required. Future implementations will likely

be more speed-conscious; this implementation’s purpose was to create a platform for

evaluating the architecture at a speed greater than a software-only solution.

The tools provide excellent feedback. Since the entire design is collapsed into a

single net list, static analysis of all nets, their drivers, and their loads is possible. For

verification purposes, it is important to carefully inspect the tool’s report on undriven

and unloaded nets. In some circumstances, this may point to a bug in the design.

If it is not clear on examination, then a test case should be designed to test if the

behavior that was to be exhibited the supposedly excess logic actually is.

6.2 Module testing

As each module was completed, it was subjected to testing. ModelSim’s scripting

environment uses the Tool Command Language (TCL) with procedures added to

support interacting with the simulator in the same way that the graphical user inter-

face allows. Thus, a short TCL script was crafted for each module. The script drives

inputs with test values designed to test the functionality of the module and then runs

the clock. This process is repeated for several test sets, typically, to verify various

modes of operation. Some tests were chosen on the basis of the specified behavior,

(black-box testing), while others were selected to exercise a potentially incorrect cor-

ner case in the logic of the module, (glass-box testing). Some scripts required that

the author inspect the results on the module’s outputs to check for correctness, while

scripts for more complex modules performed the comparison automatically.
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6.2.1 Testing the Register File

One particularly interesting example of module-level verification is the work that went

into verifying the general-purpose register file. First, it is important to understand

some of the complexity in the implementation. There are six read ports, including

the one used to swap out a context, which translates to 6 copies of each context’s

data. Additionally, each 129-bit register is broken into five parts. It is also possible

to read and write at different granularities: 32, 64, or 129 bits at a time. Finally,

writes to a 32-bit or 64-bit portion of a register must clear the pointer bit for that

register.

To test this, the author wrote a program in the C programming language. The

program simulates how the register file should work. It generates a series of random

reads and writes to some number of ports each simulated clock cycle. The writes do

not overlap each other and no portion of a register is read if it is being written to

that cycle. The contexts used are generated randomly. The random seed is taken

as an argument on the command line, so that the same scenario can be played back

multiple times. This was very important; if a particular pattern of reads and writes

illustrated a problem, it was important to be able to reproduce the pattern so that

once the bug was believed fixed, the same test case could be attempted again.

The program produced as output a TCL script suitable for forcing values onto

the input nets, running the clock for a cycle, and then verifying that the correct data

appeared on the output ports. This script was called by a short TCL script which

started the simulator and loaded the waveform viewer with the relevant signals. This

second script was invoked from the ModelSim command line interface. Results from

the test in progress were displayed as the script executed, and the waveform viewer

would show the status of the selected signals.

This approach was useful. Several bugs were caught by this method, although the

author estimates that more than half of the mismatches between the C simulation

and the Verilog simulation were the fault of bugs in the C program. More specifically,

it was usually a case of not observing the input assumptions made by the register
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file, such as avoiding overlapping writes in a single cycle. While this approach did

not guarantee that the module is correct, it provided high-quality assurances that it

probably was.

6.3 Higher-level Testing

In addition to module-level tests, it was very useful to apply the same principles

to groups of related modules with a common parent in the module hierarchy. For

example, testing the entire ALU or Execution Unit as a whole, even after being

assured that the smaller modules they instantiate work correctly. Taking that to its

logical conclusion, the need for complete end-to-end testing of the entire processor

should be evident.

6.3.1 An Assembler

It is useful to be able write short code sequences in the assembly language of the

Hamal architecture, rather than trying to manually produce the correct stimulus bit

patterns. While the latter approach was used for early testing of very specific behavior

of the processor, it is cumbersome for more general testing. The tool needed to fix

this is an assembler. The assembler translates a file of Hamal assembly language

instructions into the bit patterns that would be presented to the processor by the

instruction memory after decode.

6.3.2 Simulating Instruction Memory

The assembler is a good start, but to properly simulate the instruction memory,

which is the goal for correctly feeding the processor, it is necessary to track multiple

threads and to present the correct instruction group when requests are made. This

could be hard-coded, if information about when the processor will request what can

be predicted. That would involve a fair amount of error-prone work. What is really

needed is a TCL script which checks the address being requested and then drives the
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inputs with the corresponding data.

The implemented script simulates an instruction memory with single-cycle access;

additional latency could be inserted easily if that was desired. This program is good

for checking the arithmetic unit and the first stage of the memory pipeline. It can

also test to see if requests are passed on to the node controller as they should be.

To initialize the TCL representation of instruction memory for this script, a short C

program was written. Given files output from the assembler, the program generates

a TCL script which stores all of the instructions in a TCL list.

6.3.3 Simulating the Node Controller

The absence of the node controller is more difficult to deal with than the lack of

instruction memory. One approach is to implement a subset of the node controller,

in Verilog, and then be left with simulating the data memory and network interface.

Another, actually implemented, is to take advantage of the fact that memory access

may take an indeterminant number of cycles, so the precise timing of when responses

come back to the processor is not important. The program that generates instruction

memory scripts was modified to cause the resulting scripts to print out the memory

requests that the node controller was accepting from the processor each cycle. Also,

the scripts would pause execution from time to time. This allowed the use of the

ModelSim command-line interface to force a particular reply into the processor on

the data input, and then continue the script.

6.4 Limits

Ideally, there would be a second implementation of the processor to check the results

of the first implementation on a cycle-by-cycle basis, as was done for the register file.

While it is not feasible for the author to develop two complete Hamal implemen-

tation for this thesis, Grossman’s work on a software simulator for Hamal, named

Sim [16], provides exactly this. Sim, a work in progress at the time of this writing,

is a cycle-accurate simulator for a 32-node Hamal machine. Sim’s source code has
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been instructive when trying to implement a particularly tricky or particularly un-

documented feature of the architecture. This comparison has helped find bugs and

shortcomings in both implementations. The FPGA implementation runs faster, as

expected, but Sim provides better access to the internal state of the machine, with

its full-featured graphical user interface.

Time and logistical constraints did not allow for completely integrating Sim and

the Verilog simulator. While this would involve a large investment of time and energy,

this would certainly be an interesting approach, as Sim could simulate the compo-

nents external to the processor, including remote nodes, and it could also verify that

the Verilog hardware description and the C++ software description in Sim agree with

each other. One potential hurdle is that the comparison may be sensitive to imple-

mentation differences that do not affect the correctness of the processor in terms of

the architecture specification.
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Chapter 7

Conclusion

The processor successfully implements a subset of the Hamal architecture. This work

concludes with a look at implementation results and potential directions for future

work.

7.1 Results

Silicon efficiency is a major goal for project ARIES. While the resource consumption

in an FPGA does not give a one-to-one correspondence to silicon area that would

be consumed in an ASIC process, it is nonetheless instructive. Table 7.1 shows the

resource usage for the entire processor. Table 7.2 shows details of some of the top

level Verilog modules.

As the table shows, the trace controllers consume a large amount of chip resources.

Constraints on logic resources allowed only three contexts to be present on the chip,

rather than four as originally planned. Additionally, the logic use numbers do not

include a complete arithmetic logic unit. There was only enough room for the simpler

functional units. No floating point unit and integer multipliers were included. If

the most area-efficient Core Generator cores were used, a 64-bit and pair of 32-bit

multipliers would consume an extra 1836 slices, (9.6%), according to data from the

Xilinx tools.

In terms of raw clock speed, the processor can be clocked at a maximum of 27
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Resource Used Total Available Percentage
Slices 19,198 19,200 100%
Slice Registers 13,290 38,400 34%
4-input LUTs 32,644 38,400 85%
Bonded IOBs 473 512 92%
BUFTs 20,116 19,520 103%
Block RAMs 60 160 37%
Global clock routes 2 4 50%
Clock IOBs 1 4 25%
Delay-locked loops 1 8 12%

Table 7.1: FPGA Resource Use

Module Slices Slice Percentage
Issue and Trace Control 16,631 86%
Context cstore/fork Control 30 1%
Mpipe ex1 1,771 9%
Memory Interface 5,693 29%
Event handling 257 1%

Table 7.2: Slice Usage Detail
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MHz, according to the Xilinx implementation tools. Additionally, the register file can

be clocked at a maximum of 51 MHz. Thus, a clock rate of 20-25MHz is extremely

reasonable. In order to time-multiplex the input and output pins of the FPGA as

described in Chapter 4, some of the I/O paths need to be clocked at twice the processor

speed, or 40-50MHz. This should not pose a problem for board design.

7.2 Lessons

In the process of creating this work, the author learned a few lessons which may guide

future efforts to implement processors with FPGAs. The first is the complexity of

the logic synthesis task. On a dual Pentium III 550MHz processor with 512MB of

RAM, a typical synthesis and implementation run took five hours. This was using

the “-fast” option on the synthesis tool. A more thorough synthesis, where greater

optimization is attempted, took closer to twenty hours. The process was CPU-bound

most of the time. Sadly, the tools are single-threaded, so the second processor was not

used. There was just enough physical memory in the machine to avoid swapping. A

recommendation to future efforts is to use the fastest machine possible with a gigabyte

of memory. A dual-processor system with enough memory could even synthesize two

designs in parallel.

The other lesson learned is the complexity of logic versus the flexibility of available

FPGA resources. The processor, as specified, did not fit into the FPGA. There were

not nearly enough logic resources. As realized when trying to implement the register

file, some tasks require dedicated hardware to do in an area-efficient manner. The

availability of static RAMs on the Virtex-E devices is a step in the right direction, but

more dedicated resources are required. The reconfigurable logic in FPGAs is wonder-

ful because it allows you to test a design at high speed without fabricating a chip, and

because the design can be easily changed after implementation to fix bugs or make

other adjustments. However, implementation of silicon to perform known-good logic

and architectural features would create far higher silicon efficiency. Xilinx’s Virtex-2

line of FPGAs have additional “hard cores” in them: dedicated multiplier hardware
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and even a small PowerPC processor. This idea could probably be taken further, as

well. For Hamal, the 128-bit word size meant very large busses moving around the

chip. Almost all the logic resources that were consumed were implementing multiplex-

ors or tri-state drivers for these busses. Future implementors should undertand this

limitation, and consider using narrower datapaths, time-multipexing the datapaths

within the chip, or evaluating the Virtex-2 FPGAs.

7.3 Future Work

There are several ways in which this work can be expanded. One first step is to im-

plement more of the Hamal instruction set architecture. This may require additional

optimization of existing components of the implementation, or it may simply require

an FPGA with additional resources. Targeting a larger FPGA on the same product

line, Xilinx’s Virtex-E line, should be trivial.

The next logical step is to construct the printed circuit board setup described

in Chapter 5. The only way that the simulation can finally run at full speed is

to be actually running in the physical FPGA. For purposes of data collection, the

implementation should be augmented to export interesting performance statistics to

the data collection output on the processor board.

Finally, with the system constructed, large-scale simulations and testing can take

place. This should bring about a cycle of data collection and modifications to try

possible architectural variations. This is the key to collecting enough data on Hamal

to consider a next generation hardware implementation, either another FPGA proto-

typing platform crafted with lessons learned from this one, a combination of FPGAs

and ASICs (for the smart memory, for example), or even an all-ASIC or full-custom

VLSI implementation.
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