Compiler and Architectural Techniques for Improving the Effectiveness of
VLIW Compilation

J.P. Grossman
Abstract

Effective VLIW compilation requires optimizing across basic block boundaries. In this mildly
opinionated paper we survey a variety of techniques which allow the compiler to do so. We focus on
trace scheduling, speculative execution. and software pipelining. These techniques
are effective, but cannot in general optimally schedule instructions for all traces of execution. To
address this problem, we present delayed issue, a novel instruction issuing mechanism which
allows a VVLIW machine to perform out-of-order execution at a fraction of the cost of typical out-of-
order issue hardware.

1 Introduction

VLIW architectures offer high performance at a much lower cost than dynamic out-of-order
superscalar processors. By allowing the compiler to directly schedule machine resource usage, the
need for expensive instruction issue logic is obviated. Furthermore, while the enormous complexity
of superscalar issue logic limits the number of instructions that can be issued simultaneously, VLIW
machines can be built with a large number of functional units (e.g. up to 28 on the Multiflow
TRACE [Colwell88]), allowing a much higher degree of instruction-level parallelism (ILP).

In computer architecture there tends to be a “tonservation of complexity’” effect whereby
simpler hardware demands more complicated compilers. This is certainly the case with VLIW,
sophisticated compilers are required in order to achieve the maximum possible performance. In
particular, in order to make effective use of a large number of functional units it is necessary to
perform optimizations across basic block boundaries, as the amount of parallelism available within
basic blocks tends to be quite limited ([Smith89], [Wall91]).

In this paper we survey some common compiler and architectural techniques for increasing
program ILP and making more effective use of the available hardware resources. We begin by
discussing Trace Scheduling ([Fisher81], [Fisher83]) in section 2. In trace scheduling, compilation
proceeds by selecting a likely path of execution (called a trace). This trace is compacted by
performing code motion without regard to basic block boundaries. To preserve correct execution,
off-trace compensation code must be inserted when instructions are moved past a split or a join.
When the trace is fully optimized, a new trace is selected; this process repeats until all traces of
execution have been compacted.

A limitation of trace scheduling is that it cannot in general migrate instructions above
conditional branches. However, such code motions are possible on machines that provide support
for speculative execution [Smith90]. In section 3 we describe various architectural mechanisms
that have been proposed to support speculative execution. We review the results of [Chang95] in
which three different speculative execution models are compared.

Another limitation of trace scheduling is that it does not handle loops very well; in [Fisher81] no
attempt is made to migrate instructions across the conditional loopback branch. A much more
effective technique for compiling loops is Software Pipelining ([Rau81], [Touzeau84], [Lam88]) in
which multiple iterations of a single loop are overlapped in software. In section 4 we review a
number of different software pipelining algorithms as well as some architectural mechanisms which
have been proposed and/or implemented.

While trace scheduling, speculative execution and software pipelining are effective techniques,
they require that all parallelism be explicitly discovered by the compiler. In many cases it is
impossible or impractical for the compiler to optimize all possible traces and loops. Modern
processors address this problem with superscalar, dynamic out-of-order issue logic which allows
instructions to be issued in parallel whether or not they were scheduled together by the compiler.
However, this requires complex hardware support.

In section 5 we present Delayed Issue, a novel technique which allows instructions to be
executed out-of-order without the hardware complexity of dynamic out-of-order issue. Instructions
are inserted into per-functional unit delay queues using delays specified by the compiler.
Instructions within a queue are issued in order; out of order execution results from different
instructions being inserted into the queues at various delays. In addition to improving performance,
delayed issue reduces code expansion due to trace scheduling and software pipelining.

2 Trace Scheduling and Related Work

Trace scheduling was introduced by Joseph Fisher in [Fisher81]. Originally conceived as an
algorithm for compacting microcode, it is a very general technique that can produce highly
optimized code for any VLIW, scalar or superscaler architecture. The motivation behind trace
scheduling is to be able to optimize across basic block boundaries. We will begin our discussion of
trace scheduling by reviewing list scheduling, a technique for scheduling instructions within a
single basic block. We then show how this algorithm is extended to schedule traces that span
multiple blocks, we explain how loops are handled, and we outline some related work.

2.1 List Scheduling

The instructions within a basic block can be represented as a directed acyclic graph called the
dependency graph. An edge exists from instruction | to instruction J whenever J has a dependence
on I. In this case we write | < J. The problem of finding an optimal schedule is NP-complete, but
list scheduling is a simple heuristic which seems to perform within a few percent of optimal in
practice [Fisher81].

List scheduling works by placing the instructions in a linear order I, I, .., I, and then
scheduling them one at a time in that order. Each instruction is scheduled at the earliest possible
time taking into account both its dependencies and its resource requirements in relation to the
already-scheduled instructions. The linear order is chosen as follows: define a path to be a sequence
of instructions, each of which depends on the previous one. The height h(l) of instruction 1 is the
length of the longest path starting at . The order is then the reverse order of the heights, that is, the
order is chosen so that h(l;) = h(l,) = ... =h(l).

temp = 2 * zr * zi;

zr = zr * zr — zi * zi + cr; + *
zi = tenp + ci; 1
13
14
a
€y -
15
11 frmul r4,r0,r1 ;; zr * zi 7
12 fmul r4,r4,r5 ;; tenp
13 fmul r0,r0,r0 ;; zr * zr 16
14 fmul rd,rd,rl ;; zi * zi
15 fsub r0,r0,rl1 ;; zr"2-zi"2
16 fadd r0,r0,r2 ;; zr
17 fadd r1,r3,rd4 ;; zi
(b) © ()

Figure 1: (a) Small basic block. (b) Assembly code. (c) DAG. Solid lines represent
flow dependencies, dashed lines represent anti-dependencies. Node heights are shown in
italics, scheduling order is shown in bold. (d) Generated schedule assuming a machine
with one floating point add and one floating point multiply, each with a three cycle
latency.

Figure 1 shows an example of list scheduling being applied to the instructions of a basic block.
Figures 1a and 1b show the C code and equivalent assembly for one iteration of a mandelbrot set
calculation. Figure 1c shows the corresponding directed acyclic graph, along with the height and
scheduling order for each node. Figure 1d shows the schedule that would be generated for a simple
machine having a single floating point multiply and a single floating point add.

2.2 Trace Scheduling

A general program can be described by a directed graph whose nodes are the basic blocks (called the
program flow graph), as shown in figure 2. A trace is an acyclic path through this graph (also
shown in figure 2). The goal of trace scheduling is to be able to optimize an entire trace in the same
way that list scheduling can optimize a single basic block. The difficulty is that if list scheduling is
naively applied to the trace, instructions can move past splits (conditional branches) and joins
(instructions with off-trace predecessors). This results in extra or missing instructions on traces
other than the one being optimized; as a result these other traces will generally no longer execute
correctly.

A key observation is that we can solve this problem by adding off-trace compensation code
which restores the original semantics of program execution. To see how this works, first note that it
suffices to describe the compensation code that must be created when two adjacent instructions are
transposed, as any instruction reordering can be described as a finite sequence of transpositions.
Suppose, then, that we have a sequence of three consecutive instructions A, B, C in the trace and we
wish to transpose A and B. There are four cases to consider based on the instruction B: (a) B is
neither a split nor a join, (b) B is a split, (c) B is a join, (d) B is both a split and a join. The
compensation code for these four cases is shown in figure 3 in the form of graph transformations.

5 &8 O

(@) (b)
> > ® (&)
B —O ®
B4
s]| T OB ©O
(©)
B6
i B ——® & &)
(d)
Figure 2: Directed graph of basic blocks. Figure 3: Compensation code is added to preserve
The dashed outline shows one trace program semantics when instructions A, B are
which passes through B1, B2, B4, B6, B7. reordered. X, Y are off-trace instructions.

In all cases the compensation code consists of copies of A and B, shown as A”and B Whether
or not A is a split or a join is immaterial. If A is a join, the instruction which jumps to A is simply
modified to jump to B after the transformation is applied. If A is a split, then in general A and B
cannot be reordered (this is discussed further in section 3), but if they can then the transformations
of figure 3 can be applied without modification. Finally, it is not a problem if multiple off-trace
instructions jump to B. This situation can be handled either by generating multiple copies of the
compensation code, or by redirecting these jumps through a single new intermediate jump to B.

2.3 The Trace Scheduling Algorithm for Acyclic Graphs

The algorithm presented in [Fisher81] for trace scheduling programs with acyclic flow graphs is as
follows. First, the most likely trace is selected, that is, the trace which at compile time is predicted to
have the highest probability of being executed. The dependency graph for the entire trace is
generated. Dependency edges are added from each conditional branch to all subsequent instructions

which cannot safely be moved above the branch. In [Fisher81] it is deemed unsafe to move an
instruction | above a branch B if and only if I writes to some register which is read by some off-trace
successor of B. In section 3 we will see that this condition alone is insufficient in a general setting.

Once this augmented dependency graph has been created, list scheduling is used to compact the
entire trace. When the trace is scheduled, “bookkeeping’’is performed to insert compensation code
wherever necessary to preserve program semantics (although it would seem to make more sense to
perform scheduling and bookkeeping simultaneously in order to reduce complexity, the two
operations are presented as separate steps in [Fisher81]). Finally, the entire process is repeated until
all traces have been compacted.

2.4 Trace Scheduling Code Containing Loops

In [Fisher81] a hierarchical approach is used to trace schedule loops. It is assumed that the program
flow graph is reducible [Hecht77], which means that any two loops are either disjoint or nested.
Under this assumption it is possible to arrange the loops in a sequence L,, L,, ..., L, such that if
i <] then either L; and L, are disjoint or L; is contained in L; (figure 4a). The loops are then
compacted in this order using trace scheduling; after each loop is compacted it is replaced by a single
node, called a loop representative, which represents the aggregate resource usage of the loop.

To schedule a loop using trace scheduling, the back-edge is removed in the loop 3 flow graph.
By assumption on the ordering of the loops, all loops nested in the loop being scheduled have
already been replaced by single nodes (figure 4b). Hence, once the back-edge is removed the flow
graph is acyclic, and the loop may be compacted using the algorithm of section 2.3. When all the
loops have been compacted and replaced by loop representatives the resulting program flow graph is
acyclic (figure 4c) and can therefore be compacted using trace scheduling.

Bl Ls

/ N\ Bl Ls

B2
L, / \
L, B2
B3 B1
B4 Irl Ir2
B5 Ir3
B6
B6 \ /

N
(@) (b) (©)

Figure 4: (a) Reducible flow graph. (b) Graph after L, and L, are compacted. (c) After L3 is compacted

There is one caveat when loops are scheduled in this manner. Ordinarily the trace scheduler will
allow two operations to be scheduled simultaneously if they are resource compatible, that is, if no
single resource is required by both operations. However, if one of the operations is a loop
representative, then this condition must be extended to require that the other operation be loop-
invariant with respect to the loop, since it will be executed once for each loop iteration. In no case
are two loop representatives considered to be resource compatible.

2.5 Suppression of Compensation Code

One of the drawbacks of trace scheduling is that the bookkeeping phase can cause exponential code
growth ([lIsoda93], [Lah83], [Linn83]). A restricted version of trace scheduling is presented in
[Freuden94] which reduces code growth by avoiding and suppressing compensation code.
Compensation code is avoided in two ways: by disallowing downward code motion past splits
(figure 3c,d), and by disallowing upward code motion past joins with fan-in greater than four. In
[Freuden94] it was found that these restrictions have small impact on program performance but
reduce code growth considerably. Compensation code is suppressed by finding and eliminating
redundant duplicates of instructions in the final program schedule. The algorithm used to
accomplish this is based on work by Ellis in [Ellis85].

2.6 Superblock Scheduling

In [Hwu93] the superblock is proposed as a mechanism for facilitating trace scheduling compilation.
A superblock is simply a trace with all joins removed via tail duplication (figure 5). It is argued that
the primary benefit of superblocks is avoidance of the “tomplex bookkeeping’ involved with
moving code past joins. This argument is not very compelling in light of the simplicity of the
transformations of figure 3. Moreover, superblock formation can in a sense be viewed as “Wworst
case bookkeeping”’in which the maximum amount of compensation code due to the transformation
of figure 3b is generated at the outset. A more convincing argument for the use of superblocks is
that they simplify the application of certain optimizations such as copy propagation [Hwu93].

Figure 5: Tail duplication.

2.7 Predicated Execution

Trace scheduling can be viewed as a method for dealing with the difficulties presented by branches.
An alternate approach is to attempt to eliminate branches altogether. Predicated Execution
([Hsu86], [Mahlke92a], [Mahlke95]) is a mechanism which permits some branches to be removed by
allowing execution of instructions to be conditional on the values of hardware defined predicates.
For example, the branch in an if-then-else structure can be replaced with an instruction which
defines a predicate. The entire clause then becomes a single basic block in which instructions in the
then clause are conditional on the predicate being true, and the instructions in the else clause are
conditional on the predicate being false. Predicated execution can simplify compilation and avoid
branch mispredict penalties as the expense of some wasted instruction bandwidth (since predicated
instructions are still fetched whether or not they are executed). In [Mahlke92a], [Mahlke95] and
[Hara96] it is shown that the presence of predication mechanisms can significantly improve
performance.

3 Speculative Execution

The success of trace scheduling depends heavily on its ability to move instructions past splits and
joins in order to discover increased levels of parallelism. While the algorithm allows code to move
freely past joins and downwards past splits, it is not in general safe to move instructions upwards
past a conditional branch as this can destroy the intended semantics of the program. Three specific
restrictions on upward motion of an instruction | past a branch B are well known ([Chang91],
[Huang94], [Chang95], [Smith90]):

1. | must not cause an exception.
2. I must not overwrite the value of a register that is needed by some other successor of B.
3. I must not alter system memory.

On conventional architectures, I can only be moved upwards past B if all three of the above
conditions are met. However, it is possible to provide hardware support for speculative execution
which allows these restrictions to be relaxed. When an instruction is moved upwards past a branch
it is speculatively executed, and the hardware guarantees that the instruction will produce no visible
side effects before the branch is resolved. If the branch is taken, the instruction is squashed. If the
branch is not taken, the instruction is allowed to commit.

In [Chang95] a comparison is made between three different architectural models with varying
degrees of support for speculative execution. The models are as follows:

Restricted model. No hardware support is provided. Code motion is subject to all three
restrictions.

General model. The hardware provides a set of non-trapping instructions. This allows restriction
(1) to be relaxed, but restrictions (2) and (3) are still enforced. An example of an architecture which
falls into this category is the Multiflow TRACE which provides a set of non-trapping load
instructions [Colwell87].

Boosting model. Full hardware support is provided for speculative execution. Exceptions caused
by speculatively executing instructions are suppressed, a “Shadow register file’” holds results of
speculative instructions until the branch is resolved, and similarly a “Shadow store buffer’” holds
values speculatively written to memory until the branch is resolved. All three restrictions are
relaxed, and arbitrary upward code motion past a single branch instruction is permitted. This model
is based on the TORCH architecture proposed in [Smith90].

The simulation results of [Chang95] show that the performance of the general model is
significantly better than the performance of the restricted model. However, the boosting model
provides little additional performance advantage. There are two reasons why these results are not
surprising. First, load operations tend to be at the head of critical paths while store operations tend
to be at the tails, so the benefits of being able to perform early loads are much greater than the
benefits of performing early stores. Thus, we would expect a set of non-trapping loads to provide a
much more noticeable gain in performance than a shadow store buffer mechanism for performing
speculative stores. Second, it is often possible to work around restriction (2) in software via register
renaming, loop induction variable expansion, and accumulator expansion.

These results are a rare treat; usually in computer architecture it is the case that avoiding
complexity implies sacrificing performance. In this case, however, we see that the relatively
inexpensive general model performs almost as well as the much more complicated model providing
support for fully speculative execution.

3.1 Recovering Exceptions

In both the general and the boosting models, exceptions that would normally occur must be
suppressed when an instruction is speculatively executed. Often it is desirable to recover these
exceptions once the branch has been resolved. In [Mahlke92b] it is proposed that sentinels be used to
explicitly check for exceptions. When an trapping instruction is moved upwards past a conditional
branch, it is divided into two parts: a non-trapping version of the same instruction which is
migrated, and a sentinel instruction that remains at the original location. If the non-trapping
instruction causes an exception condition, an exception tag is set in the destination register of the
instruction. When and if the sentinel instruction is later executed, it explicitly checks the register tag
to see if an exception should be raised.

An alternate mechanism is described in [Smith90] which does not required extra instructions and
has the advantage of supporting precise interrupts. If an exception occurs while executing a
speculative instruction, the exception is postponed until the branch is resolved. If the branch
resolves in the direction of the speculative instruction, then the shadow structures are invalidated
and the speculative instructions are re-executed non-speculatively. When the exception causing
instruction is re-executed, a sequential interrupt occurs at the appropriate time.

for (i =0 ; i <N,; i++) LO: LOAD a2,[a0]; PADD a0, a0, 1

{ FMJUL a3, a2, a2
y[i] = x[i] * x[i] + c; FADD a4, a3, c
} STORE a4, [al]; PADD al,al,1; LOOP LO
(a) Simple loop (b) Assembly code
menory addi tion mul tiplication i nt eger/ poi nter
LOAD PADD
FMUL
FMUL
FMUL
FADD
FADD
FADD
STORE PADD

(c) Scoreboard of hardware resource utilization

menory addi tion mul tiplication i nt eger/ poi nter

LOAD FADD FADD FMUL PADD
STORE FADD FMUL FMUL PADD

LOAD FADD FADD FMUL PADD
STORE FADD FMUL FMUL PADD

LOAD FADD FADD FMUL PADD
STORE FADD FMUL FMUL PADD

LOAD FADD FADD FMUL PADD
STORE FADD FMUL FMUL PADD

(d) Scoreboard for pipelined loop —different fonts correspond to different iterations

Figure 6: Simple loop before and after software pipelining

4 Software Pipelining

Another shortcoming of trace scheduling is that it handles loops quite poorly. The strength of trace
scheduling is its ability to optimize across branches, yet in [Fisher81] no attempt is made to optimize
across the loop-back branch of a loop. One can imagine trying to address this problem by unrolling
the loop a number of times and then applying trace scheduling to the unrolled loop [Freuden94].
Clearly as the loop is unrolled more times, better schedules will be obtained using trace scheduling.
In the limit, one might expect a periodic structure to develop that could be used as the kernel for a
more compact loop. Since trace scheduling moves instructions across branches, each iteration of
this kernel will contain instructions from multiple iterations of the original loop.

The central idea of software pipelining is to abandon trace scheduling and instead search directly
for such a compact loop kernel. The code is scheduled such that new iterations are initiated at a
fixed interval, called the initiation interval, which in the literature has been given the rather unfortunate
symbol 11 (we despise this notation, but we will use it). As an example, consider the simple loop
shown in figure 6a. Assuming a VLIW architecture with a memory unit, a floating point addition
unit, a floating point multiplication unit, an integer arithmetic unit, and a hardware looping
construct, the equivalent assembly code is shown in figure 3b. If floating point addition and
multiplication take 3 cycles, integer operations take 1 cycle, and the data resides in the cache so that
memory references take 1 cycle, then figure 3c depicts a scoreboard of the hardware resource
utilization, and we see that the 11 is 8. We can pipeline the loop to achieve an Il of 2, as shown in
figure 3d.

The goal of any software pipelining algorithm is to maximize performance by minimizing II.
There have been a plethora of algorithms proposed and evaluated in the literature. A full list is well
beyond the scope of this paper; see [Allan95] for a comprehensive review. We will instead focus on
the algorithm presented in [Lam88], which we develop in the next few sections. We then briefly
describe some interesting improvements to this algorithm as well as some architectural support for
software pipelining.

4.1 Problem Statement

The loop to be pipelined can be represented as a directed graph whose nodes are operations and
whose edges are dependencies between them. Dependencies can be either intra-iteration or inter-
iteration, since the execution of an instruction can depend on other instructions from the same or
previous iterations. If the instruction v must execute d cycles after instruction u from the p™ previous
iteration, then we assign to the edge (u, v) the label <p, d>. Figure 7 shows the graph corresponding
to the loop of figure 6.

The problem of finding a schedule for a given Il is the problem of assigning each instruction u
to a time slot s(u) subject to two contraints:

Resource constraints. Since a new iteration is initiated every Il cycles, in the steady state
instructions in time slots k, k + 11, k + 21, ... will execute simultaneously for each k. Thus, for
each k this set of instructions must be resource compatible.

Precedence constraints. If the edge (u, v) has label <p, d>, then s(v) —s(u) = d —p-I1.
4.2 Selection of 11

Computation of the minimum possible Il is NP-complete [Lam88], so a heuristic is required. The
approach in [Lam88] is to first find a lower bound for I, then attempt to find a schedule for this
value of I1. If this fails, then Il is increased by one and the process repeats until a schedule is found.
Such a linear search is preferred over a binary search as schedulability is not monotonic, that is, it is
possible for a schedule to exist with Il = n but not Il =n+1 [Lam89].

LOAD a2, [a0]
PADD a0, a0, 1
FMJUL a3, a2, a2
FADD a4, a3, c
STORE a4, [al]
PADD al, al, 1

OO WNPEF

(@) (b)

Figure 7: (a) Instructions in loop body. (b) Dependency graph. Inter-iteration dependencies in bold.

The two constraints of the previous section can be used to obtain lower bounds for Il. 1f n
copies of a given resource are available, then the resource constraint requires that the utilization of
this resource on each cycle be at most n. Since in the steady state each instruction executes once
every Il cycles, it follows that the total utilization of this resource by the entire loop must be at most
nl, giving the first lower bound for Il. Next, for each cycle ¢ in the graph, we can sum the
precedence constraints over the edges of ¢. Since ¢ is a cycle the left side of the inequality is zero and
we are left with d(c) —p(c)-11 = 0. Thus, max &l(c)/ p(c)uis a second lower bound for Il, where the
maximum is taken over all cycles in the dependency graph.

4.3 Scheduling Without Conditional Branches

Assume for the time being that the loop contains no conditional branches; we will deal with this case
in section 4.6. For a given 11, scheduling proceeds as follows. First, the strongly connected
components (SCC) of the graph are found [Tarjan72] (these are the maximal components for which
there is a directed path from every node to every other node). Each SCC is scheduled individually
using list scheduling, where the intra-iteration edges of the SCC are used to produce a topological
ordering of the nodes. The original graph is then reduced by representing each SCC as a single node
with resource usage determined by the schedule for that SCC. The resulting reduced graph is acyclic
(if it contained a cycle then the entire cycle would be a SCC), so it admits a topological sorting which
is used for a final list scheduling. If at any stage a node cannot be scheduled in Il consecutive time
slots due to resource constraints then the algorithm aborts and the entire process is restarted with
the next II.

The above algorithm is arbitrary in many respects. It represents an attempt to adapt a successful
scheduling technique (list scheduling) to cyclic graphs. To first order, the justification for the
algorithm given in [Lam89] is that “it works™; producing optimal schedules for many loops. The
following much simpler alternate algorithm is presented in [Rau94]. First, a total ordering is
imposed on all instructions in the loop which is used to define instruction priorities (we omit the
details of this ordering). The scheduling function then repeatedly selects the highest priority
unscheduled instruction and schedules it. If it is impossible to schedule the instruction without
conflicts, then rather than abort as in [Lam88], the instruction is forcibly scheduled and displaces
(unschedules) whichever instructions it conflicts with. Thus, scheduling decisions are Soft? and a
given instruction may be scheduled and unscheduled multiple times. The algorithm aborts and
increases Il when the total number of scheduled instructions (counting repeat schedulings) exceeds a
specified budget. This algorithm was also found to give near-optimal performance.

4.4 Modulo Variable Expansion

Suppose that when the instructions are scheduled, there is a value which is defined at some point
and used n time steps later. This would seem to impose the restriction 11 = n, as otherwise the next
instance of the instruction defining the value 11 cycles later would overwrite the value before it could
be used. We can solve this problem by using k different registers to store the variable, where on
iteration m we use the (m mod k)™ register. In this case, the value is not overwritten for k-l
timesteps, so as long as k41 = n the program will execute correctly.

The integer n is called the lifetime of the value. In order to use a different register for k
consecutive iterations we need to unroll the loop k times (since a single copy of an instruction

PR LOAD a2, [aO]; PADD a0, a0, 1

1 FMUL a3, a2, a2
LOAD a2, [a0]; PADD a0, a0, 1

pr0|ogue 21 FMUL a3, a2, a2
321 LOAD a2, [a0]; FADD a4, a3, c; PADD a0, a0, 1

4 3 2 1 FMUL a3, a2, a2
Kernel 5432 1 LO: LOAD a2, [a0]; FADD a4, a3, c; PADD a0, a0, 1

STORE a4, [al]; FMUL a3, a2, a2; PADD al, al, 1; LOOP LO

5432 EP: FADD a4, a3, c
Epilogue 543 STORE a4, [al]; PADD al, al, 1

5 4 FADD a4, a3, c
5 STORE a4, [al] PADD al, al, 1

NOP
STORE a4, [al]; PADD al, al, 1
(@) (b)

Figure 8: Prologue and Epilogue

cannot access different registers on different cycles without hardware support). The minimum
degree of unrolling required is therefore U = max é/110 where the maximum is taken over all value
lifetimes n. In [Lam88] it is asserted that the number of registers used to store a value must evenly
divide U, but this is false. For example, if U =5, Il = 3 and n = 4 for some value, then we can use 3
registers a, b, ¢ to store the value in the repeating sequence a, b, ¢, a, b, a, b, ¢, a, b ...

4.5 Prologue and Epilogue

If the 11 cycle kernel which is generated contains m overlapping iterations, then we need a prologue to
initiate m-1 iterations before entering the kernel and an epilogue to complete m-1 iterations after
exiting the kernel. This is depicted graphically in figure 8a, and in figure 8b we show the prologue,
kernel and epilogue for the loop of figure 6. Note that this results in considerable code expansion;
the original loop contains 6 instructions, whereas the pipelined loop together with the prologue and
epilogue contains 24 instructions, a 300% increase in code size.

4.6 Hierarchical Reduction

In [Lam88] a single mechanism is proposed to handle, with minor differences, both loops and
conditionals. As with trace scheduling, the idea is to schedule these program constructs separately,
then represent them as a single node having the aggregate resource usage and scheduling constraints
of the construct. The loop is reduced in this bottom-up manner until only one node remains (the
final schedule for the loop).

To schedule conditional statements, the two branches are first scheduled independently. The
entire conditional is then represented as a single node whose resource usage at each time step is the
union of the resource usages of the two branches. The length of the node in the maximum of the
lengths of the branches. After the entire loop is scheduled, the conditional branch is reinserted, and
any instructions scheduled in parallel with the conditional node are duplicated in both branches.

Loops are handled similarly. The difference is that while instructions should be allowed to be
scheduled in parallel with the prologue and epilogue of the reduced loop, they should not be allowed
to overlap the loop kernel. Thus, all resources in the kernel are marked as used.

4.7 Related Work

An enormous literature exists on the subject of software pipelining. The following sections outline
some of the more interesting ideas which are based on the algorithm in [Lam88]. The majority of
these seek to improve the performance of software pipelining in the presence of conditional
branches.

4.7.1 Fractional Il

The lower bounds on Il described in section 4.2 are not in general integers. Thus, even when it is
reported that a schedule is found with the “optimal®” 11, better performance may be possible if 11 is
somehow allowed to be a fractional value. This can in effect be accomplished by unrolling the loop
a number of times before applying software pipelining. If the loop is unrolled k times and an
initiation interval of 117is found for the unrolled loop, then in a sense we have Il = 117k as k
iterations are initiated every 11”cycles. In [Lavery95] it is shown that this technique can produce
surprisingly large speedups, particularly when the theoretical lower bounds on |1 are less than 1.

4.7.2 Predicated Execution and Enhanced Modulo Scheduling

One of the objections to hierarchical reduction of conditional constructs is its rigidity. Since
conditionals are scheduled separately without any regard to the resource requirements of the rest of
the loop, the resulting reduced nodes may have complex resource usages that create artificial
conflicts and may prevent a schedule from being found. In [Warter93a] another approach is
suggested wherein conditional branches are replaced by predicated execution, as described in section
2.7. The advantage of this method is that it allows the clause instructions to be scheduled at the
same time as the rest of the loop. This provides additional flexibility and increases the probability of
finding a schedule. The disadvantage is that the resource requirements of the conditional construct
are now the sum rather than the union of the requirements of the individual clauses. This decreases
the likelihood of finding a schedule and may even raise the theoretical lower bound on II.
Somewhat surprisingly perhaps, in [Warter93a] it is found that predicated execution provides a 25-
50% improvement, with larger simulated improvements on architectures with higher instruction
issue rates.

In [Warter92] this work is extended by applying reverse-if conversion [Warter93b] to the resulting
schedule. This is a transformation which converts predicated code to unpredicated code with
conditional branches. Scheduling in this manner provides two advantages over simple predicated
execution. First, since separate streams of execution are generated, resource usage is again given by
a union rather than a sum. Second, hardware support for predicated execution is not required.

4.7.3 Multiple Initiation Intervals

A disadvantage of the techniques discussed thus far is that Il is resource-constrained from below by
the most resource-intensive path of execution through the loop, even if this path is rarely followed
during program execution. In [Warter95] this problem is addressed by constructing multiple-11
kernels. The scheduling procedure is reminiscent of trace scheduling; the most likely trace of
execution is chosen and scheduled separately with the smallest possible 1. The next trace is
scheduled on top of this trace, filling in holes where possible and extending beyond the end to
produce a schedule with a slightly larger 11. Predicated execution is used where necessary to ensure

that instructions are executed only in the traces to which they belong. The result of this procedure is
a multiple-11 kernel in which the most likely trace is highly optimized at the expense of less likely
traces.

An extremely aggressive multiple-11 algorithm which provides simultaneously optimal
performance on all traces is presented in [Stoodley96a] and [Stoodley96b]. The All Paths
Pipelining (APP) algorithm schedules each trace separately. The (potentially large number of)
kernels are then combined using a fairly sophisticated bookkeeping/pattern matching algorithm.
The resulting schedule yields optimal performance for consecutive iterations that follow the same
trace, and near optimal performance when a transition is made from one trace to another. No
hardware support of any kind is required. The primary disadvantage of APP is the potential for
exponential code explosion due to the large number of traces, but for many loops the amount of
code expansion is found to be surprisingly small.

4.8 Architectural Support for Software Pipelining

Hardware support for software pipelining is typically used to eliminate some or all of the code
expansion normally associated with this technique. One way to accomplish this is to provide
support for modulo variable expansion so that the same effect can be achieved without multiple
copies of the loop code. Specifically, a mechanism must be provided for accessing different pieces
of data using the same register name so that a single copy of the code can be used for each loop
iteration. In [Su90] a horrible architectural structure is proposed in which data is physically shifted
between registers arranged in an array. In [Ugurdag93] an equally distasteful mechanism is described
in which functional units are connected to a set of register files through large reconfigurable
crossbars. These are two unfortunate examples of what can happen when designers fail to realize
that “1t 3 the wires, stupid”’[Knight97].

A more practical solution found in both the Cydra 5 and the (ridiculously named) Itanium is
register rotation ([Dehnert89], [Doshi99]). A certain set of registers are specified as rotating
registers. When an instruction references one of these registers, a hardware index is added to the
register number specified in the instruction (modulo the number of rotating registers). The index is
incremented at the start of each new iteration. Thus, the same instruction will refer to different
registers on each cycle.

Both the Cydra 5 and the Itanium also provide a predicated execution mechanism that allows
the prologue and epilogue to be eliminated. The instructions in the loop kernel are predicated on a
set of shifting predicates, p,, pi, ... , P, Instructions in the kernel which form part of the k™ overlapped
iteration are predicated on p,. When the loop is first entered, p, is set to true and p,, ... , p, are set to
false. Thus, only instructions which are part of the first iteration will be executed. At the start of
each new iteration, the predicates are shifted up by one index, so that with each loop-back branch a
new iteration starts while the previous iterations continue, until a steady state is reached. Finally, at
the end of the loop p, is set to false so that no new iterations are started. With each loop-back the
predicates shift up so that one more iteration terminates, until all the p; are false.

5 Delayed Issue

Trace scheduling and software pipelining are both static techniques in that they require compile-time
decisions to be made regarding instruction ordering. However, in many cases the compiler may not
be able to optimally schedule instructions as:

It is difficult to optimize across basic block boundaries when the program flow graph has high
fan-in (e.g. a subroutine) or high fan-out (e.g. an indexed or indirect jump)

Some optimizations may be suppressed for simplicity [Stoodley96b] or to avoid unwanted code
expansion [Freuden94]

In these instances, program execution can benefit from out-of-order execution which has the
effect of dynamically compacting the instruction stream. This is an effective and well-known
mechanism that exists in many commercial processors, but it is also costly. If the architecture
maintains a window of M instructions waiting to be issued and is capable of generating N results per
cycle, then the hardware complexity is at least O(MN) as each result may be an operand for any of
the M instructions. Since part of the design philosophy of VLIW is to keep the hardware simple, it
becomes desirable to find cost effective alternatives that can achieve similar performance with much
less overhead. In this section we present delayed issue, a novel instruction issue mechanism for
VLIW processors which enables out-of-order execution without the complexity of dynamic out-of-
order issue hardware. A more detailed presentation of delayed issue can be found in [Grossman00].

5.1 Implementation

Consider the program flow across two basic blocks shown in figure 9a, and suppose that for some
reason the compiler is unable to optimize across the boundary between then. Ignoring branches,
four assembly instructions are generated (figure 9b) which, due to the dependencies (t1, t2), cannot
be compacted. Assuming a pipelined architecture that performs floating point addition and
multiplication in three cycles, these instructions will take 10 cycles to execute when issued in-order
(figure 9c) and 7 cycles when issued out-of-order (figure 9d).

W=X+y*z 1 FMUL t1,y,z

2 FADD w, x, t1

\—\I, 3 FADD t 2, b, c

4 FMUL a,t2,d

a=(b+c)*d B
(@) Program flow (b) Instruction sequence
1__23_ _4_ _ 13_24_ _
() In order execution: 10 cycles (d) Out of order execution: 7 cycles

Figure 9: In order versus out of order execution

FMUL t1,y,z; FADC w, x,t1@ FMJL a,t2,d@; FADD t2,b,c

V V

FADD w, x. t1 FMUL a. t2.d
FADD w, x. t1
FMUL t1.v,z ¢ ¢ FADD t2. b, c
\ * / \ + / / \FMUL t1,y,z/
FMUL a,t2,d
FADD w, x, t1 FMUL a, t2,d
FADD w, X, t1

v v v v
\ / \FADD 12, b, c/ \ / \ /

Figure 10: Delayed Issue: delay queues for adder and multiplier

A key observation is that while the compiler may not know which instructions can be issued, it is
often able to determine which ones canT be issued. For example, the compiler can easily figure out
that the second instruction in figure 9b cannot be issued until three cycles after the first one due to
the data dependency (t1). A delayed issue mechanism allows the compiler to communicate this
information to the hardware by specifying these delays explicitly as part of the instruction.
Specifically, each operation in a VLIW instruction is given an integer delay; operations with non-
zero delays are held back for the specified number of cycles. Using explicit delays, we can rewrite
the code sequence of figure 9b as follows:

1 FMUL t1,vy, z; FADD w, x,t1©@3
2 FMUL a,t2,d@; FADD t2,b,c

where we use the notation op@N to denote an operation which is delayed for N cycles. To
implement these delays in hardware we introduce per-functional unit delay queues. When a group
of instructions is decoded, the instructions are inserted into the corresponding queues using the
specified delays. Instructions within a queue are executed in the order that they appear; out of order
execution results from different instructions being inserted into the queues at various delays. This is
depicted in figure 10, which shows the first few cycles of execution for the above instructions. The
order of execution is the same as for full out-of-order issue, and the execution time is therefore the
same (7 cycles).

5.2 Rationale

It may at first seem counter-intuitive that delaying instructions can expedite program execution. The
reason that delayed issue works is that it allows the hardware to make better use of its instruction
issue logic. In a dynamic out-of-order issue processor, this resource is replicated as many times as
there are instructions waiting to be issued so that any of these instructions can be issued on any
cycle. In an in-order processor, the logic is not replicated, and so if an instruction stalls due to a data
dependency it ties up the resource until the dependency is resolved. On cycles in which it can be
statically determined that the instruction will stall, this is a shameful waste of costly silicon. With
delayed issue, this wastage is avoided; placing such instructions in delay queues keeps the issue
mechanism available for instructions that can actually use it.

Figure 11: (a) When instructions are physically rescheduled, compensation code is required.
(b) Using delayed issue to achieve the same order of execution with no compensation code.

53 Trace Scheduling

Delayed issue can be used to reduce code expansion in trace scheduling. As shown in figure 3,
moving an instruction downwards past a split or a join necessitates the creation of compensation
code to preserve program semantics. If instead of actually moving the instruction past the split or
the join we specify a delay, then we achieve the same execution order and no compensation code is
needed since other traces are unaffected by this change. An example is shown in figure 11; in both
cases the order of execution is changed from A, B to B, A, but no compensation code is required
when using delayed issue.

5.4 Software Pipelining

In section 4.5 the need for prologue and epilogue code was explained. Another explanation is that
there are several instances of instructions A, B such that A precedes B in each iteration, but in order
to pipeline the loop B must be scheduled closer to the start of the kernel than A. Without delayed
issue, the only way to achieve this schedule is to actually place B earlier than A in the assembly code.
We therefore need a prologue containing A to precede B the first time the loop is entered, and we
need an epilogue containing B to succeed A when the loop is exited (figure 12a). Using delayed
issue, however, we can place B after A in the loop and specify a delay. This has the effect of
scheduling B closer to the start of the loop when the loopback branch is taken, and after the loop
when the loop is exited. We can therefore eliminate the prologue and epilogue code (figure 12b). In
figure 12c we have rewritten the loop in 8b using delayed issue; the number of instructions has
dropped from 24 back down to 6.

AGr-sads g

(a) Prologue, Epilogue LO: LOAD a2,[a0]; FMJUL a3, a2, a2@,; PADD a0, a0, 4
STORE a4, [al] @; FADD a4, a3, c@; PADD al,al,4@; LOOP LO
h (c) Using delayed issue to rewrite the loop with no prologue or epilogue
A; B@GN

(b) Delayed issue
Figure 12

6 Conclusion

There is a common misconception that compiling for a VLIW machine is “too difficult”> Certainly
it is no trivial task, but in this paper we have seen that there are a number of techniques which have
been very successful in generating efficient VLIW code. Trace scheduling allows programs to be
optimized across basic block boundaries, and is particularly effective when profiling information
reveals commonly executed traces. Speculative execution improves the performance of trace
scheduling by allowing instructions to migrate upwards past branches. Software pipelining
complements trace scheduling by generating extremely efficient loop code.

Code expansion is one of the problems with both trace scheduling (due to compensation code)
and software pipelining (due to prologue and epilogue code, as well as potentially exponential code
growth with certain algorithms such as APP). This problem has been successfully addressed with
both software and hardware techniques. The Multiflow trace scheduling compiler employs various
heuristics to limit the amount of code growth. Predicated execution can be used to collapse
branches into straight line code and remove duplicate instructions that exist in both conditional
clauses. Rotating registers obviate the need to duplicate loop kernels to perform modulo variable
expansion. Shifting predicates and delayed issue can both be used to eliminate prologue and
epilogue code.

In many cases compilers are limited in their ability to perform optimizations, and program
execution can benefit from run-time instruction reordering. In this paper we have presented delayed
issue, which can provide the performance advantages of out-of-order execution without the high
cost normally associated with such mechanisms. Since instructions can be issued only from the
heads of delay queues, the issue logic is no more complex than that of a standard VLIW machine.
Another benefit of delayed issue is that it addresses the code expansion problem in both trace
scheduling and software pipelining.

Due to their unconventional nature, until recently VLIW architectures have been the exception
rather than the norm. However, as scalar processors are reaching the limits of their potential
performance, designers are beginning to focus more on VLIW as the next stage in the evolution of
computer architecture. Itanium [Doshi99] and Crusoe [Klaiber00] are two examples of VLIW
processors which are entering the commercial marketplace. We have seen that the compiler
technology to support these processors is well established; furthermore advances in processing
technology, notably the on-die integration of logic and DRAM, provide hardware support for the
high instruction bandwidth requirements of VLIW. We have little doubt that in the near future
VLIW will be considered standard computer architecture, and that scalar machines will take their
place in history alongside punchcards, vacuum tubes, and core memory.

References

[Allan95] Vicki H. Allan, Reese B. Jones, Randall M. Lee, Stephen J. Allan, “Software Pipelining™,
ACM Computing Surveys, Vol. 27, No. 3, September 1995.

[Chang95] Pohua P. Chang, Nancy J. Warter, Scott A. Mahlke, William Y. Chen, Wen-mei W. Hwu,
“Three Architectural Models for Compiler-Controlled Speculative Execution”, IEEE
Transactions on Computers, Vol. 44, No. 4, April 1995, pp. 481-494

[Colwell88]

[Dehnert89]
[Doshi99]
[Ellis85]
[Fisher81]

[Fisher83]

[Freuden94]

[Grossman00]
[Hara96]

[Hecht77]
[Hsu86]

[Huang94]

[Hwu93]

[Isoda83]

[Klaiber00]

[Knight97]
[Lah83]

[Lam88]

[Lam89]
[Lavery95]

[Linn83]

Robert P. Colwell, Robert P. Nix, John J. O Donnell, David B. Papworth, Paul K. Rodman,
“A VLIW Architecture for a Trace Scheduling Compiler’, IEEE Transactions on
Computers, Vol. 37, No. 8, August 1988, pp. 967-979.

James C. Dehnert, Peter Y. T. Hsu, Joseph P. Bratt, “Overlapped Loop Support in the
Cydra 5, proc. ASPLOS 89, pp. 26-38.

Gautam Doshi, “Understanding The [1A-64 Architecture, available online at
http://developer.intel.com/design/ia-64/downloads/idfisa.ntm

J. R. Ellis, “Bulldog: A Compiler for VLIW Architectures™, Technical Report DCS/RR-364,
Feb. 1985, Yale University.

Joseph A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction™,
IEEE Transactions on Computers, Vol. C-30, No. 7, July 1981, pp. 478-450.

Joseph A. Fisher, “Very Long Instruction Word Architectures and the ELI-512} Proc.
ISCA 83, pp. 140-150.

Stefan M. Freudenberger, Thomas R. Gross, Geoffrey P. Lowney, “/Avoidance and
Suppression of Compensation Code in a Trace Scheduling Compiler”’, ACM Transactions
on Programming Languages and systems, Vol. 16, No. 4, July 1994, pp. 1156-1214.

J.P. Grossman, “Cheap Out-of-Order Execution using Delayed Issue”’, submitted to ICCD
2000.

Tetsuya Hara, Hideki Ando, Chikako Nakanishi, Masao Nakaya, “Performance Comparison
of ILP Machines with Cycle Time Evaluation™, Proc. ISCA 96, pp. 213-224.

M. S. Hecht, Flow Analysis of Computer Programs, New York: Elsevier, 1977, 232pp.

P. Y. Hsu, E. S. Davidson, “Highly Concurrent Scalar Processing’’, Proc. ISCA 96, pp. 386-
395.

Andrew S. Huang, Gert Slavenburg, John Paul Shen, “Speculative Disambiguation: A
Compilation Technique for Dynamic Memory Disambiguation’’ Proc. ISCA 34, pp. 200-
210.

Wen-mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter,
Roger A. Bringman, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E.
Haab, John G. Holm, Daniel M. Lavery, and the Members of the Urbana-Champaign
Volunteer Fire Department, “The Superblock: An Effective Technique for VLIW and
Superscalar Compilation™, Journal of Supercomputing, 1993, pp. 229-248.

S. Isoda, Y. Kobayashi, T. Ishida, “Global Compaction of Horizontal Microprograms Based
on the Generalized Data Dependency Graph”’ IEEE Transactions on Computers, Vol. C-
32, No. 10, Oct. 1983, pp. 922-933.

Alexander Klaiber, “The Technology Behind Crusoe Processors™, technical white paper
available at http://www.transmeta.com/crusoe/technology.html, January, 2000.

Tom Khnight, “1t 3 the wires, stupid™’, personal communication, 1997.

J. Lah, D. Atkins, “Tree Compaction of Microprograms™, Proc. 16t Annual
Microprogramming Workshop, Oct. 1983, pp. 23-33.

Monica Lam, “Software Pipelining: An Effective Scheduling Technique for VLIW
Machines™, Proc. SIGPLAN 88 Conference on Programming Language Design and
Implementation, Atlanta, Georgia, June 22-24, 1988, pp. 318-328.

Monica S. Lam, A Systolic Array Optimizing Compiler, Kluwer Academic Publishers, 1989,
200pp.

Daniel M. Lavery, Wen-mei W. Hwu, “Unrolling-Based Optimizations for Modulo
Scheduling”’ Proc. 1995 Annual International Symposium on Microarchitecture.

J. L. Linn, “SRDAG Compaction —a Generalization of Trace Scheduling to Increase the
Use of Global Context Information”’, Proc. 16t Annual Microprogramming Workshop, Oct.
1983, pp. 11-22.

[Mahlke92a]

[Mahlke92b]

[Mahlke95]

[Raus1]

[Rau94]
[Smith89]
[Smith90]
[Stoodley96a]
[Stoodley96b]

[Su90]

[Tarjan72]
[Touzeau84]

[Ugurdag93]

[Wall9o1]
[Warter92]

[Warter93a]

[Warter93b]

[Warter95]

Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, Roger A. Bringmann,
“Effective Compiler Support for Predicated Execution Using the Hyperblock™, Proc. 1992
International Symposium on Microarchitecture, pp. 45-54.

Scott A. Mahlke, William Y. Chen, Wen-mei W. Hwu, B. Ramakrishna Rau, Michael S.
Schlansker, “Sentinel Scheduling for VLIW and Superscalar Processors™, Proc. ASPLOS 32,
pp. 238-247.

Scott A. Mahlke, Richard E. Hank, James E. McCormick, David 1. August, Wen-mei W.
Hwu, “A Comparison of Full and Parial Predicated Execution Support for ILP Processors™,
Proc. ISCA 95, pp. 138-150.

B. R. Rau, C. D. Glaeser, “Some Scheduling Techniques and an Easily Schedulable
Horizontal Architecture for High Performance Scientific Computing™’ Proc. 1981 Annual
Workshop on Microprogramming, pp. 183-198.

B. Ramakrishna Rau, “Iterative Modulo Scheduling: An Algorithm for Software Pipelining
Loops; Proc. 27th Annual International Symposium on Microarchitecture, 1994, pp. 63-74.
Michael D. Smith, Mike Johnson, Mark A. Horowitz, “Limits on Multiple Instruction Issue™,
Proc. ASPLOS 389, pp. 290-302

Michael D. Smith, Monica S. Lam, Mark A. Horowitz, “Boosting Beyond Static Scheduling
in a Superscalar Processor”’ Proc. ISCA 30, pp. 344-354.

Mark G. Stoodley, Corinna G. Lee, “Software Pipelining Loops with Conditional Branches™,
Proc. 1996 Annual International Symposium on Microarchitecture, pp. 262-273.

Mark G. Stoodley, “Scheduling Loops with Conditional Statements™ Master3 thesis,
Department of Electrical and Computer Engineering, University of Toronto, 1996.

Bogong Su, Jian Wang, Zhizhong Tang, Wei Zhao, Yimin Wu, “A Software Pipelining Based
VLIW Architecture and Optimizing Compiler”’, Proc. 1990 Annual International Symposium
on Microarchitecture, pp. 17-27.

Robert Tarjan, “Depth-First Search and Linear Graph Algorithms™, SIAM Journal of
Computing, Vol. 1, No. 2, Jume 1972, pp. 146-160.

Roy F. Touzeau, “A Fortran Compiler for the FPS-164 Scientific Computer”’ Proc. 1984
ACM SIGPLAN Symposium on Compiler Construction, pp. 48-57.

H. Faith Ugurdag, Christos A. Papachristou, “A VLIW Architecture Based on Shifting
Register Files™, Proc. 1993 Annual International Symposium on Microarchitecture, pp. 263-
268.

David W. Wall, “Limits of Instruction-Level Parallelism™, Proc. ASPLOS 31, pp. 176-188.
Nancy J. Warter, Grand T. Haab, Krishna Subramanian, John W. Bockhaus, “Enchanced
Modulo Scheduling for Loops with Conditional Branches™, Proc. 1992 Annual International
Symposium on Microarchitecture.

Nancy J. Warter, Daniel M. Lavery, Wen-mei W. Hwu, “The Benefit of Predicated
Execution for Software Pipelining”, Proc. 1993 Hawaii International Conference on System
Sciences, Vol. 1, pp. 497-506.

Nancy J. Warter, Scott A. Mahlke, Wen-mei W. Hwu, B. Ramakrishna Rau, “Reverse If-
Conversion™, Proc. 1993 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 290 —299.

Nancy J. Warter-Perez, Noubar Partamian, “Modulo Scheduling with Multiple Initiation
Intervals™’ Proc. 1995 Annual International Symposium on Microarchitecture, pp. 111-118.

