Analog Computing

Processing the Way Nature Intended

April 4, 2000

Overview

- Why analog?
- Historical applications
- Modern applications
- Universal issues
- The analog future
- Questions

Why Analog?

- The physical world is an amazingly accurate computational device
- We can design tools to exploit this computational power

Why "Analog"?

- Start with an abstract problem in need of solving
- Find an **analog** in the physical world
- Set up the analog as a physical experiment
- Perform the experiment and examine the results

Example: Averaging Numbers

- Avg. = $(n_1 + n_2 + n_3 + n_4 + n_5) / 5$
- Water seeks level
- Device takes 5 water "inputs"
- Produces measurable water "output"

Historical Applications

- The problem: 18.03 and 18.06
- Two general categories of device
- Mechanical
 - Thomson/Wilbur: Tilling-plate Solver
 - Bush/Hazen/Shannon: Differential Analyzer
- Electrical
 - Mallock: Electrical Calculating Machine
 - Haupt: A.C. Network Calculator
 - Soroka: Potentiometer Solver

Tilling-plate Solver

- Conceived by Thomson (later Lord Kelvin), 1878
- Improved and implemented by Wilbur at MIT, 1936
- Plates till at a particular angle based on applied forces of pulleys
- 18.06 device

Tilling-plate Solver

- Advantages
 - Straightforward design: build it if you get stuck on a deserted island
 - Similar calculations require proportionally smaller changes in machine settings
 - Works for negative and positive values
 - "Pushable": changing the output changes the input

Tilling-plate Solver

- Disadvantages
 - Slow: hours to set up, still faster than manual calculation
 - Big: room-size, not desk-size
 - Specific: solves just one kind of (admittedly useful) problem

Differential Analyzer

- Designed by Bush and Hazen and built at MIT in 1931
- Composed of integrators, adders, gearboxes and input tables
- 18.03 machine: solved up to 6th order differential equations

Differential Analyzer

- Advantages
 - General: Shannon demonstrates it can solve a wide range of problems
 - Programmable: use the same machine to solve different kinds of problem
 - Looks and sounds very cool

Differential Analyzer

- Disadvantages
 - Long setup time
 - Mechanically intricate: hard to build and maintain
 - Big: the next-generation "Rockefeller" machine weighed 100 tons for one order of magnitude improvement in accuracy

Electrical Calculating Machine

- Designed and built by Mallock, 1931
- Used switches to create variable coil loop transformers
- 18.06 machine: solved up to 10 simultaneous linear equations

Electrical Calculating Machine

- Advantages
 - Fast: low setup time, quick output response
 - Small: desk-size, not room-size
 - Simple: wiring is straightforward
 - Durable: only moving parts are switches
 - Auto-correcting

Electrical Calculating Machine

- Disadvantages
 - Single-purpose
 - Works only for positive coefficients
 - EMF

A.C. Network Calculator

- Described by Haupt paper
- Uses resistors and inductors in variable configurations Kirchoff law equations
- Solves 18.06 and 18.03 problems

A.C. Network Calculator

- Advantages
 - Small
 - Flexible architecture: solves linear and nonlinear equations
 - Durable: no moving parts
 - Handles negative coefficients

A.C. Network Calculator

- Disadvantages
 - Long setup time
 - Susceptible to "personal errors"

Potentiometer Solver

- Described by Soroka chapter alongside other examples
- Potentiometers allow for configurable resistor networks
- Solves 18.06 problems
- Network adjusted until solution found
- Hand-adjusted or auto-adjusted with op amps

Potentiometer Solver

- Advantages
 - Small
 - Durable
 - Straight-forward implementation

Potentiometer Solver

- Disadvantages
 - Single-purpose
 - Hand-adjusting is involved and timeconsuming
 - Auto-adjusting requires good op amps

Modern Applications

- Generally electronic
- Take advantage of advances in component integration VLSI
- Same problems, different applications
 - Robot dynamics
 - Machine vision
 - Neural networks

Robot Dynamics

- Sturges paper
- 18.06 problem
- Tradeoff between calculation speed and accuracy
- Stability concerns

Machine Vision

- Harris/Koch/Luo paper
- VLSI resistive network
- Analog design allows processing in realtime
- Extremely high degree of parallelism
- Scalable with fabrication technology

Neural Networks

- Need to perform huge number of multiplies and adds in parallel
- Can sacrifice accuracy for speed, make up for it in parallelism
- Analog multipliers much cheaper than digital ones—two orders of magnitude in some cases

NeuroClassifier

- Developed by Péter Masa, 1994
- Designed for high-speed pattern classification
- 20ns propagation delay
- 425 5-bit multiplies and 6 nonlinear transformations per "cycle"
- 20 *billion* operations/second
- 1.5 micron process
- 0.6W power dissipation

- Precision doesn't scale
- Setup time vs. execution time
- Storing results
- Error handling

- Precision doesn't scale
 - Need more precision in the Pentium FPU? Just add bits
 - Not so easy with analog devices: you need more physical precision
 - "Duron Rod"

- Setup time vs. execution time
 - Analog execution is about as fast as you can get
 - Setup can be a lot slower, complicated
 - Tradeoff: general purpose & longer setup vs. single-use & shorter setup
 - Complement with easily programmable digital logic?

- Storing results
 - "Results" are really just one way of looking at the state of the device
 - No (easy) way to pause execution
 - Massive potential bandwidth could overwhelm digital storage devices
 - NeuroClassifier uses on-chip SRAM

- Error handling
 - Errors can be hard to detect
 - Stability issues
 - Calibration
 - Some applications have tolerance for errors
 - Compensate with (cheap) parallelism

The Analog Future

- Nick Negroponte not withstanding, the world will always be an analog place
- Computation is moving into areas where analog data is the norm:
 - Audio/video processing (compression!)
 - Speech recognition
 - Natural language analysis
- These applications require speed, not accuracy

The Analog Future

- Special purpose devices, ASICs
- VLSI advances help analog as well as digital components
- Simple parallelism
- Mass-produced computing
- "Clockless" logic asynchronous processing

Questions

- Can analog machines solve NP complete problems in polynomial time?
 - Yes, but you need non-polynomial resources
 - Ken Steiglitz ran a course like 6.911 at Princeton:
 - http://www.cs.princeton.edu/courses/archive/spring98/cs598c/
 - Check out "The Complexity of Analog Computation" under Links

Questions

- Can we solve the slow-setup problem?
 - We want configurable devices that are programmable like digital ones, but fast and cheap like analog ones
 - Some analog/digital integration could obviously be beneficial
 - Are FPGAs the answer?

Questions

• Fast Analog Solutions

– http://www.fas.co.uk/

- TRAC: Totally Reconfigurable Analog Circuit
- "World's First" FPAD: Field Programmable Analog Device
- Individually programmable "cells"
- Log, Antilog, Add, Rectify, Differentiate, Integrate functions available