
Project ARIES
Advanced RAM Integration for Efficiency and Scalability

Presented by the 8th floor buttheads

(pun intended)

5/3/00 Project Aries 2

Motivation - System Level

• Many applications have massive memory and/or
computational requirements
– graphics, CAD, physical simulation, factoring, etc.

• Current parallel systems have severe limitations:
– difficult to program
– poor network performance
– insufficient scalability

• There is a need for programmable systems
scalable to 1M processors and beyond

5/3/00 Project Aries 3

Motivation - Architecture

• Transistor counts have increased
1000x in 20 years
– 1978: 29K in Intel 8086
– 1999: 23M in NVIDIA GeForce 256

8086

• Suppose someone gave you 100M transistors and
you had never seen a load-store architecture.
What would you build?

• There is a need for designs scalable to 1G
transistors and beyond

5/3/00 Project Aries 4

Motivation - Area Efficiency

K7 Die Photo

• In modern processors < 25% of
chip area devoted to useful
work (red areas on die shot)

• > 75% devoted to making the
25% faster

• Even the 25% is bloated due to
– large instruction sets
– complex superscalar design

• ...not necessarily a bad thing

5/3/00 Project Aries 5

Motivation - Scalability

Today
• 1-4 processors per die
• Use available area to

make processor fast
– complicated designs

Tomorrow
• N processors per die
• Use available area for

lots of processors
– simple designs

5/3/00 Project Aries 6

Motivation - RAM Integration

• Logic and fast DRAM on a single die provides:
– lower latency access to memory (~10x)
– much higher bandwidth (~10x)

• What architectural features are enabled by this
technology?
– SRAM-tagged DRAM
– Transactional memory
– Forwarding pointers

5/3/00 Project Aries 7

Research Goals

• Highly programmable parallel system
– language, compiler, OS, architecture

• Manage huge data sets
• Area efficient architecture
• Design efficient architecture
• Integration of processor and memory
• Efficient Dynamic Fault Tolerance

– A 1M node system is a great cosmic ray detector

5/3/00 Project Aries 8

Architectural Goals

• Fast general purpose processor
– ~1 GFLOP/processing node

• High performance network
– high bandwidth (8GB/s at each node)
– low latency (~40ns across a 1000 node system)

• Compilability
• Scalability

– >> 1,000,000 nodes

5/3/00 Project Aries 9

Chip-Level View

• Array of processor-memory
nodes connected by on-chip
network

• Each node consists of
processor, memory, and a
network interface

• No caches

PE

DRAM N

E

T PE

DRAMN

E

T PE

DRAM N

E

T PE

DRAMN

E

T

PE

DRAM N

E

T PE

DRAMN

E

T PE

DRAM N

E

T PE

DRAMN

E

T

PE

DRAM N

E

T PE

DRAMN

E

TPE

DRAM N

E

T PE

DRAMN

E

T

PE

DRAM N

E

T PE

DRAMN

E

T PE

DRAM N

E

T PE

DRAMN

E

T

5/3/00 Project Aries 10

Processor-Memory Node

Processing
Element

RAM
bank

RAM
bank

RAM
bank

Network

Arbitration

Network
Interface

Control

Data
memory

Instruction
memory

5/3/00 Project Aries 11

Processor Memory Integration

• Pozzo is designing hardware. He is assisted by the
omnipotent God Of Technology (Godot)

Once upon a time...

Pozzo: “I want memory!!”
Godot: “Here’s your memory. Give it an address and it will

give you data”

• Life is good

5/3/00 Project Aries 12

PMI con’t

Pozzo: “I want virtual memory!!”
Godot: “Here’s a page table mechanism. The page tables

will reside in memory. I’ll give you a TLB so that
memory access can still be fast.”

Pozzo: “I want protection in a shared environment!!”
Godot: “I’ve given every process a separate set of page

tables. You’ll have to clear the TLB when you do a
context switch. Try not to do any context switches.”

5/3/00 Project Aries 13

PMI con’t

Pozzo: “I want data protection on a sub-page granularity!!”
Godot: “Here’s a segmentation mechanism. Each segment

has a descriptor with base, bounds and permissions.
I’ve added all this to the TLBs. Try not to use too
many segments”

Pozzo: “I want all this in a distributed memory system!!”
Godot: “Alright, just make sure you keep the TLBs globally

consistent”

5/3/00 Project Aries 14

Pozzo: “I want data migration and forwarding pointers!! I
want to stripe contiguous data across my nodes!! I
want an object-based protection scheme!! I want to
share data between processes on a sub-page
granularity!! I want my system to be scalable!!”

Godot: “I’m taking away your memory”

PMI con’t

• Problem: Complexity layered on archaic model
• How can we develop a better model?

5/3/00 Project Aries 15

Capabilities

• Replace 64 bit pointers with 128 bit unforgeable
capabilities containing:
– 64 bit virtual address
– base and bounds information
– permission bits

• Allows global virtual address space
• Allows object-based protection
• Data sharing is easy

5/3/00 Project Aries 16

Multistriped Addressing

• Fixed virtual address → physical node maping
– Eliminates the need for global tables

• Embed the node index within the virtual address at
a controllable offset
– Flexible data striping with any power of 2 granularity

6 bit index node
63 58 0

64 bit virtual address

5/3/00 Project Aries 17

Hardware Page Tables

• Fully associative SRAM memory containing one
entry per physical page

• Eliminates TLBs

DRAM

page
table

virtual address

physical
address

5/3/00 Project Aries 18

Atomic Memory Operations

• Simple operation: boolean, addition, or copy
• Return nothing, result or previous memory word
• Store data or result

op

data memory word

result1 result2

RAM bank

5/3/00 Project Aries 19

RAM Bank Overview

DRAM

page
table

control

5/3/00 Project Aries 20

Processing element

• 128 bit multi-context VLIW processor
• ~32 registers per context

– or 64x64b or 128x32b

• Four functional units
– Multiplier/Adder (integer/floating point)
– Adder (integer/floating point)
– Boolean/Shift
– Divide Square Root

5/3/00 Project Aries 21

Processing Element

32 x 512 register file

(four 8x512 contexts)

Register fetch / writeback

Functional Units

Network/RAM

5/3/00 Project Aries 22

Design Issue

• How to connect registers to functional units?
• Full connectivity

– Easy for the compiler
– Hard for the hardware designer

• Lots of read/write ports!!
• Lots of wires!!

• Partial connectivity
– Can get away with MUCH less hardware
– More challenging for the compiler

5/3/00 Project Aries 23

Simple Silicon

• No dynamic superscalar issue
• No out of order issue
• No register renaming
• No branch prediction
• No speculative execution
• No remote-data caching

5/3/00 Project Aries 24

Research Opportunities

• Processor evaluation
– hand coded sample apps
– performance at various design points

• Language design/evaluation
– expresses parallelism and communication
– programmability vs. compilability

5/3/00 Project Aries 25

Research Opportunities 2

• Compiler Design
– C++ compiler
– PSCHEME compiler
– VLIW scheduling

• Operating System Design
– Thread management, page management, memory

management, etc. etc. etc.

5/3/00 Project Aries 26

Research Opportunities 3

• Alternative Execution Domains
– secure computing
– efficient dynamic typing
– transactional/speculative computing
– dataflow

• Hardware Design
– Arithmetic circuit design
– Verilog coding

