Aries

High Level Architecture And System Implementation

Large-Scale System Challenges

- Large-scale systems: 1K to 1M+ processors
 - 100M+ components
 - 1M processor chips would keep TSMC's \$2.4 billion Fab-6 busy for one month solid at full tilt, given good yields
 - one high-end automated chip-shooter would need about 700 days @ 24/7 to just place the parts on a machine with 1M Aries chips
- "small problems" become significant challenges:
 - Assembly
 - Integration and Configuration
 - Testing
 - Reliability
 - Cooling
 - Speed of Light
- Compare to Amorphous Computing

Better Living Through Architecture

- Simple modules with a common interface
- Self-checking and correcting capabilities in each submodule
- Easy customization for varying bandwidth/processing requirements (scalability)
- Fully distributed processing, storage, power conversion and cooling capabilities
 - Design-out catastrophic single-point failures

Box Architecture

- Three components
 - Processor boxes
 - Network boxes
 - Backplanes (racks)
- Vary mix of processor to network boxes to meet bandwidth requirements
- Flexible network box architecture to allow various topologies and paranoia levels
- All components hot-swappable
- Field-serviceability is simplified

Basic Box Architecture

Exploded view of a processor box

Rack Numbers

- Some ball-park numbers for a single fullypopulated processor rack (both sides):
 - 1024 processors
 - 2G active RAM
 - 64 G of disk buffer RAM
 - 2 TB of disk
 - 40 kW power dissipation
 - Backplane bisection BW ~400 GB/s

Processor-Intensive Configuration

Communications-Intensive Configuration

Paranoid Configuration

Network Topologies

- Fat tree topology with channel capacity scaling
 - Implemented as METRO-style multibutterfly networks with path-expansion
 - No single point of failure
 - Ref: "Fat-Tree Routing for Transit" by Andre Dehon
- Circuit-switched network assumptions
 - Time to connect is short compared to message transmission time
 - As time to connect gets longer, may need a hybrid packet-based or wormhole approach

Distributed Architecture for Fault-Tolerance

- RAID array per processor node
 - Higher bandwidth, more fault-tolerance
 - RAID ring topology (shared drives between adjacent modules)
- Power conversion is distributed
 - Redundant high-voltage distribution bus with local down-converters
- Cooling is distributed
 - Pump and heat exchanger in each module with redundant coolant distribution and coolant stores

The Cooling Challenge

- Removing heat faster lets us make more of it
- Stable die temperatures => more performance margin
- Estimated 200W per Aries chip peak dissipation
 - Spray cooling or microchannels
 - Doesn't count support chips (external DRAM, glue)
- Must keep physical size down to reduce speed-of-light impact
- Each box will dissipate in excess of 1 kW
 - liquid cooling is mandatory
- Either sealed-box (harder to service) method or gravityassisted falling liquid film (messy)

Bandwidths, error reporting

NI Architecture

Down The Rabbit Hole

Mega-Processor Machine

- Previous design good to about 10k-50k processors
- 1 M+ processors requires a different approach
 - full bisection BW would be about 10TB/s--a wire bundle about 14 meters (40 ft) in diameter
 - thinning by 1000 gives a bundle about 1ft in diameter
- Challenges in shear mass, connectivity, power, and assembly
- Must be a fully 3-D design

Processor Card

Wedge Assembly

Near-Term Work

- Extensive simulations are necessary
 - Study processor to memory ratio tradeoffs
 - Measure bandwidth, latency impact upon performance
 - Test basic fault-tolerant principles
- Prototype hardware system
 - Built out of FPGAs and COTS components
 - Provide maximum flexibility in a MP hardware simulation environment
 - Run realistic benchmarks and gather stats, design data for the second system

Moore Board

- Processor and network simulation
- Implement test ISAs, architectures (DAE)
 - Two 1.5 million gate FPGAs with 49kB embedded SRAM
 - PC-100 interface for fast interface to diagnostic host
 - Disadvantage: no interrupts
 - On-board 256-bit wide, fast SRAM to emulate caches or main memory
- Leverage Moore's law to make a decent implementation
 - Use SRAM-based technology that scales w/time—wait two years and you've got a board that's got 2x the performance

Moore Board

PC-100 interface (0.8 GB/s, ~100 ns latency to processor)

FINI Board

- Flexible Integrated Network Interface board
 - Test platform for COTS network chips
 - Trial implementations of network protocols
 - Test out key physical design ideas
- 4 Virtex FPGAs plus DS90C387/DS90CF388 LVDS interface chips
 - SSRAM buffers to hold test data patterns
 - Programmable clock

Node Simulator

- Combine the findings from Moore and FINI
 - Add hard drives, I/O processor
- Add cooling apparatus
 - Heat exchangers
 - Microchannel-style heatsinks
 - Use silicon blanks bonded to active die to reduce chance of damage to active, valuable die
- Provide adequate mechanisms for monitoring functional unit loading and congestion

On-Chip Architecture

- A different world
 - Wires and signaling can be made much more reliable
 - Much higher density of wire to logic ratio available
 - Wire delays shorter due to shorter on-die distances
 - Integrated fault detection/correction strategies
- JP's domain