
Datawhat?

J.P. Grossman
March 14, 19100

T merge
T F

< 9

switch
F T

- 9n result

Dataflow Talk Overview

• Major focus: How, what and why
– What is dataflow?
– Why is it a good idea?
– How do I build a dataflow computer?

• Briefly:
– Existing machines
– Programming models
– Problems with dataflow
– Hybrid approaches

T merge
T F

< 9

switch
F T

- 9n result

Motivation

• Given a sequential program, how do we:
– Find and exploit parallelism?

• Identify independent operations
• Execute them in parallel

– Keep the processor busy with useful work?
• Tolerate latency
• Avoid pipeline stalls
• Cheap synchronization

T merge
T F

< 9

switch
F T

- 9n result

Anatomy of a Program

• Computation can be described by a dataflow graph
• All computers evaluate the dataflow graph

x = a - b

y = c - d

result = x^2 + y^2

- -

* *

+

a b c d

result

T merge
T F

< 9

switch
F T

- 9n result

Traditional Computation

• Operations in dataflow graph are given a
sequential order at compile time

• Problems:
– Stalls can occur due to dynamic data dependencies
– Hides parallelism rather than uses it
– Compiling code with a finite number of registers

creates artificial dependencies
• Makes life difficult for architectures that try to be clever

– Synchronization is expensive in parallel machines

T merge
T F

< 9

switch
F T

- 9n result

The Dataflow Solution

• Program Counters are evil - get rid of them
– instructions should execute when their operands are

available, not when an arbitrary PC says it’s time

• Compile and run the dataflow graph directly
– compiler produces a set of operations
– each op specifies one or more result destinations
– an op can execute as soon its operands are available

• An “ideal” dataflow machine represents the fastest
possible execution of a program

T merge
T F

< 9

switch
F T

- 9n result

Flowputer v1.0

• Basic data structure is an activity template
– opcode, storage for operands (with present bits),

destination specifier(s)

• Flowputer maintains a set of ready operations
• On each cycle, grab n ready operations:

– execute the operation
– store the result in the destination(s)
– check to see if any new operations become ready and, if

so, add them to the ready set

T merge
T F

< 9

switch
F T

- 9n result

Flowputer v1.0: Example

- -

* *

+

a b c d

result

1

3 4

2

5

1 - 3L 3R

2 - 4L 4R

3 * 5L

4 * 5R

5 + out

L R dest

1 - 3L 3R

2 - 4L 4R

3 * 5L

4 * 5R

5 + out

L R dest

a b

dc

1 - 3L 3R

2 - 4L 4R

3 * 5L

4 * 5R

5 + out

L R dest

x x

yy

1 - 3L 3R

2 - 4L 4R

3 * 5L

4 * 5R

5 + out

L R dest

x2 y2

T merge
T F

< 9

switch
F T

- 9n result

Problem: Dynamic Graphs

• Most program dataflow graphs are dynamically
determined at run time

• Example:

if (x < 10)

 y = x + 5;

else

 y = x - 7;
+ -

5

x

y

7

?

?

T merge
T F

< 9

switch
F T

- 9n result

Solution: Merge and Switch

if (x < 10)

 y = x + 5;

else

 y = x - 7; + -

5

x

y

7

<10switch

T F

merge

T F

T merge
T F

< 9

switch
F T

- 9n result

Compiling Loops
X = 3;
for (i = 1 ; i < 3 ; i++)
 x = x + i;

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

1

F

x

3

F

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

x

3 1 1

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3
T

x

T
3

TT

1
switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

x
3

TT

1 1

T merge
T F

< 9

switch
F T

- 9n result

Loops Continued

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

x
3

TT

1 1

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

x

4
TT

2

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

x

6
TT

3

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

x

6

FF

T merge
T F

< 9

switch
F T

- 9n result

Subtle Problem

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

1

F

x

3

F

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

x

3

F

1 1

switch

F T

switch

F T

merge

F T

merge

F T

+ +1

<3

x

3

T
1

T

T

T
• “F” token is overwritten

by “T” token
• Machine deadlocks

T merge
T F

< 9

switch
F T

- 9n result

Solutions

• Only allow one token per arc (Dennis)
– Complicates hardware
– Reduces performance and flexibility.. no recursion!

• Tagged Token Dataflow (Manchester, SIGMA-1)
– Give each function call/loop iteration a unique tag
– Also complicates hardware (tag matching)

• Explicit Token Store (Monsoon, EM-4)
– Dynamically allocate frame memory for operands
– Compiler ensures one token per arc

T merge
T F

< 9

switch
F T

- 9n result

Data Structures

• Can’t pass entire data structures in tokens
• Pass pointers instead.. but pointers to what?

– Need to emulate “availability of operands”

• Solution: I-structure memory
– Single write, multiple read, split-phase memory
– Read to a full slot causes the value to be sent back
– Read to an empty slot blocks until slot is filled
– Write to an empty slot causes all waiting reads to be

satisfied

T merge
T F

< 9

switch
F T

- 9n result

Parallel Dataflow

• At any point in time, a dataflow program generally
has many ready operations

• Pick your favorite way to execute them in parallel
• Big question: do we get good speedup?
• Experiments with Monsoon indicate that the

answer is “yes”
– 8 processors, interconnection network for routing

tokens to correct processor
– Average speedup of 7.15x

T merge
T F

< 9

switch
F T

- 9n result

Paperflow?

• Lots of paper, not too many actual machines
• Manchester (1981) - Tagged Token

– 12 functional units, 1 MIPS, 4-8x slower than VAX

• SIGMA-1 (1987) - Tagged Token
– 128 processors, 170 MFlops

• Monsoon (1988) - Explicit Token Store
– 8 processor configuration out-performs MIPS R3000

• EM-4 (1990) - Hybrid Explicit Token Store
– 80 processors, 1 GIPS, 14.63 GB/s peaks

T merge
T F

< 9

switch
F T

- 9n result

Programming Models

• Id (Monsoon)
– functional language augmented with I structures

• SISAL (Manchester)
– Pascal-like single-assignment language

• Both languages enforce a write-once read-many
programming style
– Relatively easy to compile to efficient dataflow code
– Relatively easy to lose toes

T merge
T F

< 9

switch
F T

- 9n result

Problems with Dataflow

• Some obvious problems:
– complicated and expensive hardware
– confusing programming model

• Some not-so-obvious problems:
– Extremely high bandwidth requirements

• Each operation injects token(s) into the network

– Runaway resource requirements
• Direct consequence of the goal of limitless parallelism
• Bounding loops works, but doesn’t deal with general recursion

T merge
T F

< 9

switch
F T

- 9n result

Hybrid Approaches

• Scheduling Quanta (Iannucci)
– Use dataflow mechanisms to schedule instructions on a

coarser granularity
– Similar to “Strongly Connected Blocks” (EM-4)

• P-RISC (Nikhil, Arvind)
– Looks like RISC with a few extra instructions

• unless you look at the storage model (not recommended)

T merge
T F

< 9

switch
F T

- 9n result

Modern CPUs

• Most modern CPUs are really dataflow computers
on a small scale!

• Each arc should have a unique name
– Register renaming!

• Results should be sent directly to ops
– Out of order instruction buffer!

• Independent ops should execute in parallel
– Superscalar!

T merge
T F

< 9

switch
F T

- 9n result

Conclusion

• Advantages of dataflow:
– Naturally finds all available parallelism
– Will never stall when there is useful work to do

• Disadvantages of dataflow:
– Complex hardware
– Overall performance/efficiency is still worse than a

good modern processor
– Confusing programming model

• Five star rating: «««

