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The Problems

" Defects: manufacture errors

– As complexity and density of hardware increases, 
perfect−chip yield decreases.

– Results in faulty logic, flaky connections (mostly 
opens, shorts, or stuck at 1 or 0)

" Faults: run−time errors

– Caused by noise, radiation, metastability.
" (DRAM chips make great alpha particle detectors!)

– Results in unpredictable, random, independent errors.



The Solution

" Redundancy: if Foo is flaky, use lots of Foos.

– A statistical game: you can never reach 100% 
reliability, but you can often come arbitrarily close.

– Foo might be a computing element, a network 
element, an input device, etc.: any might be the 
reliability bottleneck.



Teramac paper

" Manufacturing defects which can be detected

– Defects are mapped out once.

– Map is used by compiler to route around bad LUTs 
and bad interconnects: this is made possible by the 
highly redundant fat−tree nature of the interconnects.

– "It’s the wires": conscious design decision to 
out−wire Rent’s Rule.



Error−Correcting Codes

" Protects against random, independent bit errors

– Long−haul networks, networks in noisy 
environments

– Medium−to−long−term storage (DRAM, hard drives)

" How Does It Work: append n−k redundant bits to 
a transfer block of k bits

– Linear block codes: redundant bits are a linear 
combination of the input block

– Straightforward, but in−depth, linear algebra (mod 2) 
to find a linear encoding which can correct t errors or 
detect 2t errors.



Error−Correcting Codes

" Efficiency

– Encoding requires a n−k by k matrix to be applied to 
the k−vector (mod 2, so can be implemented with 
ANDs and XORs)

– Decoding requires a same−size multiplication, plus 
an (n−k)−bit table lookup for error correcting. 



Byzantine Generals

" Theoretical result: given certain (strong) 
assumptions, reliability can be proven.

– Definition of reliability:
" All nonfaulty processors must use the same input value (so 

they produce the same output).
" If the input unit is nonfaulty, then all nonfaulty processors 

use the value it provides as input (so they produce the 
correct output).

" In general, the "input unit" could be a processor or 
something else.

– In short, the results must be consistent and not "bad".



Byzantine Generals

" Solution: majority voting

– Basically, every unit tells every other unit "he said 
<foo>".  Then every unit (except "him") tells every 
other unit "he said she said <foo>", and so on, 
recursively, until the recursion bottoms out.  Then a 
majority vote is used to determine whether "he said 
she said Glorb said ... he said <foo>", upon which all 
nonfaulty processors will agree.  Then these values 
can be used in a majority vote to determine whether 
"she said Glorb said ... he said <foo>"; and so on, 
stripping off a "someone said" each time, until, at the 
top of the chain, there is an agreement on "<foo>".



Byzantine Generals

" Limitations

– Assumes complete, perfect connectivity

– If more than 1/3 of processors are faulty, correctness 
is not guaranteed.

" Variations

– Can be modified to work around incomplete 
connectivity

– If signed messages can be used, any number of faulty 
processors can be dealt with 



Byzantine Generals

" Perfect fault−tolerance?  No!

– Depends on strong assumptions which are not true 
100% of the time in a non−perfect system.

" Strong connectivity assumptions (perfect transmission, 
high regularity of graph)

" Clock skew, an entire fault−prone system in itself
" More than 1/3 of the processors will be faulty, with some 

nonzero probability
" If signed messages are used, there is always non−zero 

probability of a signed message being (either accidentally 
or maliciously) correctly forged



The Real World Today

" Real fault−tolerant systems use redundant 
routing, ECC, and majority voting (Byzantine 
Generals), and it seems to work.

" Also techniques such as transactions, assertions, 
periodic consistency audits, and pervasive 
timeouts are used to attain high uptimes: 
defensive programming.



The Real World Tomorrow

" Most of the research into fault tolerance today 
seems to focus on the deplorable fact that most 
faults are due to design errors, programmer error, 
and operator error, and not due to noise or 
defects.

– More radical techniques include things like 
automated logic checking ("what were you 
THINKING?")



Questions

" From a system reliability perspective, error 
correction is a dangerous idea to pursue: the 
belief that an ECC system is "safe from errors" 
can lead designers to build a much more fragile 
system, which the infrequent mis−corrected error 
can have a much greater effect upon. (Witness the 
reliability of modern systems versus older ones 
which assumed errors would occur) What are 
good ways to deal with this issue?



Questions

" How does the fault−tolerant system on the Space 
Shuttle work?

" What level of fault tolerance does NASA employ 
in its spacecraft? Is it Byzantine? Programming 
errors aside, I would expect corrupted or failed 
components to be the biggest problem for a 
computer in space.



Questions

" How applicable are approaches like the Byz. 
General to real system stability? It seems like it 
would be better to analize what happens during 
average failures than absolute worst−case 
scenerios. Failure is sort of a statistical analysis, 
so it seems logical to do overall statistics.


