
Fault Tolerant Computing
6.911 Architectures Anonymous

Chris Laas

April 11, 2000

1 Summary

As the limits of computer technology are pushed into the domains of the
very small, the very cheap, and the very robust, the near-perfect reliabil-
ity which had been granted by the digital abstraction has eroded. Small
components may be cheap and fast, but it is an ever greater challenge to
produce the correct answer every time, an immovable constraint of the de-
sign. (gcc --wrong-answer-very-quickly isn’t in terribly high demand.)
To compound the problem, the environment is anything but friendly to
computer systems: a typical system is under mechanical, thermal, radia-
tive, and electromagnetic stresses which may interfere with the operation of
the machine.

The set of errors that can occur are divided into two broad categories,
defects and faults. Defects, which are errors made in the hardware during
manufacture, become far more common as the complexity and density of
the circuits increases, resulting in ever lower perfect-chip yields as time goes
on. The most common results of chip defects are faulty logic and flaky
connections, which usually manifest as opens, shorts, or stuck at 1 or 0.

On the other hand, faults are errors made during a calculation, at run
time. For example, electromagnetic noise or particle radiation can cause
undesirable energy spikes in a circuit; in fact, this can be exploited to use
DRAM chips as reliable and cheap alpha particle detectors. In addition, the
inherently statistical nature of metastable circuits (such as registers) cause
an low, but nonzero error rate, which can be decreased (by slowing the clock
rate) but not eliminated. Run-time faults typically result in unpredictable,
random, and independent errors; in contrast, defects usually cause highly
predictable and correlated errors.

The generic engineering solution to the problem of flaky components is

1



Chris Laas Fault Tolerant Computing 2

redundancy: using multiple unreliable components in a coordinated, mu-
tually verifying way can increase the reliability of the complete system by
orders of magnitude. For example, if two identical, redundant components
are each down 0.1% of the time, their failure modes are completely inde-
pendent and detectable, and the rest of the system (including the arbitrator
which determines which component to trust) can be approximated as 100%
perfect, then the whole system should be down only 0.0001% of the time.
As the example demonstrates, it’s never possible to reach 100% reliability,
but it is often possible to come arbitrarily close to the limit. In general,
accomplishing this is more difficult than it seems, because any component
of the system (be it computing element, network element, input/output de-
vice, or even redundancy arbitrator) can be the reliability bottleneck of the
system.

2 Defect-tolerant architectures

As manufacturing processes push the size and speed limits of silicon cir-
cuitry, and as the sheer number of components per chip balloons, the yield
of perfect chips from a fab inevitably drops, wasting precious resources.
While the mainstream solution to this problem is ever-more-precise manu-
facturing processes in ever-more-pristine clean rooms, the cost of such fabs
is approaching billions of dollars. Another way to increase effective yields is
to design some amount of redundancy into the system; for example, RAM
chips are often fabricated with a few extra lines of storage space, which are
wired in as replacements for any lines which turn out to be faulty.

A particularly ambitious system of this type is Teramac, a custom con-
figurable computer designed by HP Labs. Teramac consists of 65,536 LUTs
(distributed among about a thousand FPGAs) connected via crossbars in a
fat-tree network. This extremely flexible architecture had few critical paths
(the only components that needed to be perfect were the power and clock
wires) and highly redundant network connectivity through the fat-tree; this
allowed the compiler to map out the defects in the system once, and simply
route around bad LUTs and interconnects when compiling. In particular,
the conscious design decision to out-wire Rent’s Rule (Teramac used Rent’s
Rule exponents of 2/3 to 1, as opposed to the “normal” exponents of 1/2
to 2/3) allowed the system to function normally despite defects in 10% of
logic cells and 10% of interchip interconnects. Most importantly, the defect
tolerance scaled well: if a wire or component were physically damaged, the
loss of computational capacity (after recompiling) was roughly proportional



Chris Laas Fault Tolerant Computing 3

to the fraction of damaged parts.

3 Fault-tolerant signal transmission

Several forms of networks (long-haul networks, modems, cell phones), and
of medium to long term storage (DRAM, hard drives, backup tapes) are
susceptible to data corruption by noise in the environment. Such corruption
often manifests as random, independent bit errors, which can be protected
against by a class of linear block codes known as error correction codes.
In brief, such codes append a certain number of redundant bits (which are
a linear combination of the bits of the input block) to a transfer block;
the receiver then checks the redundant bits against the input to determine
whether there has been an error in transmission, and can sometimes correct
the error. One can visualize the algorithm as placing the correct blocks as
points in an n-dimensional space; then, any block within a certain “distance”
of a correct block can be corrected, and any block outside all the n-spheres
thus defined are uncorrectable. Thus, in general, it is straightforward to find
a linear encoding which can correct up to t errors, or detect up to 2t errors.

The encoding process is quite efficient: it requires an n− k by k matrix
to be applied to a k-vector input block. All arithmetic is mod 2, and so
can be implemented with ANDs and XORs. However, decoding requires a
same-size multiplication, but also requires an (n − k)-bit table lookup for
error correcting: this can easily outstrip memory resources if the redundant
block size n is large.

4 General majority-vote fault-tolerance

Transmitting redundant bits using error correcting codes is sufficient to pro-
tect against random, independent bit errors in storage and network elements;
however, in the presence of correlated errors and unpredictably faulty com-
putational elements, a more general solution in necessary. The problem can
be expressed like this: imagine that a group of generals of the Byzantine
army are camped around an enemy city, communicating only by messenger,
and are deciding whether to attack, or to retreat. However, the situation is
complicated by the fact that some of them may be traitors, and they can’t
tell which. They must ensure that

1. All loyal generals decide upon the same plan of action, and



Chris Laas Fault Tolerant Computing 4

2. A small number of traitors cannot cause the loyal generals to adopt a
bad plan.

Note that the “traitorous” faulty components might conspire or only lie
some of the time: the model allows for any sort of correlated errors, or even
for malicious intelligences working against the system.

The solution to this most general problem is, essentially, a form of ma-
jority voting. For Alice to tell all the other generals “we should retreat!”,
Alice first sends a message to every other general, saying “Alive says: we
should retreat!” This, however, doesn’t satisfy the generals, since Alice
might be a traitor, telling Bob “we should retreat!” and telling Carl “we
should attack!” Thus, every other general (for example, Bob) tells every
other general “Bob says: Alice says we should retreat.” But again, we run
into the same problem, and hence each general chimes in with “Dave says:
Bob says Alice says we should retreat” and “Dave says: Carl says Alice says
we should attack.”

The recursion finally bottoms out at n levels deep, where n is the number
of units, since one processors is left out at every level of recursion: Bob need
not send a message “Bob says: Bob says Alice says we should retreat”. At
that point, every processor takes for granted the statement received (which
is similar to “Zed says Yak says. . . Bob says Alice says we should retreat”)
and performs a majority vote to determine the “true” next-level statement.
In other words, if both Zed and Zach say “Yak says. . . Bob says Alice says we
should retreat”, but Zeeb says “Yak says. . . Bob says Alice says we should
attack”, the unit decides that Zed and Zach are right. This process is used
to climb the recursion tree, until, at the top of the chain, there is a final
result: “Alice says we should retreat.”

Given the strong assumption of perfect connectivity among the generals
(each general can send messages to any other general, and no general can
pretend to be another), this procedure is guaranteed to result in agreement
among all the loyal generals so long as no more than 1/3 of the generals are
traitors. The algorithm can be modified to cope with incomplete connectiv-
ity, so long as the subgraph of loyal generals is connected (otherwise, there
would be no way to get a message from one loyal connected component to
another). Also, if signed, unforgeable messages can be used, any number
of faulty processors can be dealt with, and many of the inefficiencies and
details of the procedure can be smoothed over.

Although the theoretical result is a proof of perfect operation, any im-
plementation of the algorithm is still not perfectly fault-tolerant, because
the proof relies on strong assumptions which are not true 100% of the time



Chris Laas Fault Tolerant Computing 5

in a non-perfect system. In real systems, one must worry about:

1. Lack of complete connectivity in any practical system.

2. Clock skew: synchronization is an entire fault-prone system in itself.

3. With nonzero probability, more than 1/3 of the nodes will be faulty.

4. If signed messages are used, there is always a non-zero probability of
a signed message being correctly forged, either accidentally or mali-
ciously.

5 Conclusion: The Real World

Real fault-tolerant (in buzzword jargon, “ultrareliable”) systems use all of
the techniques of redundant routing, ECC, and majority voting in various
subsystems; it’s a proven technology. Most practical implementations of
majority voting use simpler, more efficient mechanisms that that outlined
above, however. A common implementation is to use an arbitrator to count
the votes and determine the correct result; however, care must be taken to
ensure that the arbitrator itself is fault-tolerant.

Current systems tend to focus on software techniques, such as trans-
actions, assertions, periodic consistency audits, and pervasive timeouts to
attain high uptimes; in general, defensive programming is becoming an ever-
more-important tool. Along these lines, most of the research into fault toler-
ance today seems to focus on the deplorably fact that most faults are due to
design errors, programmer errors, and operator error, rather than noise or
defects, which are adequately defended against by the techniques outlined
above. For example, tools are being developed to perform automated logic
checking on programs, determining if a program actually does what its de-
signer intended it to do. Finally, this problem is ultimately human in origin,
and the optimal solutions are also human in nature: an effective technique
is to have multiple development teams independently design programs to
perform a certain task, and then use majority voting on the results of the
different programs in the actual production system. Such techniques are
used in systems where reliability is critical, such as life support.



Chris Laas Fault Tolerant Computing 6

References

[1] Shu Lin. An Introduction to Error-Correcting Codes. Prentice-Hall, En-
glewood Cliffs, NJ, 1970, 330pp, pp. 33-57.

[2] James R. Heath, Philip J. Kuekes, Gregory S. Snider, R. Stanley
Williams. A Defect-Tolerant Computer Architecture: Opportunities for
Nanotechnology. Science, Vol. 280, 12 June 1998, pp. 1716-1721.

[3] Leslie Lamport, Robert Shostak, Marshall Pease. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Sys-
tems, Vol. 4, No. 3, July 1982, pp. 382-401.


