
Multithreading

6.911 Architectures Anonymous



The Problem

• Lots of silicon
– higher clock rates

– same old speed of light

– bandwidth, latency problem

• Extracting ILP is hard
– Hazards and stalls

– dependencies, structural limitations

– static optimization limits



One Solution

• OOE superscalar
– dynamically re-order instructions to fill

multiple execution units

– must preserve sequential semantics
• dependency checking req’d

– complexity grows as product of instructions in
flight and number of execution units

– recent work by Sun, IBM, Compaq indicates
that a superscalar width of about 4 is the current
cost vs. Performance point



What Went Wrong?

• Preserving sequential semantics while
reordering instructions is hard--esp. in
hardware

• Limits to reordering
– branches

– loads and stores



Enter Multithreading
• Observation: many tasks are divisible into

multiple threads
– but, requires a different coding style

• These threads are independent
– except for the dependencies you put in

• Executing multiple threads allows you to
fill wide execution units without the
hardware dependency checking!

• Additional benefit: latency hiding



Cost of Multithreading

• Hardware cost
– a copy of PC, register file

– cache pollution issues

• Software cost
– need to write for a multithreaded paradigm

– synchronization issues pushed up into the user
domain



Papers

• Two TERA papers
– massively multithreaded processor

• *T (“start”) architecture
– massively parallel processor design, intro to

dataflow

• MPR Report on Alpha EV8
– SMT (simultaneous multithreading)


