UMA vs. NUMA

UMA

- “Dance Hall”
- SMP
- Latency $= O(\log(N))$

NUMA

- P/M nodes on network
- Modern Architectures
- Latency =
 - $O(1)$ for local
 - $O(\log(N))$ for remote
Managing Latency

• Caches
• Prefetching
• Multithreading
• Alternate consistency models
• NUMA only:
 – locality!
Types of Locality

• Data locality
 – static: try to place data intelligently
 – dynamic: migrate data to where it’s needed

• Code locality
 – static: compiler assigns code to specific nodes
 – dynamic: remote procedure calls
Papers

• DASH, FLASH
 – serious caching

• Alewife
 – aggressive latency tolerance

• RAW
 – static everything: let the compiler do the work

• J-Machine
 – object oriented-style dynamic code locality

• M-Machine
 – multithreading, caching
Memory Consistency Models

• Start with data = done = 0

Processor 1

data = 27;
done = 1;

Processor 2

while (!done);
print data;

• What output do you expect?
How Things Can Go Wrong

- Fire and forget leads to problems!
- For sequential consistency, need to wait for one write to complete before starting next one
Relaxed Consistency Models

- Start with data = 0

Processor 1

```plaintext
data = 27;
sync;
sync;
```

Processor 2

```plaintext
print data;
```

- Define special synchronization operations
- Reads/Writes ordered w.r.t. syncs
Papers

- Tutorial
- Release Consistency
- Highly opinionated paper advocating SC