Data Prefetching:
Hiding Memory Latency

Ben Vandiver
6.911 Spring 2000



Key ldeas

e \What Is prefetched?
When does the prefetch occur?

— Hardware driven; hardware decides which
memory addresses to prefetch based on past
accesses or future instructions. (problems with
lateness, inaccurate addresses, lengthening the
critical path)

— Software driven; compiler issues prefetch
Instructions. (problems with extra instruction
overhead)




More Key ldeas

e Where does the result go?

— Register (binding prefetch)
problems with stale data

— Cache (non-binding prefetch)
problems with pollution

— Other (FIFO queue)
problems with critical path length, coherence



Hardware Driven Prefetch

e Caches
— Prefetches data close to recent accesses

— Multiprocessor environment needs coherence

e Objective: Maintain low latency access with
minimal network overhead.

« Methods: Write-Update, Write-Invalidate, Snoopy-
Reading, Random-Walk, etc..



Hardware Prefetch Engines

e Optimize Loops / Vector operations
* By knowing or guessing stride, predict
upcoming accesses and prefetch.

* Trend Is to have the compiler give
parameters to the prefetcher hardware



Software Prefetch

o Use prefetch instruction
— non-blocking, non-error-generating load
« DASH paper
— Useful iIn NUMA environment; hides network
latencies
— 1998, paper on compiler that gets similar results
— designed with coherency in mind



Decoupled Access/Execute

o Architecture of DAE machine

— Access processor performs all accesses to
memory and address calculation

— Execute processor does all the “work”
— Communicate via queues for data and branches
— Processors run asynchronously



Decoupled Access/Execute

o Payoff
— Access leads Execute, hiding memory latency
— Claims speedup of 1.7 average, 2.5 max
— Only stalls for RAW hazards and full queues

e DAE vs Caches

— Original paper compared to a no-cache machine

— DAE loses when latency high, can benefit from
cache itself




DAE vs SS

 DAE vs SuperScalar machine:

— DAE beats 3-way SS on 10/12 Lawrence
Livermore loops.

e Why?
— Register rename via queues

— Out of order execution
— Dynamic loop unrolling



Extensions to DAE

Decouple control from data processing

Control decoupling reduces Loss of
Decoupling (LOD) events.

More recent research (1993)
Rumored existence of compiler for DAE



The Future of Prefetch

 Memory Latency isn’t going away

e Communicating access patterns to lower
level architecture

 Intel includes data speculation In ltanium
— Errors delivered on data use, not load
— Schedule loads before stores (RAW avoidance)



