
Data Prefetching:
Hiding Memory Latency

Ben Vandiver

6.911 Spring 2000

Key Ideas
• What is prefetched?

When does the prefetch occur?
– Hardware driven; hardware decides which

memory addresses to prefetch based on past
accesses or future instructions. (problems with
lateness, inaccurate addresses, lengthening the
critical path)

– Software driven; compiler issues prefetch
instructions. (problems with extra instruction
overhead)

More Key Ideas

• Where does the result go?
– Register (binding prefetch)

 problems with stale data

– Cache (non-binding prefetch)
 problems with pollution

– Other (FIFO queue)
 problems with critical path length, coherence

Hardware Driven Prefetch

• Caches
– Prefetches data close to recent accesses

– Multiprocessor environment needs coherence
• Objective: Maintain low latency access with

minimal network overhead.

• Methods: Write-Update, Write-Invalidate, Snoopy-
Reading, Random-Walk, etc..

Hardware Prefetch Engines

• Optimize Loops / Vector operations

• By knowing or guessing stride, predict
upcoming accesses and prefetch.

• Trend is to have the compiler give
parameters to the prefetcher hardware

Software Prefetch

• Use prefetch instruction
– non-blocking, non-error-generating load

• DASH paper
– Useful in NUMA environment; hides network

latencies

– 1998, paper on compiler that gets similar results

– designed with coherency in mind

Decoupled Access/Execute

• Architecture of DAE machine
– Access processor performs all accesses to

memory and address calculation

– Execute processor does all the “work”

– Communicate via queues for data and branches

– Processors run asynchronously

Decoupled Access/Execute

• Payoff
– Access leads Execute, hiding memory latency

– Claims speedup of 1.7 average, 2.5 max

– Only stalls for RAW hazards and full queues

• DAE vs Caches
– Original paper compared to a no-cache machine

– DAE loses when latency high, can benefit from
cache itself

DAE vs SS

• DAE vs SuperScalar machine:
– DAE beats 3-way SS on 10/12 Lawrence

Livermore loops.

• Why?
– Register rename via queues

– Out of order execution

– Dynamic loop unrolling

Extensions to DAE

• Decouple control from data processing

• Control decoupling reduces Loss of
Decoupling (LOD) events.

• More recent research (1993)

• Rumored existence of compiler for DAE

The Future of Prefetch

• Memory Latency isn’t going away

• Communicating access patterns to lower
level architecture

• Intel includes data speculation in Itanium
– Errors delivered on data use, not load

– Schedule loads before stores (RAW avoidance)

